Incubed Documentation
Release 2.3

Blockchains LLC

Nov 29, 2021

Reference

Getting Started 1
1.1 TypeScript/JavaScript o e e e e e e e e e 1
1.2 AsDocker Container o it e e e e e e e e e e e e e e 2
1.3 ClImplementation e 3
N 4
1.5 Command-line Tool e 4
1.6 Supported Chains o e e e e e e e 5
1.7 Registering an Incubed Node 6
Downloading in3 9
2.1 In3-node ... e e e 9
2.2 In3-client (£8) i e e e e e e e e e e e e e e 10
23 in3-client(C) L e e e e e 10
Running an in3 node on a VPS 13
3.1 Sidenotes/chatsummary L e 17
3.2 Recommendations i i vt i e e e e e e e e e e e e e e e e 19
IN3-Protocol 21
4.1 Incubed Requests e 21
42 Incubed Responses o e e e e e e e e 22
43 Chainld o e e e e e e e e e 24
4.4 RegISITY . o v o v o e e e e e e e e e e e e e e e e e e 24
4.5 Binary Format e e e e e e e e 28
4.6 CommuniCation v v i i e 30
Roadmap 33
5.1 V2.0 Stable: Q32019 e 33
5.2 V2.1 Incentivization: Q4 2019 e 34
53 V22Bitcoin: Q12020 oL e 35
54 V23 WASM: Q32020 o e e 35
5.5 V24 Substrate: Q1 2021 L e e 35
5.6 V2.5 Services: Q32021 L e 35
Benchmarks 37
6.1 Setupand Tools e e e e e e e 37
6.2 Considerations e e e e e e e e 39

6.3 Results/Baseline e 39
7 Embedded Devices 41
7.1 Hardware Requirements e e e e 41
7.2 Incubed with ESP-IDF e 41
7.3 Incubed with Zephyr o e e e e e e e e e 44
8 APIRPC 45
8.1 IN3 . e e 45
82 eth . o e e 63
8.3 APIS . e 82
84 DIC . e e 84
8.5 ZKSYNC . . . e 101
9 API Reference C 107
0.1 OVEIVIEW L i e e e e e e e e e e 107
0.2 Building 110
0.3 Examples e e e e e e e e e e e e e 115
9.4 Howitworks e e e 133
0.5 Plugins L e e e e e e e 138
9.6 Integrationof Ledger NanoS 151
9.7 Moduleapi e e 154
0.8 Modulecore e e e 179
0.9 Module pay o i e e e e e e e e e e e 263
90.10 Module SIgNer o i e e e e e e e e e e e e e e e 265
90.11 Module transport L e e e e e 269
0.12 Module verifier e e e e 271
10 API Reference TS 319
10.1 Examples e e 319
10.2 MainModule e e 321
10.3 Package client e e e e e e e e e e 324
10.4 Package index.ts o v i i e e e e e e e e e e e e e 330
10.5 Packagemodules/eth 355
10.6 Package modules/ipfs L 376
10.7 Packageutil 376
10.8 Common Module L e e 378
10.9 Package index.ts o v i i i e e e e e e e e e e e e e e e 381
10.10 Package modules/eth oL e e e e 386
10.11 Package types o o i i i e e e e e e e e e e e e e e e 392
10.12 Package util e 401
11 API Reference WASM 407
11.1 Installing o e e e e 407
11.2 Building from Source e 408
11.3 Examples o oo e e e 408
11.4 Incubed Module e 412
11.5 Packageindex i i i i e e e e e e 416
12 API Reference Python 495
12.1 PythonIncubedclient e 495
122 Examples oo e e e e e e e 496
12.3 Incubed Modules oL e e e e e e e 503
124 Library Runtime e 516

13 API Reference Java

14

15

16

17

18

19

20

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9

Installing
Examples
Packagein3.
Package in3.btc
Package in3.config . . .
Package in3.ethl
Package in3.ipfs
Package in3.ipfs.API . .
Package in3.utils

API Reference Dotnet

14.1
14.2
14.3
14.4

Runtimes
Quickstart
Examples
Index

API Reference Rust

15.1
15.2
15.3
15.4

Quickstart
Crate
Api Documentation . .

API Reference CMD

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9

Usage
Install

Methods
Running as Server . . .
Cache
Signing
Autocompletion
Function Signatures . .

16.10 Examples

API Reference Node/Server
17.1 Command-line ArgUmMents o o vttt e et e e e e e e e e e

17.2

in3-server-setup tool . .

17.3 Registering Your Own Incubed Node e

API Reference Solidity
NodeRegistryData functions o i e e e e e e e e e e
18.2 NodeRegistryLogic functions e
18.3 BlockHashRegistry functions L

18.1

Concept

19.1
19.2
19.3
19.4
19.5
19.6

Situation

Low-Performance Hardware e

Scalability
UseCases.
Architecture
Scaling

Ethereum

20.1

Blockheader Verification

519
519
521
526
537
545
554
576
577
5717

587
587
587
588
593

653
653
653
656
656

657
657
658
660
660
661
661
661
662
662
662

665
665
667
667

669
669
674
678

681
681
682
682
682
685
693

695
695

20.2 Proof of Work e e e e
20.3 Proof of Authority L e e e e e e e
20.4 Ethereum Verification e e e e e e e e e e

21 Bitcoin
211 CONCEPL .« v v v v e
21.2 Security Calculation L e e e
213 Proofs o e e e e e e
214 CONnvICLION vt vt et e e e e e e e e e e

22 Incentivization
22.1 Decentralizing ACCESS o i i i e e e e e e e e e e e e e
22.2 Incentivization for Nodes e e e e
22.3 Connecting Clients and SETVer v v i i e e e e e e e e e e e e e e
224 Ensuring CHENnt ACCESS .+« v v v v v v e
22.5 DEPOSIt .« . v i e e e e e e e e e e e e e e
22.6 LoadBalancing e e e e e e e e
227 Free ACCESS . . v v v i v e e e e e e e e e e e e e e e e e
22.8 CONVICL . . v v v e
22.9 Handlingconflicts L e e e e e e e e
22,10 Payment e
22.11 Client Identification 0 L i i e e e e e e e e e

23 Decentralizing Central Services
23.1 Incentivization o e e e e e e e e e e e e e e e e e
23.2 Verification e e e e e e e e

24 Threat Model for Incubed
24.1 Registry Issues o e e e e
242 Network Attacks e e e e e e e
243 PrivaCy o e
244 Risk Calculation e

Index

705
705
707
709
714

717
717
717
718
718
721
722
722
722
723
723
723

725
727
727

729
729
732
734
734

737

CHAPTER 1

Getting Started

Incubed can be used in different ways:

Stack | Size Code | Use Case
Base
TS/AS | 2.7 MB | Type- | Web application (client in the browser) or mobile application
(browser- | Script
ified)
TS/JS/WASVKB C - | Web application (client in the browser) or mobile application
(WASM)

C/C++ | 200 KB C IoT devices can be integrated nicely on many micro controllers (like Zephyr-
supported boards (https://docs.zephyrproject.org/latest/boards/index.html)) or any
other C/C++ application

Java 705 KB C Java implementation of a native wrapper

Docker| 2.6 MB C For replacing existing clients with this docker and connecting to Incubed via local-
host:8545 without needing to change the architecture

Bash | 400 KB C The command-line tool can be used directly as executable within Bash script or on
the shell

Other languages will be supported soon (or simply use the shared library directly).

1.1 TypeScript/JavaScript

Installing Incubed is as easy as installing any other module:

’npm install --save in3

1.1.1 As Provider in Web3

The Incubed client also implements the provider interface used in the Web3 library and can be used directly.

https://docs.zephyrproject.org/latest/boards/index.html

Incubed Documentation, Release 2.3

// import in3-Module
import In3Client from 'in3'
import * as web3 from 'web3'

// use the In3Client as Http-Provider
const web3 = new Web3 (new In3Client ({

proof : 'standard',
signatureCount: 1,
requestCount : 2,

chainId : 'mainnet'

}) .createWeb3Provider ())

// use the web3
const block = await web.eth.getBlockByNumber ('latest")

1.1.2 Direct API

Incubed includes a light API, allowing the ability to not only use all RPC methods in a type-safe way but also sign
transactions and call functions of a contract without the Web3 library.

For more details, see the API doc.

// import in3-Module
import In3Client from 'in3'

// use the In3Client
const in3 = new In3Client ({

proof : 'standard',
signatureCount: 1,
requestCount : 2,

chainId : 'mainnet'

})
// use the API to call a function..
const myBalance = await in3.eth.callFn (myTokenContract, 'balanceOf (address):uint', |

—myAccount)

// ot to send a transaction..

const receipt = await in3.eth.sendTransaction ({
to : myTokenContract,
method : 'transfer (address,uint256) ',
args : [target,amount],

confirmations: 2,
Pk . myKey

1.2 As Docker Container

To start Incubed as a standalone client (allowing other non-JS applications to connect to it), you can start the container
as the following:

2 Chapter 1. Getting Started

https://github.com/slockit/in3/blob/master/docs/api.md#type-api

Incubed Documentation, Release 2.3

docker run -d -p 8545:8545 slockit/in3:latest —port 8545

1.3 C Implementation

The C implementation will be released soon!

#include <in3/client.h> // the core client

#include <in3/eth_api.h> // wrapper for easier use
#include <in3/eth _basic.h> // use the basic module
#include <in3/in3_curl.h> // transport implementation

#include <inttypes.h>
#include <stdio.h>

int main(int argc, charx argv([]) {

// register a chain-verifier for basic Ethereum-Support, which is enough to verify,,
—blocks

// this needs to be called only once

in3_register_eth_basic();

// use curl as the default for sending out requests
// this needs to be called only once.
in3_register_curl();

// create new incubed client
in3_t* in3 = in3_new();

// the b lock we want to get
uint64_t block_number = 8432424;

// get the latest block without the transaction details
eth_block_t* block = eth_getBlockByNumber (in3, block_number, false);

// 1f the result is null there was an error an we can get the latest error message,
—~from eth_lat_error()
if (!block)
printf("error getting the block : %s\n", eth_last_error());
else {
printf ("Number of transactions in Block #%11lu: %d\n", block->number, block->tx_
—count) ;
free (block);

// cleanup client after usage
in3_free (in3);

More details coming soon. . .

1.3. C Implementation 3

Incubed Documentation, Release 2.3

1.4 Java

The Java implementation uses a wrapper of the C implemenation. This is why you need to make sure the libin3.so,
in3.dll, or libin3.dylib can be found in the java.library.path. For example:

’java —cp in3.jar:. HelloIN3.class

import java.util.x;

import in3.x*;

import in3.ethl.x;

import java.math.BigInteger;

public class HelloIN3 ({
//
public static void main(String[] args) throws Exception ({
// create incubed
IN3 in3 = new IN3();

// configure
in3.setChainId(0x1); // set it to mainnet (which is also dthe default)

// read the latest Block including all Transactions.
Block latestBlock = in3.getEthlAPI().getBlockByNumber (Block.LATEST, true);

// Use the getters to retrieve all containing data

System.out.println("current BlockNumber : " + latestBlock.getNumber());

System.out.println("minded at : " + new Date(latestBlock.getTimeStamp()) + " by "
—+ latestBlock.getAuthor());

—

// get all Transaction of the Block
Transaction[] transactions = latestBlock.getTransactions();

BigInteger sum = BigInteger.valueOf (0);

for (int i = 0; i1 < transactions.length; i++)
sum = sum.add(transactions[i].getValue());
System.out.println("total Value transfered in all Transactions : " + sum + " wei
SLOF

}

1.5 Command-line Tool

Based on the C implementation, a command-line utility is built, which executes a JSON-RPC request and only delivers
the result. This can be used within Bash scripts:

CURRENT_BLOCK = "1in3 -c kovan eth_blockNumber"
#or to send a transaction

in3 -pk my_key_file.json send -to 0x27a37al1l210df14f7e058393d026e2fb53b7cf8cl -value 0.
—2eth

(continues on next page)

4 Chapter 1. Getting Started

Incubed Documentation, Release 2.3

(continued from previous page)

in3 -pk my_key_file.json send -to 0x27a37al210df14f7e058393d026e2£fb53b7cf8cl -gas,,
1000000 "registerServer (string,uint256)" "https://in3.slock.it/kovanl" OxFF

1.6 Supported Chains

Currently, Incubed is deployed on the following chains:

1.6.1 Mainnet

Registry-legacy: 0x2736D225f85740f42D17987100dc8d58e9¢16252
Registry: 0x64abe24afbbab4caed7e3dc3cedOfcab95ededdS

Chainld: 0x1 (alias mainnet)

Status: https://in3.slock.it?’n=mainnet

NodeList: https://in3.slock.it/mainnet/nd-3

1.6.2 Kovan

Registry-legacy: 0x27a37a1210df14f7e058393d026e2fb53b7cf8c1
Registry: 0x33f55122¢21cc87b539e7003f7ab16229bc3af69
Chainld: 0x2a (alias kovan)

Status: https://in3.slock.it?7n=kovan

NodeList: https://in3.slock.it/kovan/nd-3

1.6.3 Evan

Registry: 0x85613723dB1Bc29f332A37EeF10b61F8a4225c7e
Chainld: 0x4bl (alias evan)
Status: https://in3.slock.it?n=evan

NodeList: https://in3.slock.it/evan/nd-3

1.6.4 Gorli

Registry-legacy: 0x85613723dB 1Bc29f332A37EeF10b61F8a4225¢c7e
Registry: Oxfea298b288d232a256ae0ad5941e5¢890b1db691

Chainld: 0x5 (alias goerli)

Status: https://in3.slock.it?n=goerli

NodeList: https://in3.slock.it/goerli/nd-3

1.6. Supported Chains

https://eth.slock.it/#/main/0x2736D225f85740f42D17987100dc8d58e9e16252
https://eth.slock.it/#/main/0x64abe24afbba64cae47e3dc3ced0fcab95e4edd5
https://in3.slock.it?n=mainnet
https://in3.slock.it/mainnet/nd-3/api/in3_nodeList
https://eth.slock.it/#/kovan/0x27a37a1210df14f7e058393d026e2fb53b7cf8c1
https://eth.slock.it/#/kovan/0x33f55122c21cc87b539e7003f7ab16229bc3af69
https://in3.slock.it?n=kovan
https://in3.slock.it/kovan/nd-3/api/in3_nodeList
https://eth.slock.it/#/evan/0x85613723dB1Bc29f332A37EeF10b61F8a4225c7e
https://in3.slock.it?n=evan
https://in3.slock.it/evan/nd-3/api/in3_nodeList
https://eth.slock.it/#/goerli/0x85613723dB1Bc29f332A37EeF10b61F8a4225c7e
https://eth.slock.it/#/goerli/0xfea298b288d232a256ae0ad5941e5c890b1db691
https://in3.slock.it?n=goerli
https://in3.slock.it/goerli/nd-3/api/in3_nodeList

Incubed Documentation, Release 2.3

1.6.5 IPFS

Registry: 0xfOfb87f4757c77ea3416afe87f36acaa0496c7e9
Chainld: 0x7d0 (alias ipfs)

Status: https://in3.slock.it?n=ipfs

NodeList: https://in3.slock.it/ipfs/nd-3

1.7 Registering an Incubed Node

If you want to participate in this network and also register a node, you need to send a transaction to the registry
contract, calling registerServer (string _url, uint _props).

ABI of the registry:

[{"constant":true, "inputs":[],"name":"totalServers", "outputs": [{"name":"", "type":
—"uint256"}], "payable":false, "stateMutability":"view", "type":"function"}, {"constant
—":false, "inputs": [{"name":"_serverIndex", "type":"uint256"}, {"name" :"_props", "type":
—"uint256"}], "name" : "updateServer", "outputs": [], "payable":true, "stateMutability":
—"payable", "type":"function"}, {"constant":false, "inputs":[{"name":"_url", "type":
<"string"}, {"name":"_props", "type":"uint256"}], "name" :"registerServer", "outputs":[],
—"payable":true, "stateMutability":"payable", "type":"function"}, {"constant":true,
—"inputs": [{"name":"", "type":"uint256"}], "name" : "servers", "outputs": [{"name":"url",
o"type":"string"}, {"name":"owner", "type":"address"}, {"name" : "deposit", "type":"uint256
<"}, {"name" :"props", "type":"uint256"}, {"name" : "unregisterTime", "type":"uint128"}, {

mw m.mn 4 3 n n m.mn J n n m.mn 3 n " AL
—"name" :"unregisterDeposit", "type":"uint128"}, {"name" :"unregisterCaller", "type":
—"address"}], "payable":false, "stateMutability":"view", "type":"function"}, {"constant
—":false, "inputs": [{"name":"_serverIndex", "type":"uint256"}], "name":
—"cancelUnregisteringServer", "outputs":[], "payable":false, "stateMutability":
—"nonpayable", "type":"function"}, {"constant":false, "inputs": [{"name":"_serverIndex",
—"type":"uint256"}, {"name":"_blockhash", "type":"bytes32"}, {"name":"_blocknumber",
—"type":"uint256"}, {"name":"_v", "type":"uint8"}, {"name":"_r", "type":"bytes32"}, {"name
"o _s", "type":"bytes32"}], "name" :"convict", "outputs":[], "payable":false,
—"stateMutability":"nonpayable", "type":"function"}, {"constant":true, "inputs": [{"name

Yy pay yP
—":"_serverIndex","type":"uint256"}], "name":"calcUnregisterDeposit", "outputs": [{"name
ST, "type":"uint128"}], "payable" : false, "stateMutability":"view", "type":"function"},
—{"constant":false, "inputs":[{"name":"_serverIndex","type":"uint256"}], "name":
—"confirmUnregisteringServer", "outputs":[], "payable":false, "stateMutability":
—"nonpayable", "type":"function"}, {"constant":false, "inputs": [{"name":"_serverIndex",
—"type":"uint256"}], "name" :"requestUnregisteringServer", "outputs":[], "payable" :true,
—"stateMutability":"payable", "type":"function"}, {"anonymous":false, "inputs": [{
—"indexed":false, "name":"url", "type":"string"}, {"indexed" :false, "name" : "props", "type
—":"uint256"}, {"indexed" : false, "name" : "owner", "type":"address"}, {"indexed" : false,
yP
—"name" :"deposit", "type":"uint256"}], "name" : "LogServerRegistered", "type":"event"}, {
—"anonymous" : false, "inputs": [{"indexed":false, "name":"url", "type":"string"}, {"indexed
—":false, "name" :"owner", "type":"address"}, {"indexed" :false, "name":"caller", "type":
—"address"}], "name" :"LogServerUnregisterRequested", "type":"event"}, {"anonymous
—":false, "inputs": [{"indexed":false, "name" :"url", "type":"string"}, {"indexed": false,
—"name" :"owner", "type":"address"}], "name" : "LogServerUnregisterCanceled", "type":"event
="}, {"anonymous" : false, "inputs": [{"indexed" :false, "name" :"url", "type":"string"}, {
—"indexed":false, "name" :"owner", "type":"address"}], "name" : "LogServerConvicted", "type
—":"event"}, {"anonymous" : false, "inputs": [{"indexed":false, "name":"url", "type":"string
Yy IS) yp

="}, {"indexed" :false, "name" :"owner", "type":"address"}], "name" : "LogServerRemoved",
<"type":"event"}]

To run an Incubed node, you simply use docker-compose:

6 Chapter 1. Getting Started

https://eth.slock.it/#/kovan/0xf0fb87f4757c77ea3416afe87f36acaa0496c7e9
https://in3.slock.it?n=ipfs
https://in3.slock.it/ipfs/nd-3/api/in3_nodeList

Incubed Documentation, Release 2.3

version: '2'
services:
incubed-server:
image: slockit/in3-server:latest

volumes:

- $PWD/keys:/secure # directory where the,,
—private key 1is stored

ports:

- 8500:8500/tcp # open the port 8500 to,,
—be accessed by the public

command:

- —--privateKey=/secure/myKey. json # internal path to the key

- —-privateKeyPassphrase=dummy # passphrase to unlock,,
—~the key

— ——chain=0x1 # chain (Kovan)

=

— ——rpcUrl=http://incubed-parity:8545 URL of the Kovan client
- ——registry=0xFdb0eA8AB08212A1fF{fDB35aFacf37C3857083ca # URL of the Incubed
—registry

- ——autoRegistry-url=http://in3.server:8500 # check or register this,,
—node for this URL
- ——autoRegistry-deposit=2 # deposit to use when,,

—registering

incubed-parity:

image: slockit/parity-in3:v2.2 # parity-image with the,,
—getProof-function implemented

command:

- ——auto-update=none # do not automatically,,

—update the client
— ——-pruning=archive
— ——pruning-memory=30000 # limit storage

1.7. Registering an Incubed Node 7

Incubed Documentation, Release 2.3

8 Chapter 1. Getting Started

CHAPTER 2

Downloading in3

in3 is divided into two distinct components, the in3-node and in3-client. The in3-node is currently written in typescript,
whereas the in3-client has a version in typescript as well as a smaller and more feature packed version written in C.

In order to compile from scratch, please use the sources from our github page or the public gitlab page. Instructions
for building from scratch can be found in our documentation.

The in3-server and in3-client has been published in multiple package managers and locations, they can be found here:

Package man- | Link Use case
ager
in3- Docker Hub Docker- To run the in3-server, which the in3-client can use to connect to the
node(ts) Hub in3 network
in3- NPM NPM To use with js applications
client(ts)
in3- Ubuntu Launch- | Ubuntu It can be quickly integrated on linux systems, IoT devices or any
client(C) pad micro controllers
Docker Hub Docker- Quick and easy way to get in3 client running
Hub
Brew Home- Easy to install on MacOS or linux/windows subsystems
brew
Release page Github For directly playing with the binaries/deb/jar/wasm files

2.1 in3-node

2.1.1 Docker Hub

1. Pull the image from docker using docker pull slockit/in3-node

2. In order to run your own in3-node, you must first register the node. The information for registering a node can
be found here

https://github.com/slockit/in3
https://public-git.slock.it
https://hub.docker.com/r/slockit/in3-node
https://hub.docker.com/r/slockit/in3-node
https://www.npmjs.com/package/in3
https://launchpad.net/~devops-slock-it/+archive/ubuntu/in3
https://hub.docker.com/r/slockit/in3
https://hub.docker.com/r/slockit/in3
https://github.com/slockit/homebrew-in3
https://github.com/slockit/homebrew-in3
https://github.com/slockit/in3-c/releases
https://in3.readthedocs.io/en/develop/getting_started.html#registering-an-incubed-node

Incubed Documentation, Release 2.3

3. Run the in3-node image using a direct docker command or a docker-compose file, the parameters for which are
explained here

2.2 in3-client (is)

2.2.1 npm

1. Install the package by running nom install --save in3
2. import In3Client from "in3"

3. View our examples for information on how to use the module

2.3 in3-client(C)

2.3.1 Ubuntu Launchpad

There are 2 packages published to Ubuntu Launchpad: in3 and in3-dev. The package in3 only installs the binary
file and allows you to use in3 via command line. The package in3-dev would install the binary as well as the library
files, allowing you to use in3 not only via command line, but also inside your C programs by including the statically
linked files.

Installation instructions for in3:

This package will only install the in3 binary in your system.
1. Add the slock.it ppa to your system with sudo add-apt-repository ppa:devops—-slock-it/in3
2. Update the local sources sudo apt-get update

3. Install in3 with sudo apt—-get install in3

Installation instructions for in3-dev:

This package will install the statically linked library files and the include files in your system.
1. Add the slock.it ppa to your system with sudo add-apt-repository ppa:devops-slock-it/in3
2. Update the local sources sudo apt-get update

3. Install in3 with sudo apt-get install in3-dev

2.3.2 Docker Hub

Usage instructions:

1. Pull the image from docker using docker pull slockit/in3

2. Run the client using: docker run —-d -p 8545:8545 slockit/in3:latest
——-chainId=goerli -port 8545

3. More parameters and their descriptions can be found here.

10 Chapter 2. Downloading in3

https://in3.readthedocs.io/en/develop/api-node.html
https://in3.readthedocs.io/en/develop/getting_started.html#as-docker-container

Incubed Documentation, Release 2.3

2.3.3 Release page

Usage instructions:

1. Navigate to the in3-client release page on this github repo

2. Download the binary that matches your target system, or read below for architecture specific information:

For WASM:

1. Download the WASM binding with nom install --save in3-wasm
2. More information on how to use the WASM binding can be found here

3. Examples on how to use the WASM binding can be found here

For C library:

1. Download the C library from the release page or by installing the i n3-dev package from ubuntu launchpad
2. Include the C library in your code, as shown in our examples

3. Build your code with gcc —-std=c99 -o test test.c -1in3 -lcurl, more information can be
found here

For Java:

1. Download the Java file from the release page
2. Use the java binding as show in our example

3. Build your java project with javac -cp $IN3_JAR_LOCATION/in3.Jjar =*.Jjava

2.3.4 Brew

Usage instructions:

1. Ensure that homebrew is installed on your system
2. Add a brew tap with brew tap slockit/in3
3. Install in3 withbrew install in3

4. You should now be able to use in3 in the terminal, can be verified with in3 eth_blockNumber

2.3. in3-client(C) 11

https://github.com/slockit/in3-c/releases
https://www.npmjs.com/package/in3-wasm
https://github.com/slockit/in3-c/tree/master/examples/js
https://github.com/slockit/in3-c/tree/master/examples/c
https://github.com/slockit/in3-c/blob/master/examples/c/build.sh
https://github.com/slockit/in3-c/blob/master/examples/java/GetBlockRPC.java

Incubed Documentation, Release 2.3

12 Chapter 2. Downloading in3

CHAPTER 3

Running an in3 node on a VPS

$0,YOU DECIDEDTO

Disclaimers: This guide is meant to give you a general idea of the steps needed to run an in3 node on a VPS, please
do not take it as a definitive source for all the information. An in3 node is a public facing service that comes with all
the associated security implications and complexity. This guide is meant for internal use at this time, once a target
audience and depth has been defined, a public version will be made.

imgflip.com lmg

That being said, setup of an in3 node requires the following steps:

1. Generate a private key and docker-compose file from in3-setup.slock.it
2. Setup a VPS
3. Start the Ethereum RPC node using the docker-compose

(continues on next page)

13

Incubed Documentation, Release 2.3

(continued from previous page)

4. Assign a DNS domain, static IP (or Dynamic DNS) to the server
5. Run the in3 node docker image with the required flags
6. Register the in3 node with in3-setup.slock.it

1. Generate a private key and docker-compose file using in3-setup.slock.it: We will use the in3-setup tool to guide
us through the process of starting an incubed node. Begin by filling up the required details, add metadata if you
improve our statistics. Choose the required chain and logging level. Choose a secure private key passphrase, it
is important to save it in your password manager or somewhere secure, we cannot recover it for you. Click on
generate private key, this process takes some time. Download the private key and store it in the secure location.

Once the private key is downloaded, enter your Ethereum node URL in case you already have one. Generate the
docker-compose file and save it in the same folder as the private key.

1. Setup a VPS:

A VPS is basically a computer away from home that offers various preselected (usually) Linux distros out of the box.
You can then set it up with any service you like - for example Hetzner,Contabo,etc. ServerHunter is a good comparison
portal to find a suitable VPS service.The minimum specs required for a server to host both an ethereum RPC node as
well as an in3 node would be:

4 CPU cores

8GB of Ram

300GB SSD disk space or more
Atleast 5MBit/s up/down
Linux OS, eg: Ubuntu

Once the server has been provisioned, look for the IP address,SSH port and username. This information would be
used to login,transfer files to the VPS.

Transfer the files to the server using a file browser or an scp command. The target directory for docker-compose.yml
and exported-private.key.json file on the incubed server is the /int3 directory The scp command to transfer the files are:

scp
scp

If you are using windows you should use Winscp. Copy it to your home directory and thean move the files to /int3

Once the files have been transferred, we will SSH into the server with:

ssh

Now we will install the dependencies required to run in3. This is possible through a one step install script that can
be found (here)[https://github.com/slockit/in3-server-setup-tool/blob/master/incubed_dependency_install_script.sh]
or by installing each dependency individually.

If you wish to use our dependency install script, please run the following commands in your VPS, then skip to step 4
and setup your domain name:

curl -o incubed_dependency_install_script.sh https://raw.githubusercontent.com/
—slockit/in3-server-setup-tool/master/incubed_dependency_install_script.sh
chmod +x incubed_dependency_install_script.sh

sudo su

./incubed_dependency_install_script.sh

If you wish to install each dependency individually, please follow the proceeding steps. Begin by removing older
installations of docker:

14 Chapter 3. Running an in3 node on a VPS

Incubed Documentation, Release 2.3

remove existing docker installations
sudo

Make sure you have the necessary packages to allow the use of Docker’s repository:

install dependencies
sudo

To verify the hashes of the docker images from dockerhub you must add Docker’s GPG key:

add the docker gpg key
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -

Verify the fingerprint of the GPG key, the UID should say “Docker Release”:

verify the gpg key
sudo 0

Add the stable Docker repository:

add the stable Docker repository
sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu
S (lsb_release —-cs) stable"

Update and install docker-ce:

update the sources
sudo
install docker-ce
sudo

Add your limited Linux user account to the docker group:

add your limited Linux user account to the docker group
sudo -

Verify your installation with a hello-world image:

docker

Now we will continue to install docker-compose by downloading it and moving it to the right location:

install docker-compose
sudo curl -L https://github.com/docker/compose/releases/download/1.18.0/docker—
—scompose—"uname -s — uname -m’ -o /usr/local/bin/docker—-compose

Set the right permissions:

set the right permissions
sudo chmod +x /usr/local/bin/docker—compose

Verify the installation with:

docker—-compose —-

1. Start the Ethereum RPC node using the docker-compose: We will use the downloaded docker-compose file to

start the Ethereum RPC node.

15

Incubed Documentation, Release 2.3

Change directory to the created in3 folder, verify that the files exist there and then start parity with:

screen
docker-compose up incubed-parity
control+A and control+D to exit from screen

The time for the whole sync with parity is nearly 4h. The sync process starts with Block snapshots. After This is ready
the block syncing starts. In order to verify the status of the syncing, run:

echo $((curl --data '{"method":"eth_blockNumber", "params":[],"1id":1,"Jjsonrpc":"2.0"}
—' —-H "Content-Type: application/json" -X POST 172.15.0.3:8545 | grep -oh "\w*0x\wx

oy))

That command will return the latest block number, verify that the block number is the latest one by checking on
etherscan. We recommend to go forward with Step 4. if sync is completly finished.

1. Run the in3 node docker image with the required flags Once the Ethereum RPC node has been synced, we can
proceed with starting the in3-node. This can also be done with the docker-compose file that we used earlier.

docker—-compose

Wait for the in3-server to finish starting, then run the below command to verify the functioning of the in3-server:

echo $(('curl —--data '{"method":"eth_blockNumber", "params":[],"id":1,"jsonrpc":"2.0"}
—' —-H "Content-Type: application/json" -X POST 172.15.0.2:8500 | grep —-oh "\wx0x\wx*

o))

You can now type “exit” to end the SSH session, we should be done with the setup stages in the VPS.

1. Assign a DNS domain, static IP (or Dynamic DNS) to the server You need to register a DNS domain name using
cloudflare or some other DNS provider. This Domain name needs to point to your server. A simple way to test
it once it is up is with the following command run from your computer:

echo $((curl --data '{"method":"eth_blockNumber", "params":[],"1d":1,"Jjsonrpc":"2.0"}
]

—' -H "Content-Type: application/json" -X POST Domain-name:80 | grep -oh "\w*0x\wx

(_}"‘))

1. Setup https for your domain

a) Install nginx and certbot and generate certificates.

sudo

sudo -

check if automatic renewal of the certificates works as expected
sudo -

b) Configure nginx as a reverse proxy using SSL. Replace /etc/nginx/sites/available/default with the following content.
(Comment everything else out, also the certbot generated stuff.)

server {
listen 443 default_server;
server_name Domain-name;
ssl on;
ssl_certificate /etc/letsencrypt/live/Domain-name/fullchain.pem;
ssl_certificate_key /etc/letsencrypt/live/Domain-name/privkey.pem;
ssl_session_cache shared:SSL:10m;

location / {

(continues on next page)

16 Chapter 3. Running an in3 node on a VPS

Incubed Documentation, Release 2.3

(continued from previous page)

proxy_pass http://localhost:80;
proxy_set_header Host S$host;

proxy_redirect http:// https://;

c¢) Restart nginx.

sudo

HTTPS should be working now. Check with:

echo $((curl --data '{"method":"eth_blockNumber", "params":[],"1id":1,"Jjsonrpc":"2.0"}
—' —-H "Content-Type: application/json" -X POST Domain-name:443 | grep —-oh "\wx0x\wx*

(_}lv‘))

1. Register the in3 node with in3-setup.slock.it Lastly, we need to head back to in3-setup.slock.it and register our
new node. Enter the URL address from which the in3 node can be reached. Add the deposit amount in Ether
and click on “Register in3 server” to send the transaction.

3.1 Side notes/ chat summary

1. Redirect HTTP to HTTPS

Using the above config file nginx doesn’t listen on port 80, that port is already being listened to by the incubed-server
image (see docker-compose file, mapping 80:8500). That way the port is open for normal HTTP requests and when
registering the node one can “check” the HTTP capability. If that is unwanted one can append

server {
listen 80;
return 301 https://S$hostSrequest_uri;

to the nginx config file and change the port mapping for the incubed-server image. One also needs then to adjust the
port that nginx redirects to on localhost. For example

ports:
- 8080:8500/tcp

In the incubed-server section in the docker compose file and

proxy_pass http://localhost:8080;

in the nginx config. (Port 8080 also has to be closed using the firewall, e.g. ufw deny 8080)
1. OOM - Out of memory

If having memory issues while syncing adding some parity flags might help (need to be added in the docker-compose
for incubed-parity)

——-pruning-history=[NUM]
Set a minimum number of recent states to keep in memory when pruning is_
—active. (default: 64)

(continues on next page)

3.1. Side notes/ chat summary 17

Incubed Documentation, Release 2.3

(continued from previous page)

——-pruning-memory=[MB]
The ideal amount of memory in megabytes to use to store recent states. As_
—many states as possible will be kept
within this limit, and at least —--pruning-history states will always be kept.
— (default: 32)

with appropiate values. Note that inside the docker compose file pruning-memory is set to 30000, which might exceed
your RAM!

1. Saving the chaindb on disk using docker volume

To prevent the chaindb data being lost add

volumes:
- /wherever-you-want-to-store-data/:/home/parity/.local/share/io.parity.
—ethereum/

to the parity section in the docker compose file.
1. Added stability/ speed while syncing
Exposing the port 30303 to the public will prevent parity having to rely on UPnP for node discovery. For this add

ports:
- 30303:30303
- 30303:30303/udp

to the parity section in the docker compose file.

Increasing the database, state and queuing cache can improve the syncing speed (default is around 200MB). The
needed flag for it is:

——cache-size=[MB]
Set total amount of discretionary memory to use for the entire system,
—overrides other cache and queue options.

1. If you like a UI to manage and check your docker containers, please have a look at Portainer.io
Installation instructions can be found here: https://www.portainer.io/installation/.

It can be run with docker, using:

sudo docker run -d —-restart always -p 8000:8000 -p 9000:9000 -v /var/run/docker.
—sock:/var/run/docker.sock -v portainer_data:/data portainer/portainer

After the setup, it will be availabe on port 9000. The enabled WebGUI looks like the below picture:

18 Chapter 3. Running an in3 node on a VPS

Incubed Documentation, Release 2.3

<« C EEEE3000/#/containers o % W K [C N7
Container list & @ Portainer support € dev
Containers #myaccount. ®.log.out

¥ LocAL = Containers M Columns & Settings
Dashboard
Stacks
. Q Search...

Containers

Images State |2 uick P .
O Name o Stack Image Created Published Ports

NOtworks o Filter T actions Address

Volumes % [in3-parity_incubed-server m EO > in3 slockit/in3-node:latest 2020-01-1710:33:46 17215.0.2 (£ 8500:8500

Events
O in3_incubed-parity_1 B sew> i parity/parity:stable 2020-01-17 09:33:37 17215.0.3 [8545:8545 [£ 30303:30303 [£ 30303:30303 [

Host
[naughty_lamarr m BEO > - portainer/portainer 2020-01-17 09:23:36 17217.0.2 [£ 8000:3000 [£ 3000:3000

Extensions < »

Users ltems perpage | 10 v

Endpoints

Registries

Settings

img

3.2 Recommendations

1. Disable SSHPasswordAuthentication & RootLogin andinstall fail2ban to protect your VPS from
unauthorized access and brute-force attacks. See How To Configure SSH Key-Based Authentication on a Linux
Server and How To Protect SSH with Fail2Ban.

3.2. Recommendations 19

https://www.digitalocean.com/community/tutorials/how-to-configure-ssh-key-based-authentication-on-a-linux-server
https://www.digitalocean.com/community/tutorials/how-to-configure-ssh-key-based-authentication-on-a-linux-server
https://www.digitalocean.com/community/tutorials/how-to-protect-ssh-with-fail2ban-on-ubuntu-14-04

Incubed Documentation, Release 2.3

20

Chapter 3. Running an in3 node on a VPS

CHAPTER 4

IN3-Protocol

This document describes the communication between a Incubed client and a Incubed node. This communication is
based on requests that use extended JSON-RPC-Format. Especially for ethereum-based requests, this means each node
also accepts all standard requests as defined at Ethereum JSON-RPC, which also includes handling Bulk-requests.

Each request may add an optional in3 property defining the verification behavior for Incubed.

4.1

Incubed Requests

Requests without an in3 property will also get a response without in3. This allows any Incubed node to also act as
a raw ethereum JSON-RPC endpoint. The in3 property in the request is defined as the following:

chainld st ring<hex> - The requested chainld. This property is optional, but should always be specified in
case a node may support multiple chains. In this case, the default of the node would be used, which may end up
in an undefined behavior since the client cannot know the default.

includeCode boolean - Applies only for eth_call-requests. If true, the request should include the codes
of all accounts. Otherwise only the the codeHash is returned. In this case, the client may ask by calling
eth_getCode() afterwards.

verifiedHashes st ring<bytes32>[] - If the client sends an array of blockhashes, the server will not deliver
any signatures or blockheaders for these blocks, but only return a string with a number. This allows the client to
skip requiring signed blockhashes for blocks already verified.

latestBlock integer - If specified, the blocknumber latest will be replaced by a blockNumber-specified
value. This allows the Incubed client to define finality for PoW-Chains, which is important, since the latest-
block cannot be considered final and therefore it would be unlikely to find nodes willing to sign a blockhash for
such a block.

useRef boolean - If true, binary-data (starting with a Ox) will be referred if occurring again. This decreases
the payload especially for recurring data such as merkle proofs. If supported, the server (and client) will keep
track of each binary value storing them in a temporary array. If the previously used value is used again, the
server replaces it with : <index>. The client then resolves such refs by lookups in the temporary array.

21

https://www.jsonrpc.org/specification
https://github.com/ethereum/wiki/wiki/JSON-RPC

Incubed Documentation, Release 2.3

useBinary boolean - If true, binary-data will be used. This format is optimzed for embedded devices and
reduces the payload to about 30%. For details see the Binary-spec.

useFullProof boolean - If true, all data in the response will be proven, which leads to a higher payload. The
result depends on the method called and will be specified there.

finality number - For PoA-Chains, it will deliver additional proof to reach finality. If given, the server will
deliver the blockheaders of the following blocks until at least the number in percent of the validators is reached.

verification st ring - Defines the kind of proof the client is asking for. Must be one of the these values:

— '"never’ : No proof will be delivered (default). Also no in3-property will be added to the response, but
only the raw JSON-RPC response will be returned.

— '"proof’ : The proof will be created including a blockheader, but without any signed blockhashes.

preBIP34 boolean - Defines if the client wants to verify blocks before BIP34 (height < 227836). If true, the
proof-section will include data to verify the existence and correctness of old blocks as well (before BIP34).

whiteList address - If specified, the incubed server will respond with 1astWhiteList, which will indicate
the last block number of whitelist contract event.

signers st ring<address>[] - A list of addresses (as 20bytes in hex) requested to sign the blockhash.

A example of an Incubed request may look like this:

{

"jsonrpec": "2.0",
nidn: 2,
"method": "eth_getTransactionByHash",
"params": ["O0xf84cfb78971ebd940d7e43750077244e93db2c3£88443bb93¢c561812cfed055c"],
"in3": {
"chainId": "Ox1",
"verification": "proof",
"whiteList": "0x08e97ef0a92EB502alD7574913E2a6636BeC557b",
"signers": ["0x784bfa%ebl182C3a02DbeB5285e3dBa92d717E07a"]

4.2

Each

Incubed Responses

Incubed node response is based on JSON-RPC, but also adds the in3 property. If the request does not contain a

in3 property or does not require proof, the response must also omit the in3 property.

If the proof is requested, the in3 property is defined with the following properties:

proof Proof - The Proof-data, which depends on the requested method. For more details, see the Proofs section.

lastNodeList number - The blocknumber for the last block updating the nodeList. This blocknumber should be
used to indicate changes in the nodeList. If the client has a smaller blocknumber, it should update the nodeL.ist.

lastValidatorChange number - The blocknumber of the last change of the validatorList (only for PoA-chains).
If the client has a smaller number, it needs to update the validatorlist first. For details, see PoA Validations

lastWhiteList number - The blocknumber for the last block updating the whitelist nodes in whitelist contract.
This blocknumber could be used to detect if there is any change in whitelist nodes. If the client has a smaller
blocknumber, it should update the white list.

currentBlock number - The current blocknumber. This number may be stored in the client in order to run
sanity checks for 1atest blocks or eth_blockNumber, since they cannot be verified directly.

22

Chapter 4. IN3-Protocol

Incubed Documentation, Release 2.3

An example of such a response would look like this:

{

"jsonrpc": "2.0",

"result": {
"blockHash": "Ox2dbbac3abed47a1d0a7843d378fe3b8701ca7892f530fd1d2bl3ad46b202af4297",
"blockNumber": "0x79fab6",
"chainId": "Ox1",
"condition": null,
"creates": null,

"from": "0x2c5811cb45ba9387f2e7¢227193ad10014960bfc",

"gas": "Ox186a0",

"gasPrice": "0Ox4a817c800",

"hash": "0xf84cfb78971ebd940d7e4375b077244e93db2c3£88443bb93c561812cfed055c",

"input":
—"0xa9059cbb000000000000000000000000290648fc6f2cb27a2a81dc35a429090872991b920000000000
c_’"l

"nonce": "0xa8",

"publicKey":

—"0x6b30c392dda89d58866bf2clbedf8229d12c6ae3589d82d0£52ae588838a475aacda64775b7alb37697

"
",

"r": "0x4666976b528fc7802edd93300b935c7d48fce0144ce97ade8236da29878claad6",
"raw":
—"0xf8ab81a88504a817c800830186a094d3ebdaca%aeac98de723f640bcedaal’7e2e4419280b844a9059¢

"
",

"s": "0x5089dca7ecf7b06lbec3cca7726aablfcb4c8beb51517886£91c9b0ca710b09d",
"standardv": "0x0",
"to": "Oxd3ebdaea9aeac98de723f640bcedaal’7e2e44192",
"transactionIndex": "0Ox3e",
"v": "0Ox25",
"value": "0OxO"
}I
"id": 2,
"in3": {
"proof": ({
"type": "transactionProof",
"block":

—"0xf90219a03d050deecd980bl6cad9752133333ccdfaced63cc69e784£32dd981le2e751e34a0ldcc4dde8q

"
",

"merkleProof": |

—"0x£f90131a00150££50e29£3df34b89870£183c85a82a73£21722d7e6c787e663159£165010a0b8c56£20]]

"
",

—"0x£90211a0£4a5e4a1197190£910e4a026£50bd6al69716b52bed2c99ddb043ad%4da6ll7a09%9adldef?

"
",

—"0xf8b020b8adf8ab81a88504a817c800830186a094d3ebdaca%aeac98de723£640bcedaal7e¢2e4419280

n
—

]I
"txIndex": 62,
"signatures": [
{
"blockHash":
—"0x2dbbac3abed7a1d0a7843d378fe3b8701ca7892f530fd1d2b13a46b202af4297",
"block": 7994038,
"rp": "Oxef73a527ae8d38b595437e6436bd4fa037d50550bf3840ad0cd3cbcabdlad5le",
"s": "0x6a5815db16c12b890347d42c014d19b60e1605d2e8e64b729f89%9e662f9ce706b",

(continues on next page)

4.2. Incubed Responses 23

0000000000001

5d732bb80226:

p00000000000(

ec75d7aab85b!

a223067cT7aeb¢

dd1d991331d0.:

844a9059cbbOl

Incubed Documentation, Release 2.3

(continued from previous page)

"y 27,
"msgHash":
—"0xa8fc6e2564e496efc5fd7db8e70f03fd50af53e092£f47¢c98329¢c84c96026fdff"
}
]
}I
"currentBlock": 7994124,
"lastValidatorChange": O,
"lastNodeList": 6619795,
"lastWhiteList": 1546354

4.3 Chainld

Incubed supports multiple chains and a client may even run requests to different chains in parallel. While, in most
cases, a chain refers to a specific running blockchain, chainlds may also refer to abstract networks such as ipfs. So,
the definition of a chain in the context of Incubed is simply a distributed data domain offering verifiable api-functions
implemented in an in3-node.

Each chain is identified by a uint 64 identifier written as hex-value (without leading zeros). Since incubed started
with ethereum, the chainlds for public ethereum-chains are based on the intrinsic chainld of the ethereum-chain. See
https://chainid.network.

For each chain, Incubed manages a list of nodes as stored in the server registry and a chainspec describing the verifi-
cation. These chainspecs are held in the client, as they specify the rules about how responses may be validated.

4.4 Registry

As Incubed aims for fully decentralized access to the blockchain, the registry is implemented as an ethereum smart
contract.

This contract serves different purposes. Primarily, it manages all the Incubed nodes, both the onboarding and also
unregistering process. In order to do so, it must also manage the deposits: reverting when the amount of provided
ether is smaller than the current minimum deposit; but also locking and/or sending back deposits after a server leaves
the in3-network.

In addition, the contract is also used to secure the in3-network by providing functions to “convict” servers that provided
a wrongly signed block, and also having a function to vote out inactive servers.

4.4.1 Register and Unregister of nodes
Register

There are two ways of registering a new node in the registry: either calling [registerNode ()]J[registerNode] or by
calling [registerNodeFor ()][registerNodeFor]. Both functions share some common parameters that have to be
provided:

e url the url of the to be registered node

* props the properties of the node

24 Chapter 4. IN3-Protocol

Incubed Documentation, Release 2.3

* weight the amount of requests per second the node is capable of handling
* deposit the deposit of the node in ERC20 tokens.

Those described parameters are sufficient when calling [registerNode ()]J[registerNode] and will register a new
node in the registry with the sender of the transaction as the owner. However, if the designated signer and the owner
should use different keys, [registerNodeFor () J[registerNodeFor] has to be called. In addition to the already
described parameters, this function also needs a certain signature (i.e. v, r, s). This signature has to be created
by hashing the url, the properties, the weight and the designated owner (i.e. keccack256 (url, properties,
weight, owner)) and signing it with the privateKey of the signer. After this has been done, the owner then can call
[registerNodeFor ()][registerNodeFor] and register the node.

However, in order for the register to succeed, at least the correct amount of deposit has to be approved by the designated
owner of the node. The supported token can be received by calling [supportedToken () J[supportedToken] the
registry contract. The same approach also applied to the minimal amount of tokens needed for registering by calling
[minDeposit ()][minDeposit].

In addition to that, during the first year after deployment there is also a maximum deposit for each node. This can be
received by calling [maxDepositFirstYear ()][maxDepositFirstYear]. Providing a deposit greater then this will
result in a failure when trying to register.

Unregister a node
In order to remove a node from the registry, the function [unregisteringNode () J[unregisteringNode] can be
used, but is only callable by the owner the node.

While after a successful call the node will be removed from the nodeList immediately, the deposit of the former node
will still be locked for the next 40 days after this function had been called. After the timeout is over, the function
[returnDeposit () J[returnDeposit] can be called in order to get the deposit back. The reason for that decision is
simple: this approach makes sure that there is enough time to convict a malicious node even after he unregistered his
node.

4.4.2 Convicting a node

After a malicious node signed a wrong blockhash, he can be convicted resulting in him loosing the whole de-
posit while the caller receives 50% of the deposit. There are two steps needed for the process to succeed: calling
[convict ()][convict] and [revealConvict ()][revealConvict].

calling convict
The first step for convicting a malicious node is calling the [convict () J[convict]-function. This function will store
a specific hash within the smart contract.
The hash needed for convicting requires some parameters:
* blockhash the wrongly blockhash that got signed the by malicious node
* sender the account that sends this transaction
* v v of the signature of the wrong block
* r rof the signature of the wrong block
* s s of the signature of the wrong block

All those values are getting hashed (keccack256 (blockhash, sender, v, r, s) and are stored within the smart
contract.

4.4. Registry 25

Incubed Documentation, Release 2.3

calling revealConvcit

This function requires that at least 2 blocks have passed since [convict ()][convict] was called. This mechanic
reduces the risks of successful frontrunning attacks.

In addition, there are more requirements for successfully convicting a malicious node:

¢ the blocknumber of the wrongly signed block has to be either within the latest 256 blocks or be stored within
the BlockhashRegistry.

¢ the malicious node provided a signature for the wong block and it was signed by the node
* the specific hash of the convict-call can be recreated (i.e. the caller provided the very same parameters again)
* the malicious node is either currently active or did not withdraw his deposit yet

If the [revealConvict ()]J[revealConvict]-call passes, the malicious node will be removed immediately from the
nodeList. As a reward for finding a malicious node the caller receives 50% of the deposit of the malicious node. The
remaining 50% will stay within the nodeRegistry, but nobody will be able to access/transfer them anymore.

recreating blockheaders

When a malicious node returns a block that is not within the latest 256 blocks, the BlockhashRegistry has to be used.
There are different functions to store a blockhash and its number in the registry:

* [snapshot][snapshot] stores the blockhash and its number of the previous block

¢ [saveBlockNumber][saveBlockNumber] stores a blockhash and its number from the latest 256 blocks

* [recreateBlockheaders][recreateBlockheaders] starts from an already stored block and recreates a chain
of blocks. Stores the last block at the end.

In order to reduce the costs of convicting, both [snapshot][snapshot] and
[saveBlockNumber][saveBlockNumber] are the cheapest options, but are limited to the latest 256 blocks.

Recreating a chain of blocks is way more expensive, but is provides the possibility to recreate way older blocks. It
requires the blocknumber of an already stored hash in the smart contract as first parameter. As a second parameter
an array of serialized blockheaders have to be provided. This array has to start with the blockheader of the stored
block and then the previous blockheaders in reverse order (e.g. 100,99,98). The smart contract will try to recreate
the chain by comparing both the provided (hashed) headers with the calculated parent and also by comparing the
extracted blocknumber with the calculated one. After the smart contracts successfully recreates the provided chain,
the blockhash of the last element gets stored within the smart contract.

4.4.3 Updating the NodeRegistry

In ethereum the deployed code of an already existing smart contract cannot be changed. This means, that as soon as
the Registry smart contract gets updated, the address would change which would result in changing the address of the
smart contract containing the nodeList in each client and device.

26 Chapter 4. IN3-Protocol

Incubed Documentation, Release 2.3

NodeRegistrylLogic

owns uses

NodeRegistryData BlockHashRegistry

In order to solve this issue, the registry is divided between two different deployed smart contracts:
* NodeRegistryData: a smart contract to store the nodeList
* NodeRegistryLogic: a smart contract that has the logic needed to run the registry

There is a special relationship between those two smart contracts: The NodeRegistryLogic “owns” the NodeRegistry-
Data. This means, that only he is allowed to call certain functions of the NodeRegistryData. In our case this means
all writing operations, i.e. he is the only entity that is allowed to actually be allowed to store data within the smart
contract. We are using this approach to make sure that only the NodeRegistryLogic can call the register, update and
remove functions of the NodeRegistryData. In addition, he is the only one allowed to change the ownership to a new
contract. Doing so results in the old NodeRegistryLogic to lose write access.

In the NodeRegistryLogic there are 2 special parameters for the update process:
* updateTimeout: atimestamp that defines when it’s possible to update the registry to the new contract

* pendingNewLogic: the address of the already deployed new NodeRegistryLogic contract for the updated
registry

When an update of the Registry is needed, the function adminUpdateLogic gets called by the owner of the
NodeRegistryLogic. This function will set the address of the new pending contract and also set a timeout of 47
days until the new logic can be applied to the NodeRegistryData contract. After 47 days everyone is allowed to call
activateNewLogic resulting in an update of the registry.

The timeout of accessing the deposit of a node after removing it from the nodeList is only 40 days. In case a node
owner dislikes the pending registry, he has 7 days to unregister in order to be able to get his deposit back before the
new update can be applied.

4.4.4 Node structure
Each Incubed node must be registered in the NodeRegistry in order to be known to the network. A node or server is
defined as:

e url string - The public url of the node, which must accept JSON-RPC requests.

* owner address - The owner of the node with the permission to edit or remove the node.

* signer address - The address used when signing blockhashes. This address must be unique within the
nodeList.

4.4. Registry 27

Incubed Documentation, Release 2.3

* timeout uint 64 - Timeout after which the owner is allowed to receive its stored deposit. This information
is also important for the client, since an invalid blockhash-signature can only “convict” as long as the server is
registered. A long timeout may provide higher security since the node can not lie and unregister right away.

* deposit uint 256 - The deposit stored for the node, which the node will lose if it signs a wrong blockhash.

e props uint192 - A bitmask defining the capabilities of the node:

proof (0x01) : The node is able to deliver proof. If not set, it may only serve pure ethereum JSON/RPC.
Thus, simple remote nodes may also be registered as Incubed nodes.

multichain (0x02) : The same RPC endpoint may also accept requests for different chains. if this is set
the chainId-prop in the request in required.

archive (0x04) : If set, the node is able to support archive requests returning older states. If not, only a
pruned node is running.

http (0x08) : If set, the node will also serve requests on standard http even if the url specifies https. This
is relevant for small embedded devices trying to save resources by not having to run the TLS.

binary (0x10) : If set, the node accepts request with binary :true. This reduces the payload to about
30% for embedded devices.

onion (0x20) : If set, the node is reachable through onionrouting and url will be a onion url.
signer (0x40) : If set, the node will sign blockhashes.
data (0x80) : If set, the node will provide rpc responses (at least without proof).

stats (0x100) : If set, the node will provide and endpoint for delivering metrics, which is usually the
/metrics- endpoint, which can be used by prometheus to fetch statistics.

minBlockHeight (0x0100000000 - 0xFF00000000): : The min number of blocks this node is
willing to sign. if this number is low (like <6) the risk of signing unindentially a wrong blockhash because
of reorgs is high. The default should be 10)

minBlockHeight = props >> 32 & OxFF

More capabilities will be added in future versions.

* unregisterTime uint64 - The earliest timestamp when the node can unregister itself by calling
confirmUnregisteringServer. This will only be set after the node requests an unregister. The client
nodes with an unregisterTime set have less trust, since they will not be able to convict after this timestamp.

* registerTime uint 64 - The timestamp, when the server was registered.

* weight uint 64 - The number of parallel requests this node may accept. A higher number indicates a stronger
node, which will be used within the incentivization layer to calculate the score.

4.5 Binary Format

Since Incubed is optimized for embedded devices, a server can not only support JSON, but a special binary-format.
You may wonder why we don’t want to use any existing binary serialization for JSON like CBOR or others. The
reason is simply: because we do not need to support all the features JSON offers. The following features are not

supported:

* no escape sequences (this allows use of the string without copying it)

* no float support (at least for now)

* no string literals starting with Ox since this is always considered as hexcoded bytes

28

Chapter 4. IN3-Protocol

Incubed Documentation, Release 2.3

* no propertyNames within the same object with the same key hash

Since we are able to accept these restrictions, we can keep the JSON-parser simple. This binary-format is highly opti-
mized for small devices and will reduce the payload to about 30%. This is achieved with the following optimizations:

¢ All strings starting with Oxare interpreted as binary data and stored as such, which reduces the size of the data
to 50%.

* Recurring byte-values will use references to previous data, which reduces the payload, especially for merkle
proofs.

¢ All propertyNames of JSON-objects are hashed to a 16bit-value, reducing the size of the data to a signifivant
amount (depending on the propertyName).

The hash is calculated very easily like this:

static d_key_t key(const charx c)
uintl6é_t val = 0, 1 = strlen(c);
for (; 1; 1-——, c++) val "= *c |
return val;

}

{

val << 7;

Note: A very important limitation is the fact that property names are stored as 16bit hashes, which decreases the
payload, but does not allow for the restoration of the full json without knowing all property names!

The binary format is based on JSON-structure, but uses a RLP-encoding approach. Each node or value is represented
by these four values:

e key uint16_t - The key hash of the property. This value will only pass before the property node if the
structure is a property of a JSON-object.

e type d_type_t - 3 bit : defining the type of the element.

e len uint32_t - 5 bit : the length of the data (for bytes/string/array/object). For (boolean or integer) the length
will specify the value.

* data bytes_t - The bytes or value of the node (only for strings or bytes).

key type

- — _ ~———p lenext —» data
16 bit type (3bit) len (5bit)

The serialization depends on the type, which is defined in the first 3 bits of the first byte of the element:

d_type_t type = *val >> 5; // first 3 bits define the type
uint8_ t len «*val & O0x1F; // the other 5 bits (0-31) the length

The 1en depends on the size of the data. So, the last 5 bit of the first bytes are interpreted as follows:
* 0x00 - Ox1lc : The length is taken as is from the 5 bits.

* Ox1d- 0x1f : The length is taken by reading the big-endian value of the next len — Ox1c bytes (len ext).

4.5. Binary Format 29

Incubed Documentation, Release 2.3

After the type-byte and optional length bytes, the 2 bytes representing the property hash is added, but only if the
element is a property of a JSON-object.

Depending on these types, the length will be used to read the next bytes:

0x0 : binary data - This would be a value or property with binary data. The 1en will be used to read the
number of bytes as binary data.

0x1 : string data - This would be a value or property with string data. The 1en will be used to read the number
of bytes (+1) as string. The string will always be null-terminated, since it will allow small devices to use the
data directly instead of copying memory in RAM.

0x2 : array - Represents an array node, where the 1en represents the number of elements in the array. The
array elements will be added right after the array-node.

0x3 : object - A JSON-object with 1en properties coming next. In this case the properties following this
element will have a leading key specified.

0x4 : boolean - Boolean value where 1en must be either 0x1= true or 0x0 = false. If len > 1 this
element is a copy of a previous node and may reference the same data. The index of the source node will then
be len-2.

0x5 : integer - An integer-value with max 29 bit (since the 3 bits are used for the type). If the value is higher
than 0x20000000, it will be stored as binary data.

0x6 : null - Represents a null-value. If this value has a 1en> 0 it will indicate the beginning of data, where 1en
will be used to specify the number of elements to follow. This is optional, but helps small devices to allocate the
right amount of memory.

4.6 Communication

Incubed requests follow a simple request/response schema allowing even devices with a small bandwith to retrieve all
the required data with one request. But there are exceptions when additional data need to be fetched.

These are:

1. Changes in the NodeRegistry

Changes in the NodeRegistry are based on one of the following events:
* LogNodeRegistered
* LogNodeRemoved
* LogNodeChanged
The server needs to watch for events from the NodeRegist ry contract, and update the nodeList when needed.

Changes are detected by the client by comparing the blocknumber of the latest change with the last known
blocknumber. Since each response will include the lastNodeList, a client may detect this change after
receiving the data. The client is then expected to call in3_nodeList to update its nodeList before sending
out the next request. In the event that the node is not able to proof the new nodeList, the client may blacklist
such a node.

30

Chapter 4. IN3-Protocol

Incubed Documentation, Release 2.3

Client NodehA NodeB

|
| Request |

>
Response with lastNodeList :

. check if lastNodeList increased

Request in3_nodeList

r

e |
'€ verify and update nodeList and lastNodeList |

Client NodeA NodeB

1. Changes in the ValidatorList

This only applies to PoA-chains where the client needs a defined and verified validatorList. Depend-
ing on the consensus, changes in the validatorList must be detected by the node and indicated with the
lastValidatorChange on each response. This lastValidatorChange holds the last blocknumber
of a change in the validatorList.

Changes are detected by the client by comparing the blocknumber of the latest change with the last known
blocknumber. Since each response will include the lastValidatorChange a client may detect this
change after receiving the data or in case of an unverifiable response. The client is then expected to call
in3_validatorList to update its list before sending out the next request. In the event that the node is
not able to proof the new nodeList, the client may blacklist such a node.

2. Failover

It is also good to have a second request in the event that a valid response is not delivered. This could happen if a
node does not respond at all or the response cannot be validated. In both cases, the client may blacklist the node
for a while and send the same request to another node.

4.6. Communication 31

Incubed Documentation, Release 2.3

32

Chapter 4. IN3-Protocol

CHAPTER B

Roadmap

Incubed implements two versions:

TypeScript / JavaScript: optimized for dApps, web apps, or mobile apps.

C: optimized for microcontrollers and all other use cases.

In the future we will focus on one codebase, which is C. This will be ported to many platforms (like WASM).

5.1

V2.0 Stable: Q3 2019

This was the first stable release, which was published after Devcon. It contains full verification of all relevant Ethereum
RPC calls (except eth_call for eWasm contracts), but there is no payment or incentivization included yet.

Fail-safe Connection: The Incubed client will connect to any Ethereum blockchain (providing Incubed servers)
by randomly selecting nodes within the Incubed network and, if the node cannot be reached or does not deliver
verifiable responses, automatically retrying with different nodes.

Reputation Management: Nodes that are not available will be temporarily blacklisted and lose reputation. The
selection of a node is based on the weight (or performance) of the node and its availability.

Automatic NodeList Updates: All Incubed nodes are registered in smart contracts on chain and will trigger
events if the NodeList changes. Each request will always return the blockNumber of the last event so that the
client knows when to update its NodeL.ist.

Partial NodeList: To support small devices, the NodeList can be limited and still be fully verified by basing the
selection of nodes deterministically on a client-generated seed.

Multichain Support: Incubed is currently supporting any Ethereum-based chain. The client can even run
parallel requests to different networks without the need to synchronize first.

Preconfigured Boot Nodes: While you can configure any registry contract, the standard version contains con-
figuration with boot nodes for mainnet, kovan, evan, tobalaba, and ipfs.

Full Verification of JSON-RPC Methods: Incubed is able to fully verify all important JSON-RPC methods.
This even includes calling functions in smart contract and verifying their return value (eth_call), which
means executing each opcode locally in the client to confirm the result.

33

Incubed Documentation, Release 2.3

IPFS Support: Incubed is able to write and read IPFS content and verify the data by hashing and creating the
multihash.

Caching Support: An optional cache enables storage of the results of RPC requests that can automatically be
used again within a configurable time span or if the client is offline. This also includes RPC requests, blocks,
code, and NodeLists.

Custom Configuration: The client is highly customizable. For each request, a configuration can be explicitly
passed or adjusted through events (client .on ('beforeRequest', .. .)). This allows the proof level or
number of requests to be sent to be optimized depending on the context.

Proof Levels: Incubed supports different proof levels: none for no verification, standard for verifying only
relevant properties, and full for complete verification, including uncle blocks or previous transactions (higher
payload).

Security Levels: Configurable number of signatures (for PoW) and minimal deposit stored.

PoW Support: For PoW, blocks are verified based on blockhashes signed by Incubed nodes storing a deposit,
which they lose if this blockhash is not correct.

PoA Support: (experimental) For PoA chains (using Aura and clique), blockhashes are verified by extracting
the signature from the sealed fields of the blockheader and by using the Aura algorithm to determine the signer
from the validatorlist (with static validatorlist or contract-based validators).

Finality Support: For PoA chains, the client can require a configurable number of signatures (in percent) to
accept them as final.

Flexible Transport Layer: The communication layer between clients and nodes can be overridden, but the
layer already supports different transport formats (JSON/CBOR/Incubed).

Replace Latest Blocks: Since most applications per default always ask for the latest block, which cannot be
considered final in a PoW chain, a configuration allows applications to automatically use a certain block height
to run the request (like six blocks).

Light Ethereum API: Incubed comes with a simple type-safe API, which covers all standard JSON-RPC re-
quests (in3.eth.getBalance ('0x52bc44d5378309EE2abF1539BF71dE1b7d7bE3b5 ")). This
API also includes support for signing and sending transactions, as well as calling methods in smart contracts
without a complete ABI by simply passing the signature of the method as an argument.

TypeScript Support: Because Incubed is written 100% in TypeScript, you get all the advantages of a type-safe
toolchain.

* java: java version of the Incubed client based on the C sources (using JNI)

5.2 V2.1 Incentivization: Q4 2019

This release will introduce the incentivization layer, which should help provide more nodes to create the decentralized
network.

PoA Clique: Supports Clique PoA to verify blockheaders.

Signed Requests: Incubed supports the incentivization layer, which requires signed requests to assign client
requests to certain nodes.

Network Balancing: Nodes will balance the network based on load and reputation.
python-bindings: integration in python

go-bindings: bindings for go

34

Chapter 5. Roadmap

Incubed Documentation, Release 2.3

5.3 V2.2 Bitcoin: Q1 2020

Multichain Support for BTC
* Bitcoin: Supports Verfification for Bitcoin blocks and Transactions

* WASM: Typescript client based on a the C-Sources compiled to wasm.

5.4 V2.3 WASM: Q3 2020

For eth_call verification, the client and server must be able to execute the code. This release adds the ability to
support eWasm contracts.

* eth 2.0: Basic Support for Eth 2.0

* eWasm: Supports eWasm contracts in eth_call.

5.5 V2.4 Substrate: Q1 2021

Supports Polkadot or any substrate-based chains.
* Substrate: Framework support.

* Runtime Optimization: Using precompiled runtimes.

5.6 V2.5 Services: Q3 2021

Generic interface enables any deterministic service (such as docker-container) to be decentralized and verified.

5.3. V2.2 Bitcoin: Q1 2020 35

Incubed Documentation, Release 2.3

36

Chapter 5. Roadmap

CHAPTER O

Benchmarks

These benchmarks aim to test the Incubed version for stability and performance on the server. As a result, we can
gauge the resources needed to serve many clients.

6.1 Setup and Tools

» JMeter is used to send requests parallel to the server

» Custom Python scripts is used to generate lists of transactions as well as randomize them (used to create test
plan)

* Link for making JMeter tests online without setting up the server: https://www.blazemeter.com/
JMeter can be downloaded from: https://jmeter.apache.org/download_jmeter.cgi
Install JMeter on Mac OS With HomeBrew
1. Open a Mac Terminal where we will be running all the commands

2. First, check to see if HomeBrew is installed on your Mac by executing this command. You
can either run brew help or brew -v

3. If HomeBrew is not installed, run the following command to install HomeBrew on Mac:

ruby —-e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/
—install/master/install)"
Once HomeBrew is installed, we can continue to install JMeter.

4. To install JMeter without the extra plugins, run the following command:

’brew install Jjmeter ‘

5. To install JMeter with all the extra plugins, run the following command:

’brew install jmeter —--with-plugins ‘

37

https://www.blazemeter.com/
https://jmeter.apache.org/download_jmeter.cgi

Incubed Documentation, Release 2.3

6.
7.

Finally, verify the installation by executing jmeter -v

Run JMeter using ‘jmeter’ which should load the IMeter GUI

JMeter on EC2 instance CLI only (testing pending):

1.

W

10.

11.

12.

Login to AWS and navigate to the EC2 instance page

2. Create a new instance, choose an Ubuntu AMI]
3. Provision the AWS instance with the needed information, enable CloudWatch monitoring
4

. Configure the instance to allow all outgoing traffic, and fine tune Security group rules to

suit your need

. Save the SSH key, use the SSH key to login to the EC2 instance

. Install Java:

sudo add-apt-repository ppa:linuxuprising/java
sudo apt-get update
sudo apt-get install oracle-javall-installer

. Install JMeter using:

sudo apt-get install Jjmeter

. Get the JMeter Plugins:

wget http://jmeter-plugins.org/downloads/file/JMeterPlugins-
—Standard-1.2.0.zip

wget http://jmeter-plugins.org/downloads/file/JMeterPlugins-—
—Extras-1.2.0.zip

wget http://jmeter-plugins.org/downloads/file/JMeterPlugins-
—ExtrasLibs-1.2.0.zip

Move the unzipped jar files to the install location:

sudo unzip JMeterPlugins-Standard-1.2.0.zip —-d /usr/share/jmeter/
sudo unzip JMeterPlugins-Extras-1.2.0.zip -d /usr/share/jmeter/

sudo unzip JMeterPlugins-ExtrasLibs-1.2.0.zip —-d /usr/share/
—Jjmeter/

Copy the JML file to the EC2 instance using:

(On host computer)

scp —i <path_to_key> <path_to_local_file> <user>@<server_url>:

—<path_on_server>

Run JMeter without the GUI:

Jjmeter -n -t <path_to_jmx> -1 <path_to_output_jtl>

Copy the JTL file back to the host computer and view the file using JMeter with GUI

Python script to create test plan:

1. Navigate to the txGenerator folder in the in3-tests repo.

2. Run the main.py file while referencing the start block (-s), end block (-e) and number of blocks to choose in this

range (-n). The script will randomly choose three transactions per block.

38

Chapter 6. Benchmarks

Incubed Documentation, Release 2.3

3. The transactions chosen are sent through a tumble function, resulting in a randomized list of transactions from
random blocks. This should be a realistic scenario to test with, and prevents too many concurrent cache hits.

4. Import the generated CSV file into the loaded test plan on JMeter.

5. Refer to existing test plans for information on how to read transactions from CSV files and to see how it can be
integrated into the requests.

6.2 Considerations

* When the Incubed benchmark is run on a new server, create a baseline before applying any changes.
* Run the same benchmark test with the new codebase, test for performance gains.

¢ The tests can be modified to include the number of users and duration of the test. For a stress test, choose 200
users and a test duration of 500 seconds or more.

e When running in an EC2 instance, up to 500 users can be simulated without issues. Running in GUI mode
reduces this number.

* A beneficial method for running the test is to slowly ramp up the user count. Start with a test of 10 users for 120
seconds in order to test basic stability. Work your way up to 200 users and longer durations.

* Parity might often be the bottleneck; you can confirm this by using the get_avg_stddev_in3_response.sh script
in the scripts directory of the in3-test repo. This would help show what optimizations are needed.

6.3 Results/Baseline

* The baseline test was done with our existing server running multiple docker containers. It is not indicative of a
perfect server setup, but it can be used to benchmark upgrades to our codebase.

* The baseline for our current system is given below. This system has multithreading enabled and has been tested
with ethCalls included in the test plan.

Users/dNuation tps | get- get- get- get- Eth-| eth_getStmiage
ber Block- | Block- | Trans- | Trans- Call(mihs)
of re- By- ByNum- action- | action-
quests Hash | ber Hash Re-
(ms) (ms) (ms) ceipt
(ms)
10/120s
20/120s4800 | 40 | 580 419 521 923 449 | 206
40/120s5705 47 1020 708 902 1508 816 | 442

80/120s7970 | 66 | 1105 790 2451 3197 984 | 452
100/1205911 57 | 1505 1379 2501 4310 1486| 866
110/126000 | 50 | 1789 1646 4204 5662 1811| 1007
120/50®B2000 | 65 | 1331 1184 4600 5314 1815| 1607
140/50®1000 | 62 | 1666 1425 5207 6722 1760| 941
160/50B3000 | 65 | 1949 1615 6269 7604 1900(930 In3 -> 400ms, rpc -> 208 1ms
200/50®4000 | 70 | 1270 1031 12500 14349 1251| 716 At higher loads, the RPC delay
adds up. It is the bottlenecking
factor. Able to handle 200 users
on sustained loads.

6.2. Considerations 39

Incubed Documentation, Release 2.3

* More benchmarks and their results can be found in the in3-tests repo

40

Chapter 6. Benchmarks

CHAPTER /

Embedded Devices

7.1 Hardware Requirements

7.1.1 Memory

For the memory this example requires:
* Dynamic memory(DRAM) : 30 - 50kB
* Flash Memory : 150 - 200kB

7.1.2 Networking

In3 client needs to have a reliable internet connection to work properly, so your hardware must support any network
interface or module that could give you access to it. i.e Bluetooth, Wifi, ethernet, etc.

7.2 Incubed with ESP-IDF

7.2.1 Use case example: Airbnb Property access
A smart door lock that grants access to a rented flat is installed on the property. It is able to connect to the Internet to
check if renting is allowed and that the current user is authorized to open the lock.

The computational power of the control unit is restricted to the control of the lock. And it is also needed to maintain a
permanent Internet connection.

You want to enable this in your application as an example of how in3 can help you, we will guide through the steps of
doing it, from the very basics and the resources you will need

Hardware requirements

41

Incubed Documentation, Release 2.3

ESP.IDF make [Eclipse

Toolchain

Project

Application [T |

UPLOAD

DO OO0 D000 D0 SH
dOCOCOONCOOO0oD0oaod

from
https://docs.espressif.com/projects/esp-idf/en/stable/get-started/

» ESP32-DevKitC V4 or similar dev board
* Android phone
* Laptop MAC, Linux, Windows
* USB Cable
Software requirements
e In3 C client

 Esp-idf toolchain and sdk, (please follow this guide) and be sure on the cloning step to use release/v4.0
branch

git clone -b release/v4.0 —--recursive https://github.com/espressif/esp-idf.git
¢ Android Studio

* Solidity smart contract: we will control access to properties using a public smart contract, for this example, we
will use the following template

e Silab USB drivers

pragma solidity 70.5.1;

contract Access {
uint8 access;

(continues on next page)

42 Chapter 7. Embedded Devices

https://docs.espressif.com/projects/esp-idf/en/latest/hw-reference/get-started-devkitc.html
https://github.com/slockit/in3-c
https://docs.espressif.com/projects/esp-idf/en/stable/get-started/
https://developer.android.com/studio
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers

Incubed Documentation, Release 2.3

(continued from previous page)

constructor () public {
access = 0;

function hasAccess () public view returns (uint8) {
return access;

function setAccess (uint8 accessUpdate) public({
access = accessUpdate;

How it works

) In3 client custom
Android phone http transport

/api/access

eth_call hasAccess:uint8

In3 server

verify =-evm exec

Japi/retrieve

Json with contract execution response

diagram

return

sequence

In3 will support a wide range of microcontrollers, in this guide we will use well-known esp32 with freertos framework,

and an example android app to interact with it via Wifi connection.
Instalation instructions

1. Clone the repo

git clone —--recursive https://github.com/slockit/in3-devices-esp

1. Deploy the contract with your favorite tool (truffle, etc) or use our previusly deployed contract on goerli, with
address 0x36643F8D17FE745a69A2Fd22188921Fade60a98B

2. Config your SSID and password inside sdkconfig file sdkconfig.

defaults

CONFIG_WIFI_SSID="YOUR SSID"
CONFIG_WIFI_PASSWORD="YOUR PWD"

7.2. Incubed with ESP-IDF

43

Incubed Documentation, Release 2.3

1. Build the code idf.py build
2. Connect the usb cable to flash and monitor the serial output from the application.
idf.py flash && idf.py monitor
after the build finishes and the serial monitor is running you will see the configuration and init logs.

1. Configure the ip address of the example, to work with: Take a look at the inital output of the serial output of the
idf.py monitor command, you will the ip address, as follows

(2647) tcpip_adapter: sta ip: 192.168.178.64, mask: 255.255.255.0, gw: 192.168.178.1

I
I (2647) IN3: got ip:192.168.178.64

take note if your ip address which will be used in the android application example.
1. Clone the android repository, compile the android application and install the in3 demo application in your phone.
git clone https://github.com/slockit/in3-android-example

1. Modify the android source changing ip address variable inside kotlin source file MainActivity.kt, with the
IP address found on step 6.

(L:20) private const val ipaddress = "http://192.168.xx.xx"
1. If you want to test directly without using android you can also do it with the following http curl requests:
e curl -X GET http://slock.local/api/access
e curl -X GET http://slock.local/api/retrieve

we need 2 requests as the verification process needs to be executed in asynchronous manner, first one will trigger the
execution and the result could be retrieved with the second one

7.3 Incubed with Zephyr

....(Comming soon)

44 Chapter 7. Embedded Devices

CHAPTER 8

APl RPC

This section describes the behavior for each RPC-method supported with incubed.

The core of incubed is to execute rpc-requests which will be send to the incubed nodes and verified. This means the
available RPC-Requests are defined by the clients itself.

* For Ethereum : https://eth.wiki/json-rpc/API

* For Bitcoin : https://bitcoincore.org/en/doc/0.18.0/

8.1 in3

There are also some Incubed specific rpc-methods, which will help the clients to bootstrap and update the nodeLists.

The incubed client itself offers special RPC-Methods, which are mostly handled directly inside the client:

8.1.1 in3_config
changes the configuration of a client. The configuration is passed as the first param and may contain only the values
to change.
Parameters:
1. config: config-object - a Object with config-params.
The config params support the following properties :

» autoUpdateList :-bool (optional) - if true the nodelist will be automaticly updated if the lastBlock is newer.
example: true

e chainld :uint32_t or string (mainnet/kovan/goerli) - servers to filter for the given chain. The
chain-id based on EIP-155. example: Ox1

* signatureCount :uint8_t (optional) - number of signatures requested. example: 2

45

https://eth.wiki/json-rpc/API
https://bitcoincore.org/en/doc/0.18.0/

Incubed Documentation, Release 2.3

finality :uint16_t (optional) - the number in percent needed in order reach finality (% of signature of the
validators). example: 50

includeCode :bool (optional) - if true, the request should include the codes of all accounts. otherwise only the
the codeHash is returned. In this case the client may ask by calling eth_getCode() afterwards. example: true

bootWeights :bool (optional) - if true, the first request (updating the nodelist) will also fetch the current health
status and use it for blacklisting unhealthy nodes. This is used only if no nodelist is availabkle from cache.
example: true

maxAttempts :uint16_t (optional) - max number of attempts in case a response is rejected. example: 10

keepIn3 :bool (optional) - if true, requests sent to the input sream of the comandline util will be send theor
responses in the same form as the server did. example: false

key :bytes32 (optional) - the client key to sign requests. (only avail-
ble if build with -DPK_SIGNER=true |, which is on per default) example:
0x387a8233c96e1fc0ad5¢284353276177af2186e7afa85296f106336e376669f7

pk :bytes32lbytes32[] (optional) - registers raw private keys as signers for transac-
tions. (only availble if build with -DPK_SIGNER=true , which is on per default) example:
0x387a8233c96e1fc0ad5e284353276177at2186e7afa85296f106336e376669f7

useBinary :bool (optional) - if true the client will use binary format. example: false
useHttp :bool (optional) - if true the client will try to use http instead of https. example: false

timeout :uint32_t (optional) - specifies the number of milliseconds before the request times out. increasing
may be helpful if the device uses a slow connection. example: 100000

minDeposit :uint 64_t - min stake of the server. Only nodes owning at least this amount will be chosen.
nodeProps :uint 64_t bitmask (optional) - used to identify the capabilities of the node.
nodeLimit :uint16_t (optional) - the limit of nodes to store in the client. example: 150

proof :string (none/standard/full) (optional)-if true the nodes should send a proof of the response.
example: true

replaceLatestBlock :uint8_t (optional) - if specified, the blocknumber latest will be replaced by
blockNumber- specified value. example: 6

requestCount :uint8_t - the number of request send when getting a first answer. example: 3

btc :0bject (optional) - configuration for bitcoin-verification (only available if build with -DBTC=true,
which is on per default). The config may contains the following fields:

— maxDAP :number - max number of DAPs (Difficulty Adjustment Periods) allowed when accepting new
targets.

— maxDiff :number - max increase (in percent) of the difference between targets when accepting new
targets.

zksync :0bject (optional) - configuration for zksync-api (only available if build with —-DZKSYNC=t rue,
which is off per default). The config may contains the following fields:

— provider_url :string (optional) - url of the zksync-server (if not defined it will be choosen depending
on the chain)

— account :address (optional) - the account to be used. if not specified, the first signer will be used.
rpc :string (optional) - url of one or more rpc-endpoints to use. (list can be comma seperated)

servers/nodes : collection of JSON objects with chain Id (hex string) as key (op-
tional) - the value of each JSON object defines the nodelist per chain and may contain the following fields:

46

Chapter 8. API RPC

Incubed Documentation, Release 2.3

— contract :address - address of the registry contract.

— whiteListContract :address (optional, cannot be combined with whiteList) - address of the whiteList

contract.

— whiteList :array of addresses (optional, cannot be combined with whiteListContract) - manual

whitelist.

— registryld :bytes32 - identifier of the registry.

— needsUpdate :bool (optional) - if set, the nodeList will be updated before next request.

— avgBlockTime :uint16_t (optional) - average block time (seconds) for this chain.

— verifiedHashes :array of JSON objects (optional) - if the client sends an array of blockhashes
the server will not deliver any signatures or blockheaders for these blocks, but only return a string with a
number. This is automaticly updated by the cache, but can be overriden per request. MUST contain the

following fields:

* block :uint64_t - block number.

* hash : bytes32 - verified hash corresponding to block number.

— nodeList :array of JSON objects (optional) - manual nodeList, each JSON object may contain

the following fields:
+ url :string - URL of the node.

+ address :address - address of the node.

* props :uint64_t bitmask (optional) - used to identify the capabilities of the node (defaults to

65535).

Returns:

an boolean confirming that the config has changed.

Example:
Request:
{
"method": "in3_config",
"params": [{
"chainId": "0x5",
"maxAttempts": 4,
"nodeLimit": 10,
"servers": {
"Oxl": {
"nodeList": [{

—"0x1234567890123456789012345678901234567890",

—"0x1234567890123456789012345678901234567890",

"address":

"url": "https://mybootnode-A.com",
"props": "OxFFFE"

"address":

"url": "https://mybootnode-B.com",
"props": "OxFFFE"

(continues on next page)

8.1.

in3

47

Incubed Documentation, Release 2.3

(continued from previous page)

Response:

{
"id": 1,
"result": true

8.1.2 in3_abiEncode

based on the ABI-encoding used by solidity, this function encodes the values and returns it as hex-string.
Parameters:

1. signature: string - the signature of the function. e.g. getBalance (uint256). The format is the same
as used by solidity to create the functionhash. optional you can also add the return type, which in this case is
ignored.

2. params: array - a array of arguments. the number of arguments must match the arguments in the signature.
Returns:

the ABI-encoded data as hex including the 4 byte function-signature. These data can be used for eth_call or to
send a transaction.

Request:

{

"method" :"in3_abiEncode",

"params": [
"getBalance (address) ",
["0x1234567890123456789012345678901234567890"]

Response:

{

"id": 1,

"result":
<"0xf8b2chb4£0000000000000000000000001234567890123456789012345678901234567890",

}

8.1.3 in3_abiDecode

based on the ABI-encoding used by solidity, this function decodes the bytes given and returns it as array of values.
Parameters:

1. signature: string - the signature of the function. e.g. uint256, (address, string,uint256) or
getBalance (address) :uint256. If the complete functionhash is given, only the return-part will be
used.

2. data: hex - the data to decode (usually the result of a eth_call)

48 Chapter 8. API RPC

https://solidity.readthedocs.io/en/v0.5.3/abi-spec.html
https://solidity.readthedocs.io/en/v0.5.3/abi-spec.html

Incubed Documentation, Release 2.3

Returns:
a array (if more then one arguments in the result-type) or the the value after decodeing.

Request:

{
"method":"in3_abiDecode",
"params": [
" (address,uint256) ",

—"0x0000000000000000000000001234567890123456789012345678901234567890000000000000000000

"
—

Response:

{
nidv: 1,
"result": ["0x1234567890123456789012345678901234567890","0x05"],

8.1.4 in3_addRawKey

adds a raw private key as signer, which allows signing transactions.
Parameters:

1. pk: string - the 32byte long private key as hex string.
Returns:
the address of given key.

Request:

{
"method" :"in3_addRawKey",
"params": [
"0x1234567890123456789012345678901234567890123456789012345678901234"]

Response:

{
"id": 1,
"result": "0x2e988a386a799£506693793c6a5af6b54dfaabtb"

8.1.5 in3_checksumAddress

Will convert an upper or lowercase Ethereum address to a checksum address. (See EIP55)
Parameters:

1. address: address - the address to convert.

8.1. in3 49

0000000000001

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-55

Incubed Documentation, Release 2.3

2. useChainId: boolean - if true, the chainld is integrated as well (See EIP1191)
Returns:
the address-string using the upper/lowercase hex characters.

Request:

{
"method":"in3_checksumAddress",
"params": [
"0x1fe2e9bf29aa1938859af64c413361227d04059a",
false

Response:

{
"id": 1,
"result": "0x1Fe2E9bf29aal938859A£64C413361227d04059a"

8.1.6 in3_ens

resolves a ens-name. the domain names consist of a series of dot-separated labels. Each label
must be a valid normalised label as described in UTS46 with the options transitional=false and
useSTD3AsciiRules=true. For Javascript implementations, a library is available that normalises and checks
names.

Parameters:
1. name: string - the domain name UTS46 compliant string.
2. field: string - the required data, which could be
¢ addr - the address (default)
* resolver - the address of the resolver
* hash - the namehash
* owner - the owner of the domain
Returns:
the address-string using the upper/lowercase hex characters.

Request:

{
"method":"in3_ens",
"params": [
"cryptokitties.eth",
"addr"

Response:

50 Chapter 8. API RPC

https://github.com/ethereum/EIPs/issues/1121
https://unicode.org/reports/tr46/
https://www.npmjs.com/package/idna-uts46

Incubed Documentation, Release 2.3

"id": 1,
"result": "0x06012c8cf97bead5deae237070£9587f8e7a266d"

8.1.7 in3_toWei

converts the given value into wei.
Parameters:
1. value: string or integer - the value, which may be floating number as string, like ‘0.9’

2. unit: the unit of the value, which must be one of wei, kwei, Kwei, babbage, femtoether, mwei, Mwei,
lovelace, picoether, gwei, Gwei, shannon, nanoether, nano, szabo, microether, micro,
finney,milliether,milli, ether, eth, kether, grand, mether, gether, tether

Returns:
the value in wei as hex.

Request:

{
"method" :"in3_toWei",
"params": [
"20.0009123", "eth"

Response:

{
nidv: 1,
"result": "0x01159183c4793db800",

8.1.8 in3_pk2address

extracts the address from a private key.
Parameters:

1. key: hex - the 32 bytes private key as hex.
Returns:
the address-string.

Request:

{
"method":"in3_pk2address",

"params": [
"0x0£d65£7dab55d811634495754£27ab318a3309e8b4b8a978a50c20a661117435a"

8.1. in3 51

Incubed Documentation, Release 2.3

Response:

{
"id": 1,
"result": "0Oxdc5c4280d8a286£f0£f9c8f7f55a5a0c67125efcfd"

8.1.9 in3_pk2public

extracts the public key from a private key.
Parameters:

1. key: hex - the 32 bytes private key as hex.
Returns:
the public key.

Request:

{
"method" :"in3_pk2public",
"params": [
"0x0fd65£7da55d811634495754£f27ab318a3309e8b4b8a978a50c20a661117435a"
]

Response:

{

"id": 1,

"result":
—"0x0903329708d9380acad7b02£3955800179e18bffbb29%be3a644593c5f87e4c7£fa960983£78186577ec

"
—

}

8.1.10 in3_ecrecover

extracts the public key and address from signature.
Parameters:
1. msg: hex - the message the signature is based on.
2. sig: hex - the 65 bytes signature as hex.

3. sigtype: string - the type of the signature data : eth_sign (use the prefix and hash it), raw (hash the raw
data), hash (use the already hashed data). Default: raw

Returns:

a object with 2 properties:
e publicKey : hex - the 64 byte public key
* address : address - the 20 byte address

Request:

52 Chapter 8. API RPC

c909cec71cb5’

Incubed Documentation, Release 2.3

"method":"in3_ecrecover",
"params": [
"0x487b2cbb7997e45b4e9771d14c336b47¢87dc2424b11590e32b3a8b%ab327999",

—"0x0£f804f£f891e97e8alc35a2ebafc5e7f129a630a70787fb86ad5aec0758d98c7b454dee5564310d497dd
"
— 7

"hash"

Response:

{
"id": 1,
"result": {
"publicKey":
—"0x94b26bafa6406d7b636fbbddededdb2a2654eeecda9505e9a478a66c4£42e504c4481badl71leS5babfl]

n
",

"address":"0xf68a4703314e9a9cf65be688bd6d9b3b34594ab4"

8.1.11 in3_signData

signs the given data
Parameters:
1. msg: hex - the message to sign.

2. key: hex - the key (32 bytes) or address (20 bytes) of the signer. If the address is passed, the internal signer
needs to support this address.

3. sigtype: string - the type of the signature data : eth_sign (use the prefix and hash it), raw (hash the raw
data), hash (use the already hashed data). Default: raw

Returns:
a object with the following properties:
* message : hex - original message used
* messageHash : hex - the hash the signature is based on
* signature: hex - the signature (65 bytes)
* r: hex - the x -value of the EC-Point
* s: hex - the y -value of the EC-Point
e v : number - the sector (0I1) + 27

Request:

{
"method":"in3_signData",
"params": [
"0x0102030405060708090a0b0c0d0e0f",
"0xa8b8759ec8b59d7¢c13ef3630e8530f47ddb47ebal2f00£f9024d3d48247b62852",

(continues on next page)

8.1. in3 53

fe814839c8bal

ab5fllc26acfc

Incubed Documentation, Release 2.3

(continued from previous page)

n raw "
]
}
Response:
{
"id": 1,
"result": {
"message":"0x0102030405060708090a0b0c0d0e0£",
"messageHash":

—"0x1d4f6fccfle27711667605e29b6fl15adfdaz262e5aedfc5db904feeal2baa’75e67",
"signature":
—"0xab5dea9537d27e4e20b6dfc89fadb3bcidbabe9a2375d64£fb32a2eab04559e95792264adl1fb83be70c14]

(_}vv,
"r":"0xa5dea9537d27e4e20b6dfc89fadb3bcdbabe9a2375d64fb32a2eab04559e9579",
"s":"0x2264adl1fb83be70cl145aec69045da7986b95ee957fb9c5b6d315daabc0c3el52",

"y"i:27

8.1.12 in3_decryptKey

decrypts a JSON Keystore file as defined in the Web3 Secret Storage Definition . The result is the raw private key.
Parameters:

1. key: Object - Keydata as object as defined in the keystorefile

2. passphrase: String - the password to decrypt it.
Returns:

araw private key (32 bytes)

Request:
{
"method": "in3_decryptKey",
"params": [
{
"version": 3,
"id": "feéeb5c0bl-ba7a-4b67-9086-a0leab54ec638",
"address": "08aa30739030£362a8dd597fd3fcde283e36f4al",
"crypto": {
"ciphertext":
—"d5c5aafdee81d25bb5ac4048c8c6954dd50c595ee918£120£5a2066951e£9924d",
"cipherparams": {
"iv": "415440d2b1d6811d5c8a3f4c92¢c73£49"
} r
"cipher": "aes-128-ctr",
"kdf": "pbkdf2",
"kdfparams": {
"dklen": 32,
"salt":
—"691e9ad0da2b44404f65e0a60cfbaabe3e92d2c23b7410£fd187eeeb2cldedaldd",
"c": 16384,

(continues on next page)

54 Chapter 8. API RPC

aec69045da’79¢

https://github.com/ethereum/wiki/wiki/Web3-Secret-Storage-Definition

Incubed Documentation, Release 2.3

(continued from previous page)

"prf": "hmac-sha256"
}I
"mac":
—"de651c04£fc67£d552002b4235fa23ab2178d3a500caa7070b554168e73359610"
}
}I
"test"

Response:

{
nidv: 1,
"result": "Ox1£ff25594a5el2cle31ebd8112bdf107d217¢c1393da8dc7£c9d57696263457546"

8.1.13 in3_cacheClear

clears the incubed cache (usually found in the .in3-folder)

Request:

{

"method":"in3_cacheClear",
"params": []

Response:

{
"id": 1,
"result": true

8.1.14 in3_nodelList

return the list of all registered nodes.
Parameters:
all parameters are optional, but if given a partial NodeList may be returned.

1. limit: number - if the number is defined and >0 this method will return a partial nodeList limited to the given
number.

2. seed: hex - This 32byte hex integer is used to calculate the indexes of the partial nodeList. It is expected to be
arandom value choosen by the client in order to make the result deterministic.

3. addresses: address[] - a optional array of addresses of signers the nodeList must include.
Returns:
an object with the following properties:

* nodes: Node[] - a array of node-values. Each Object has the following properties:

8.1. in3 55

Incubed Documentation, Release 2.3

— url : string - the url of the node. Currently only http/https is supported, but in the future this may even
support onion-routing or any other protocols.

— address : address - the address of the signer

— index: number - the index within the nodeList of the contract

— deposit: string - the stored deposit

— props: string - the bitset of capabilities as described in the Node Structure

— timeout: string - the time in seconds describing how long the deposit would be locked when trying to
unregister a node.

— registerTime : string - unix timestamp in seconds when the node has registered.

— weight : string - the weight of a node (not used yet) describing the amount of request-points it can
handle per second.

— proofHash: hex - a hash value containing the above values. This hash is explicitly stored in the contract,
which enables the client to have only one merkle proof per node instead of verifying each property as its
own storage value. The proof hash is build :

return keccak256 (
abi.encodePacked (

_node.deposit,
_node.timeout,
_node.registerTime,
_node.props,
_node.signer,
_node.url

)i

e contract : address - the address of the Incubed-storage-contract. The client may use this information to
verify that we are talking about the same contract or throw an exception otherwise.

* registryId: hex - the registryld (32 bytes) of the contract, which is there to verify the correct contract.
* lastBlockNumber : number - the blockNumber of the last change of the list (usually the last event).
* totalServer : number - the total numbers of nodes.

if proof is requested, the proof will have the type accountProof. In the proof-section only the storage-keys of the
proofHash will be included. The required storage keys are calcualted :

* 0x00 - the length of the nodeList or total numbers of nodes.
* 0x01 - the registryld

e per node : 0x290decd9548b62a8d60345a988386£c84babbc95484008£6362£93160ef3e563
+ index = 5 + 4

The blockNumber of the proof must be the latest final block (1atest- minBlockHeight) and always greater or equal
to the lastBlockNumber

This proof section contains the following properties:
* type: constant: accountProof
* block : the serialized blockheader of the latest final block

* signatures : aarray of signatures from the signers (if requested) of the above block.

56 Chapter 8. API RPC

Incubed Documentation, Release 2.3

* accounts: a Object with the addresses of the db-contract as key and Proof as value. The Data Structure of the
Proof is exactly the same as the result of - eth_getProof, but it must containi the above described keys

e finalityBlocks: a array of blockHeaders which were mined after the requested block. The number of
blocks depends on the request-property finality. If this is not specified, this property will not be defined.

Request:

{
"method":"in3_nodelList",
"params":[2,"0xe9c1l5c3b26342e3287bb069e433ded8ac3fadddd32a31b48e426d19d761d7e9b",
—=[11,

"in3":{
"verification":"proof"
}
}
Response:
{
"id": 1,
"result": {
"totalServers": 5,
"contract": "Ox64abe24afbbabdcaed7e3dc3ced0fcab95ed4edds",
"lastBlockNumber": 8669495,
"nodes": [
{
"url": "https://in3-v2.slock.it/mainnet/nd-3",
"address": "0x945F75c0408C0026a3CD204d36f5e47745182£fd4",
"index": 2,
"deposit": "10000000000000000",
"props": "29",
"chainIds": [
"Ox1"
] r
"timeout": "3600",
"registerTime": "1570109570",
"weight": "2000",
"proofHash": "27ffb97dc2c5£f800c13731e7cled3fb438928dd5d69aaa8159c21fb13180a4dc
} ’
{
"url": "https://in3-v2.slock.it/mainnet/nd-5",
"address": "OxbcdF4E3e90cc7288b578329efd7bcC90655148d2",
"index": 4,
"deposit": "10000000000000000",
"props": "29",
"chainIds": [
"Ox1"
J 14
"timeout": "3600",
"registerTime": "1570109690",
"weight": "2000",
"proofHash": "d0dbb6f1e28a8b907610b973e678cf8ecdbb5b3a9d61fb9797d187belllee9ec?
}
] 4
"registryId": "0x423dd84£f33a44f60e5d58090dcdcclc047£57be895415822f211b8cdl1£d692e3"

}y

(continues on next page)

8.1. in3 57

https://eth.wiki/json-rpc/API#eth_getproof

Incubed Documentation, Release 2.3

(continued from previous page)

"in3": {
"proof": {
"type": "accountProof",
"block": "0xf9021call...",
"accounts": {
"Ox64abe24afbbatbdcaed7e3dc3cedlfcab95ed4eddb":: {
"accountProof": [
"0xf90211a0e822...",
"0xf90211a0f6d0...",
"0xf90211a04d7b...",
"0xf90211a0e749...",
"0xf90211a059cb...",
"0xf90211a0568f...",
"Oxf8dlalac2433...",
"0xf86d9d33b981..."
]l
"address": "Ox64abe24afbbatbdcaed7e3dc3ced0fcab95e4edds",
"balance": "0Oxbla2bc2ec50000",
"codeHash":
—"0x18e64869905158477a607a68e9c0074d78£56a9dd5665a5254f456£89d5be398",
"nonce": "Ox1",
"storageHash":
—"0x4386ec93bd665ea07d7ed488e8b495b362a31dc4100cf762b22f4346ee925d1£f",
"storageProof": [

{
"key": IIOXOII,

"proof": [
"0xf90211alccb6d2d5786...",
"0x£871808080808080800...",

"0xe2a0200decd9548b62a...05"
1,

"value": "0x5"
}I
{
"key": "Ox1",
"proof": [
"0xf90211lal0ccb6d2d5786...",
"0x£89180a010806a37911...",

"0xf843a0200e2d5276120. ..
—423dd84£33a44f60e5d58090dcdcclc047£570e895415822f211b8cd1£d692e3"
I
"value":
—"0x423dd84£33a44f60e5d58090dcdcclc047£570e895415822£f211b8cdl1£d692e3"
by
{

"key":
—"0x290decd9548b62a8d60345a988386£c84babbc95484008£6362f93160ef3e571",
"proof": [
"0xf90211alOccbod2d...",
"0xf871a08b9f£f91d8...",
"0xf843a0206695c25. ..

—27ffb9%%7dc2c5£800c13731e7cled3£fb438928dd5d69%9aaal8l59¢c21fb13180a4c"
I
"value":
S"0x27££fb9%7dc2c5£800c13731e7¢c1ed3£fb438928dd5d69aaal8159¢c21£fb13180a4c"
by
{

(continues on next page)

58 Chapter 8. API RPC

Incubed Documentation, Release 2.3

(continued from previous page)

"key":
—"0x290decd9548b62a8d60345a988386£c84babbc95484008£6362£93160e£f3e57b",
"proof": [
"0xf90211lalOccb6d2dl...",
"0x£f851a06807310abd...",
"0x£f843a0204d807394. ..

—0d0dbb6£1e28a8b90761b973e678cf8ecdbb5b3a9d6lfb9797d187belllee9ecT"
1s

"value":
—"0xd0dbb6£1e28a8b90761b973e678cf8ecdbb5b3a9d61£fb9797d187bel0llee9ecT"

Partial NodeLists
if the client requests a partial nodeList and the given limit is smaller then the total amount of nodes, the server needs
to pick nodes in a deterministic way. This is done by using the given seed.

1. add all required addresses (if any) to the list.

2. iterate over the indexes until the limit is reached:

function createIndexes (total: number, limit: number, seed: Buffer): number[] {
const result: number[] = [] // the result as a list of indexes
let step = seed.readUIntBE (0, 6) // first 6 bytes define the step size
let pos = seed.readUIntBE(6, 6) % total // next 6 bytes define the offset
while (result.length < limit) {
if (result.indexOf (pos) >= 0) { // 1if the index is already part of the_
—result
seed = keccak256 (seed) // we create a new seed by hashing the_,
—seed.
step = seed.readUIntBE (0, 6) // and change the step-size
}
else
result.push (pos)
pos = (pos + step) % total // use the modulo operator to,,
—calculate the next position.
}
return result
}

8.1.15 in3_sign

requests a signed blockhash from the node. In most cases these requests will come from other nodes, because the
client simply adds the addresses of the requested signers and the processising nodes will then aquire the signatures
with this method from the other nodes.

Since each node has a risk of signing a wrong blockhash and getting convicted and losing its deposit, per default nodes
will and should not sign blockHash of the last minBlockHeight (default: 6) blocks!

8.1. in3 59

Incubed Documentation, Release 2.3

Parameters:

1.

blocks: Object[] - requested blocks. Each block-object has these 2 properties:
(a) blockNumber : number - the blockNumber to sign.

(b) hash : hex - (optional) the expected hash. This is optional and can be used to check if the expected hash
is correct, but as a client you should not rely on it, but only on the hash in the signature.

Returns:

a Object[] with the following properties for each block:

1.

blockHash : hex - the blockhash signed.
block : number - the blockNumber

r : hex - r-value of the signature

s : hex - s-value of the signature

v : number- v-value of the signature

msgHash : the msgHash signed. This Hash is created :

keccak256 (
abi.encodePacked (
_blockhash,
_blockNumber,
registryId

Request:

{

"method":"in3_sign",
"params": [{"blockNumber":87705801}]

Response:
{
"id": 1,
"result": [
{
"blockHash": "0xd8189793f64567992eaadefc51834£3d787b03e9%9a6850b8b9p8003d8d84a76c8

}
1,

"block": 8770580,

"r": "0x954ed45416e97387a55b2231bff5dd72e822e4a5d60£fa43bc9£9e49402019337",

"s": "0x277163f586585092d146d0d6885095¢c35¢c02b360e4125730¢c52332¢cf6b99e596",

"v": 28,

"msgHash": "0x40c23a32947£40a2560£fcb633ab7fa4f3a96e33653096b17ec613fbf41£f946ef"

"in3": {

"

"

lastNodeList": 8669495,
currentBlock": 8770590

60

Chapter 8. API RPC

Incubed Documentation, Release 2.3

8.1.16 in3_whitelist

Returns whitelisted in3-nodes addresses. The whitelist addressed are accquired from whitelist contract that user can
specify in request params.

Parameters:
1. address: address of whitelist contract
Returns:
* nodes: address[] - array of whitelisted nodes addresses.
e lastWhiteList: number - the blockNumber of the last change of the in3 white list event.
e contract: address - whitelist contract address.
* totalServer : number - the total numbers of whitelist nodes.

* lastBlockNumber : number - the blockNumber of the last change of the in3 nodes list (usually the last
event).

If proof requested the proof section contains the following properties:
e type : constant: accountProof
* block : the serialized blockheader of the latest final block
* signatures : aarray of signatures from the signers (if requested) of the above block.

* accounts: a Object with the addresses of the whitelist contract as key and Proof as value. The Data Structure
of the Proof is exactly the same as the result of - et h_getProof and this proof is for proofHash of byte array
at storage location 0 in whitelist contract. This byte array is of whitelisted nodes addresses.

e finalityBlocks: a array of blockHeaders which were mined after the requested block. The number of
blocks depends on the request-property finality. If this is not specified, this property will not be defined.

Request:
{
"jsonrpc": "2.0",
"method": "in3_whiteList",
"params": ["0x08e97ef0a92EB502alD7574913E2a6636BeC557b"],
"id": 2,
"in3": {
"chainId": "0x5",
"verification": "proofWithSignature",
"signatures": [
"0x45d45e6Ff99E6c34A235d263965910298985fcFe"
]
}
}
Response:
{
"id": 2,
"result": {
"totalServers": 2,
"contract": "0x08e97ef0a92EB502alD7574913E2a6636BeC557b",
"lastBlockNumber": 1546354,
"nodes": [

"0x1fe2e9pf29aa1938859af64c413361227d04059%a",

(continues on next page)

8.1. in3 61

https://eth.wiki/json-rpc/API#eth_getproof

Incubed Documentation, Release 2.3

(continued from previous page)

"0x45d45e6f£99e6c34a235d263965910298985fcfe"

b

"Jsonrpc": "2.0",
"in3": {
"execTime": 285,
"lastValidatorChange": 0,
"proof": {
"type": "accountProof",
"block":

—"0xf9025cal0082a4e766b4af76b7be75818£25310cbc684cctbd747ad4ccbbcactfb4f870d06balldcc4de8q

"
",

"accounts": {
"0x08e97ef0a92EB502a1D7574913E2a6636BeC557b": {
"accountProof": [

—"0xf90211a00cb35d3a4253dde597£30682518£94cbac7690d54dc51bb091£67012e606eelealb65e37ac9q

"
",

—"0xf90211a0d6ccelc7317d26a22e192288b4d7a5a34ab7aed0b301c249£27a481£5518e4013a05cc0d4144

"
",

—"0x£f90211a0432a3b£f286£659650359%9ae590aa340ce2a2a0d1f60fae509ea9d6a8b90215bfealbb2ab1984

"
",

—"0x£f8d1a06£998e7193562c27933250ele72c5a2ff0bf2df556fe478b4436e8b8ac7a7900808080a0debd

"
",

—"0x£85180808080808080a03dd3d6e0c95682£178213£d20364be0395c9e94086eb373fd4aal3ebedables

"
",

—"0xf8679e39ce2£d3705a1089a91865£c977c0a778d01f4£f3ba%a0fd6378abecef87ab846£8440180a0£54

n
—

1 14
"address": "0x08e97ef0a92eb502a1d7574913e2a6636bec557b",
"balance": "0x0",
"codeHash":
—"0x640aaa823fel752d44d83bcfd008lecbaldc72bb82223940a621b0ea251b52c4",
"nonce": "Ox1",
"storageHash":
—"0xf5e650b7122ddd254ecc84d87c04ea99117f12badec917985£5£3335b355¢cb5e",
"storageProof": [
{
"key": "OxO0",
"proof": [

—"0x£f90111a05541df1966b288bce9c5b6£93d564e736£3£984cb3aadb067ba88e4398bdc86da06483c09af

"
",

—"0x£851808080808080808080a02b2bb6a045£22c77b07ecf8blf7655f7ed4ccb826b16681ccfl965d4b7]

"
",

—"0x£843a0200decd9548b62a8d60345a988386£c84babbc95484008£6362£93160ef3e563alalbaa’bbfb

n
—

1,
"value":
—"0Ox6aa7bbfbbl778efa33dalbal032cc3a79b9%9ef57b428441b4dedf1c38c3£258874™"

(continues on next page)

62 Chapter 8. API RPC

ec75d7aab85b!

b1773bceb22c¢

10bdb4a9£1d6:

e6e8d80eac8d:

dObab8le7a0d

280808080808

650b7122ddd2!

b5£8£4206d30°

ad6df8080808

1778efa33dall

Incubed Documentation, Release 2.3

(continued from previous page)

}I
"signatures": [
{
"blockHash":
—"0x2d775ab9%01290£487065e612942a84£c2275572e467040eeal54fbbae2005c41",
"block": 1798342,
"r":
—"0xf6036400705455¢c1dfb431e1c90b91£3e50815516577flebca%9a494164b12d17",
"s":
—"0x30e77bc851e02fc79deab63812203b2dfcacd7a83af14a86c8c9d26d95763cchH",
"v": 28,
"msgHash":
—"0x7953b8a420bfe9d1c902e2090£533c9b3£73f0£825b7cec247d7d94e548bc5d9"
}

by
"lastWhiteList": 1546354

8.2 eth

Standard JSON-RPC calls as described in https://eth.wiki/json-rpc/API.

Whenever a request is made for a response with verification: proof, the node must provide the proof needed
to validate the response result. The proof itself depends on the chain.

For ethereum, all proofs are based on the correct block hash. That’s why verification differentiates between Verifying
the blockhash (which depends on the user consensus) the actual result data.

There is another reason why the BlockHash is so important. This is the only value you are able to access from
within a SmartContract, because the evm supports a OpCode (BLOCKHASH), which allows you to read the last 256
blockhashes, which gives us the chance to verify even the blockhash onchain.

Depending on the method, different proofs are needed, which are described in this document.

Proofs will add a special in3-section to the response containing a proof- object. Each in3-section of the response
containing proofs has a property with a proof-object with the following properties:

* type string (required) - The type of the proof.Must be one of the these values : 'transactionProof’,
'receiptProof’, '"blockProof’, 'accountProof’, 'callProof’, 'logProof’

* block string - The serialized blockheader as hex, required in most proofs.

« finalityBlocks array - The serialized following blockheaders as hex, required in case of finality asked (only
relevant for PoA-chains). The server must deliver enough blockheaders to cover more then 50% of the validators.
In order to verify them, they must be linkable (with the parentHash).

e transactions array - The list of raw transactions of the block if needed to create a merkle trie for the transac-
tions.

* uncles array - The list of uncle-headers of the block. This will only be set if full verification is required in
order to create a merkle tree for the uncles and so prove the uncle_hash.

8.2. eth 63

poa.html
poa.html

Incubed Documentation, Release 2.3

* merkleProof st ring[] - The serialized merkle-nodes beginning with the root-node (depending on the content
to prove).

* merkleProofPrev st ring[] - The serialized merkle-nodes beginning with the root-node of the previous entry
(only for full proof of receipts).

* txProof string[] - The serialized merkle-nodes beginning with the root-node in order to proof the transac-
tionIndex (only needed for transaction receipts).

* logProof LogProof - The Log Proof in case of a eth_getLogs-request.
 accounts object - A map of addresses and their AccountProof.
* txIndex integer - The transactionIndex within the block (for transaactions and receipts).

* signatures Signature [] - Requested signatures.

8.2.1 web3_clientVersion

Returns the underlying client version.
See web3_clientversion for spec.

No proof or verification possible.

8.2.2 web3 sha3

Returns Keccak-256 (not the standardized SHA3-256) of the given data.
See web3_sha3 for spec.

No proof returned, but the client must verify the result by hashing the request data itself.

8.2.3 net_version

Returns the current network ID.
See net_version for spec.

No proof returned, but the client must verify the result by comparing it to the used chainld.

8.2.4 eth_accounts

returns a array of account-addresss the incubed client is able to sign with. In order to add keys, you can use
in3_addRawKey.

8.2.5 eth_blockNumber

Returns the number of the most recent block.
See eth_blockNumber for spec.

No proof returned, since there is none, but the client should verify the result by comparing it to the current blocks
returned from others. With the blockTime from the chainspec, including a tolerance, the current blocknumber may
be checked if in the proposed range.

64 Chapter 8. API RPC

https://eth.wiki/json-rpc/API#web3_clientversion
https://eth.wiki/json-rpc/API#web3_sha3
https://eth.wiki/json-rpc/API#net_version
https://eth.wiki/json-rpc/API#eth_blockNumber

Incubed Documentation, Release 2.3

8.2.6 eth_getBlockByNumber

See block based proof

8.2.7 eth_getBlockByHash

Return the block data and proof.

See JSON-RPC-Spec
 eth_getBlockByNumber - find block by number.
* cth_getBlockByHash - find block by hash.

The eth_getBlockBy. .. methods return the Block-Data. In this case, all we need is somebody verifying the
blockhash, which is done by requiring somebody who stored a deposit and would otherwise lose it, to sign this
blockhash.

The verification is then done by simply creating the blockhash and comparing this to the signed one.

The blockhash is calculated by serializing the blockdata with rlp and hashing it:

blockHeader = rlp.encode ([
bytes32(parentHash),
bytes32(sha3Uncles),
address (miner || coinbase),

(
(
bytes32(stateRoot),
bytes32(transactionsRoot),
bytes32(receiptsRoot || receiptRoot),
bytes256(logsBloom),
uint (difficulty),
uint (number),
uint (gasLimit),
uint (gasUsed),
uint (timestamp),
bytes (extrabData),

. sealFields
? sealFields.map(rlp.decode)
[
bytes32(b.mixHash),
bytes8(b.nonce)
]
1)

For POA-chains, the blockheader will use the sealFields (instead of mixHash and nonce) which are already RLP-
encoded and should be added as raw data when using rlp.encode.

if (keccak256 (blockHeader) !== singedBlockHash)
throw new Error ('Invalid Block")

In case of the eth_getBlockTransactionCountBy. . ., the proof contains the full blockHeader already seri-
lalized plus all transactionHashes. This is needed in order to verify them in a merkle tree and compare them with the
transactionRoot.

Requests requiring proof for blocks will return a proof of type blockProof. Depending on the request, the proof
will contain the following properties:

* type : constant: blockProof

8.2. eth 65

https://eth.wiki/json-rpc/API#eth_getBlockByNumber
https://eth.wiki/json-rpc/API#eth_getBlockByHash
https://github.com/slockit/in3/blob/master/src/util/serialize.ts#L120
https://github.com/ethereum/wiki/wiki/RLP

Incubed Documentation, Release 2.3

* signatures : aarray of signatures from the signers (if requested) of the requested block.

* transactions: aarray of raw transactions of the block. This is only needed the last parameter of the request
(includeTransactions) is false, In this case the result only contains the transactionHashes, but in order to verify
we need to be able to build the complete merkle-trie, where the raw transactions are needed. If the complete
transactions are included the raw transactions can be build from those values.

e finalityBlocks: a array of blockHeaders which were mined after the requested block. The number of
blocks depends on the request-property finality. If this is not specified, this property will not be defined.

e uncles: onlyif fullProof is requested we add all blockheaders of the uncles to the proof in order to verify
the uncleRoot.

Request:

{

"method": "eth_getBlockByNumber",
"params": [

"0x967a46",

false
]’
"in3": {

"verification":"proof"

Response:

{
"jsonrpc": "2.0",
"result": {
"author": "0x00d6cclba9cf89bd2e58009741£4£7325badcOed",
"difficulty": "Oxfffffffffffffffffffffffffffrfffe”,
"extraData": "0xde830201088£f5061726974792d457468657265756d86312e33302e30827769

"gasLimit": "0Ox7al200",

"gasUsed": "OxlceOf",

"hash": "0xfebl20aed5£1009e6c2289436d5957¢c58a15915288ec083658bd044101608£26",

"logsBloom": "0x0008000...",

"miner": "0x00d6cclba9cf890d2e58009741£f4£7325badclOed",

"number": "0x967a46",

"parentHash":
—"0xc591335e0cdb6b21dc9af57567a6e075£c6315af£915bd79b£f78a2c8815bc657",

"receiptsRoot":
—"0xfa2a0b3c0715e798ae41£d4645b0261aedbf6d2c56£29dab6fcc5fbfb7c6£19£8",

"sealFields": [

"0x8417098353",

—"0xb841leb80clalbe2eb7alcl4fc38759a0£9fe9¢c33121d72003025160a4b35119d495d34d39%9a9£d7475d]

"
—

i

"sha3Uncles":
—"0x1ldccd4de8dec75d7aab85b567b6ccd41adl312451b948a7413f0a142£d40d49347",

"size": "Ox44e",

"stateRoot":
—"0xd61815906dbd0c6213d90abbf01e06513104£f0670cd79503cb2563d7££116864",

"timestamp": "0x5c260d4c",

"totalDifficulty": "0x94373700000000000000000000000484b6£f390",

"transactions": [

(continues on next page)

66 Chapter 8. API RPC

8ba863e35£51I

Incubed Documentation, Release 2.3

(continued from previous page)

"Ox1l6cfadb6a0a823c623788713cbleb7d399f89f78d599d416f7b91dcaddeecb804™,
"0x91458145d2c47527eee34e891879ac2915b3f8ba6f31911¢c5234928ae32cb191"
]I
"transactionsRoot":
—"0x4f1249c6378282b1£032cc8c2562712f2450a0bed8ce20bdd2d01b6520feb75a",

"uncles": []
}I
"id": 77,
"in3": {
"proof": {
"type": "blockProof",
"signatures": [... 1,
"transactions": [
"0xf8ac8201158504a817c8....",
"0xf9014c8301a3d4843b%ac....",

]

br
"currentBlock": 9866910,
"lastNodeList": 8057063,

8.2.8 eth_getBlockTransactionCountByHash

See transaction count proof

8.2.9 eth_getBlockTransactionCountByNumber

See transaction count proof

8.2.10 eth_getUncleCountByBlockHash

See count proof

8.2.11 eth_getUncleCountByBlockNumber

return the number of transactions or uncles.
See JSON-RPC-Spec
* eth_getBlockTransactionCountByHash - number of transaction by block hash.
* eth_getBlockTransactionCountByNumber - number of transaction by block number.
¢ eth_getUncleCountByBlockHash - number of uncles by block number.
¢ eth_getUncleCountByBlockNumber - number of uncles by block number.

Requests requiring proof for blocks will return a proof of type blockProof. Depending on the request, the proof
will contain the following properties:

e type : constant: blockProof

* signatures : aarray of signatures from the signers (if requested) of the requested block.

8.2. eth 67

https://eth.wiki/json-rpc/API#eth_getBlockTransactionCountByHash
https://eth.wiki/json-rpc/API#eth_getBlockTransactionCountByNumber
https://eth.wiki/json-rpc/API#eth_getUncleCountByBlockHash
https://eth.wiki/json-rpc/API#eth_getUncleCountByBlockNumber

Incubed Documentation, Release 2.3

e block : the serialized blockheader

* transactions: a array of raw transactions of the block. This is only needed if the number of transactions

are requested.

e finalityBlocks: a array of blockHeaders which were mined after the requested block. The number of

blocks depends on the request-property finality. If this is not specified, this property will not be defined.

e uncles: a array of blockheaders of the uncles of the block. This is only needed if the number of uncles are
requested.

8.2.12 eth_getTransactionByHash

return the transaction data.

See JSON-RPC-Spec

e eth_getTransactionByHash - transaction data by hash.
* eth_getTransactionByBlockHashAndIndex - transaction data based on blockhash and index

¢ eth_getTransactionByBlockNumberAndIndex - transaction data based on block number and index

Transaction Trie

transaction data

i

0x123456 Oxabcdef 0x98765 Oxfcab34
0x123456
parentHash | ... | transactionRoot | receiptRoot | stateRoot

In order to prove the transaction data, each transaction of the containing block must be serialized

transaction = rlp.encode ([
uint (tx.nonce),
uint (tx.gasPrice),
uint (tx.gas || tx.gasLimit),

address (tx.to),
uint (tx.value),
bytes(tx.input |

| tx.data),

(continues on next page)

68

Chapter 8. API RPC

https://eth.wiki/json-rpc/API#eth_getTransactionByHash
https://eth.wiki/json-rpc/API#eth_getTransactionByBlockHashAndIndex
https://eth.wiki/json-rpc/API#eth_getTransactionByBlockNumberAndIndex

Incubed Documentation, Release 2.3

(continued from previous page)

uint (tx.v),
uint (tx.r),
uint (tx.s)

1)

and stored in a merkle tree with r1p.encode (transactionIndex) as key or path, since the blockheader only
contains the transactionRoot, which is the root-hash of the resulting merkle tree. A merkle-proof with the
transactionIndex of the target transaction will then be created from this tree.

If the request requires proof (verification: proof) the node will provide an Transaction Proof as part of the
in3-section of the response. This proof section contains the following properties:

* type :constant: transactionProof
* block : the serialized blockheader of the requested transaction.
* signatures : aarray of signatures from the signers (if requested) of the above block.

e txIndex : The Transactionlndex as used in the MerkleProof (not needed if the methode was
eth_getTransactionByBlock. . ., since already given)

* merkleProof: the serialized nodes of the Transaction trie starting with the root node.

e finalityBlocks: a array of blockHeaders which were mined after the requested block. The number of
blocks depends on the request-property finality. If this is not specified, this property will not be defined.

While there is no proof for a non existing transaction, if the request was a eth_getTransactionByBlock. ..
the node must deliver a partial merkle-proof to verify that this node does not exist.

Request:

{
"method":"eth_getTransactionByHash",

"params": ["0xe9cl1l5c3b26342e3287bb069e433ded48ac3fadddd32a31b48e426d19d761d7e9b"],
"in3": {
"verification":"proof"
}
}
Response:
{
"Jsonrpc": "2.0",
"id": o6,
"result": {
"blockHash": "0xfla2fd6a36£27950c78ce55901dc4e991d46590683cb8cb84804fa672bcal395b",
"blockNumber": "Oxca",
"from": "0x7e5f4552091a69125d5dfcb7b8c2659029395bdf",
"gas": "0x55f0",
"gasPrice": "0x0",
"hash": "0xe9cl15c3b26342e3287bb069e433ded48ac3fadddd32a31b48e426d19d761d7e9b",
"input": "0x00",
"value": "0x3e8"
} 4
"in3": {
"proof": {
"type": "transactionProof",
"block": "0xf901e6a040997a53895b48...", // serialized blockheader

(continues on next page)

8.2. eth 69

Incubed Documentation, Release 2.3

(continued from previous page)

"merkleProof": [/% serialized nodes starting with the root-node #*/
"0x£868822080b863£86136808255£0942b5ad5¢c4795¢c026514£8317c7a215e218dc..."
"Oxcd6cf8203e8001caldc967310342a£5042bb64c34d3092799345401b26713b43f..."

JI

"txIndex": O,

"signatures": [...]

8.2.13 eth_getTransactionReceipt

The Receipt of a Transaction.
See JSON-RPC-Spec

 eth_getTransactionReceipt - returns the receipt.

Receipt Trie
transaction receipt
i
0x123456 Oxabcdef 0x98765 Oxfcab34
-
0x123456
l
parentHash | ... | transactionRoot | receiptRoot | stateRoot

The proof works similiar to the transaction proof.

In order to create the proof we need to serialize all transaction receipts

transactionReceipt = rlp.encode ([
uint (r.status || r.root),
uint (r.cumulativeGasUsed),
bytes256(r.logsBloom),
r.logs.map (1l => [
address (1l.address),
l.topics.map(bytes32),

(continues on next page)

70 Chapter 8. API RPC

https://eth.wiki/json-rpc/API#eth_gettransactionreceipt

Incubed Documentation, Release 2.3

(continued from previous page)

bytes(l.data)
1)

].slice(r.status === null && r.root === null 2 1 : 0))

and store them in a merkle tree with r1p.encode (transactionIndex) as key or path, since the blockheader
only contains the receiptRoot, which is the root-hash of the resulting merkle tree. A merkle proof with the
transactionIndex of the target transaction receipt will then be created from this tree.

Since the merkle proof is only proving the value for the given transactionIndex, we also need to prove that the trans-
actionIndex matches the transactionHash requested. This is done by adding another MerkleProof for the transaction
itself as described in the Transaction Proof.

If the request requires proof (verification: proof) the node will provide an Transaction Proof as part of the
in3-section of the response. This proof section contains the following properties:

e type: constant: receiptProof

* block : the serialized blockheader of the requested transaction.

* signatures : aarray of signatures from the signers (if requested) of the above block.
¢ txIndex : The TransactionIndex as used in the MerkleProof

e txProof : the serialized nodes of the Transaction trie starting with the root node. This is needed in order to
proof that the required transactionHash matches the receipt.

* merkleProof: the serialized nodes of the Transaction Receipt trie starting with the root node.

* merkleProofPrev: the serialized nodes of the previous Transaction Receipt (if txInxdex>0) trie starting
with the root node. This is only needed if full-verification is requested. With a verified previous Receipt we can
proof the usedGas.

e finalityBlocks: a array of blockHeaders which were mined after the requested block. The number of
blocks depends on the request-property £inality. If this is not specified, this property will not be defined.

Request:

{
"method": "eth_getTransactionReceipt",
"params": [
"0x5dc2a9%ec73abfe0640£27975126bbafl4624967e2b0b7¢c2b3a0fb6111£0d3c5e"
]

"in3":{
"verification":"proof"
}
}
Response:
{
"result": {
"blockHash":
—"0xeabeele20d3408ad7f6981cfcc2625d80b4f4735a75cabb20baeb328e41£0304",
"blockNumber": "0x8cle39",
"contractAddress": null,
"cumulativeGasUsed": "0x2466d",
"gasUsed": "0x2466d",
"logs": [

{
"address": "0Ox85ec283a3ed4db66dfdda23656d4bf8a507383bca",

(continues on next page)

8.2. eth 71

Incubed Documentation, Release 2.3

(continued from previous page)

"blockHash":
—"0xeabeele20d3408ad7£6981cfcc2625d80b4£f4735a75cabb20baeb328e41£0304",

"blockNumber": "0x8cle39",

"data": "0x00000000000...",

"logIndex": "0x0",

"removed": false,

"topics": [

—"0x9123e6a7c5d144bd06140643c88de8e01adcbb24350190c02218a4435¢c7041£8",
—"0xa2f7689fcl12ea917d9029117d32b9%fdef2a53462c853462ca86b71b97dd84afe",

—"0x55a6ef49ec5dcf6cd006d21£f151£390692eedd839¢c813a150000000000000000"
]I
"transactionHash":
—"0x5dc2a9%ec73abfe0640£27975126bbafl4624967e2b0b7c2b3a0fb6111£0d3c5e",
"transactionIndex": "0x0",
"transactionLogIndex": "0x0",
"type": "mined"

JI
"logsBloom": "0x00000000000000000000200000...",
"root": null,
"status": "Ox1",
"transactionHash":
—"0x5dc2a9%ec73abfe0640£27975126bbafl4624967e2b0b7c2b3a0fb6111£0d3c5e",
"transactionIndex": "0xO0"
}I
"in3": |
"proof": {
"type": "receiptProof",
"block": "0x£f9023fa019e9d929%ab...",
"txProof": [
"0xf851a083c8446ab932130..."
1,
"merkleProof": [
"0xf851a0b0£f5p7429a54b10..."
1,
"txIndex": O,
"signatures": [...],
"merkleProofPrev": [
"0xf851a0b0£f507429a54b10..."

s
"currentBlock": 9182894,
"lastNodeList": 6194869

8.2.14 eth_getLogs

Proofs for logs or events.
See JSON-RPC-Spec

* eth_getlogs - returns all event matching the filter.

72 Chapter 8. API RPC

https://eth.wiki/json-rpc/API#eth_getLogs

Incubed Documentation, Release 2.3

Since logs or events are based on the TransactionReceipts, the only way to prove them is by proving the Transaction-
Receipt each event belongs to.

That’s why this proof needs to provide:
* all blockheaders where these events occured
* all TransactionReceipts plus their MerkleProof of the logs
* all MerkleProofs for the transactions in order to prove the transactionIndex

The proof data structure will look like this:

Proof {
type: 'logProof',
logProof: {
[blockNr: stringl: { // the blockNumber in hex as key
block : string // serialized blockheader
receipts: {
[txHash: stringl: { // the transactionHash as key
txIndex: number // transactionIndex within the block
txProof: string[] // the merkle Proof-Array for the transaction
proof: string[] // the merkle Proof-Array for the receipts

In order to create the proof, we group all events into their blocks and transactions, so we only need to provide the
blockheader once per block. The merkle-proofs for receipts are created as described in the Receipt Proof.

If the request requires proof (verification: proof) the node will provide an Transaction Proof as part of the
in3-section of the response. This proof section contains the following properties:

* type: constant: logProof

* logProof : The proof for all the receipts. This structure contains an object with the blockNumbers as keys.
Each block contains the blockheader and the receipt proofs.

* signatures : aarray of signatures from the signers (if requested) of the above blocks.

e finalityBlocks: a array of blockHeaders which were mined after the requested block. The number of
blocks depends on the request-property £inality. If this is not specified, this property will not be defined.

Request:
{
"method": "eth_getLogs",
"params": [
{
"fromBlock": "0x7ae000",
"toBlock": "Ox7af0e4d",
"address": "0x27a37al210df14£f7e058393d026e2fb53b7cf8cl"
}
] r
"in3":{
"verification":"proof"
}
}
Response:

8.2. eth 73

Incubed Documentation, Release 2.3

"jsonrpc": "2.0",
"result": [
{
"address": "0x27a37a1210df14f7e058393d026e2fb53b7cf8cl",
"blockHash":
—"0x12657acc9dbca74775efcc09bcd55da769e89fff27a0402e02708a6e69caal3bb",
"blockNumber": "Ox7ael6b",
"data": "0x0000000000000...",
"logIndex": "0xO0",
"removed": false,
"topics": [

"0x690cdlace756531abc63987913dcfafl18055f3bdebb27d3deflcc5319ebecldobl”

]I

"transactionHash":
—"0xddc81454b0df60fb31dbefd0fd4c5e8fed£f3daa541c879964500d876056e2976",

"transactionIndex": "0xO0",

"transactionLogIndex": "0xO0",

"type": "mined"

}I
{

"address": "0x27a37a1210df14f7e058393d026e2fb53b7cf8cl",

"blockHash":
—"0x2410d512d12e18b2451efel95ece85723b7£39¢c3f5d706eall2bfcc57¢c0249d2",

"blockNumber": "Ox7af0ed",

"data": "0x000000000000000...",

"logIndex": "0x4",

"removed": false,

"topics": [

"0x690cdlace756531abc63987913dcfafl18055f3bd6ebb27d3deflcc5319ebecldnl”

]I

"transactionHash":
—"0x30fe995d61a5491a49e8f1283b36f4cb7fa5d370927bd8784c33e702546a9daa",

"transactionIndex": "0x4",

"transactionLogIndex": "0x0",

"type": "mined"

]I
"id": 144,
"in3": {
"proof": {
"type": "logProof",
"logProof": {
"Ox7aeleb": {
"number": 8053099,
"receipts": {

—"0xddc81454b0df60fb31dbefd0fddc5e8fedf3daa541c879964500d876056e2976": {
"txHash":
—"0xddc81454b0df60fb31dbefd0fd4c5e8£fe4£3daa541c879964500d876056e2976",
"txIndex": O,
"proof": [
"0xf9020e822080b90208f..."
]I
"txProof": [
"0xf8£7822080b8f2£8£f080..."

(continues on next page)

74 Chapter 8. API RPC

Incubed Documentation, Release 2.3

(continued from previous page)

}V
"block": "0xf9023ea002343274..."
}I
"O0x7af0ed": {
"number": 8057060,

"receipts": {

—"0x30£e995d61a5491a49e8£f1283b36£f4cb7£a5d370927bd8784c33e702546a9daa": {

"txHash":

—"0x30£fe995d61a5491a49e8£1283b36£f4cb7£a5d370927bd8784c33e702546a9daa",

"txIndex":
"proof": [
"0xf851a039faec6276. ..
"0xf8b180alee82c377. ..
"0xf9020c20b90208f9. ..

4,

1,

"txProof": [

"0x£851a09250840£6b87. ..
"0xf8b180a04e5257328b. ..
"Ox£f8£620b8Ef3£8£18085...

by

"block": "0xf9023ea03837491e4b3b...
}
}
}I
"lastValidatorChange": O,
"lastNodeList": 8057063

"

n

8.2.15 eth_getBalance

See account proof

8.2.16 eth_getCode

See account proof

8.2.17 eth_getTransactionCount

See account proof

8.2.18 eth_getStorageAt

Returns account based values and proof.
See JSON-RPC-Spec

* cth_getBalance - returns the balance.

8.2. eth

75

https://eth.wiki/json-rpc/API#eth_getBalance

Incubed Documentation, Release 2.3

* eth_getCode - the byte code of the contract.
e eth_getTransactionCount - the nonce of the account.
» eth_getStorageAt - the storage value for the given key of the given account.

Each of these account values are stored in the account-object:

account = rlp.encode ([
uint (nonce),
uint (balance),
bytes32(storageHash || ethUtil.KECCAK256_RLP),
bytes32(codeHash || ethUtil.KECCAK256_NULL)

1)

The proof of an account is created by taking the state merkle tree and creating a MerkleProof. Since all of the above
RPC-methods only provide a single value, the proof must contain all four values in order to encode them and verify
the value of the MerkleProof.

For verification, the stateRoot of the blockHeader is used and keccak (accountProof.address) as the
path or key within the merkle tree.

verifyMerkleProof (

block.stateRoot, // expected merkle root

keccak (accountProof.address), // path, which is the hashed address
accountProof.accountProof), // array of Buffer with the merkle-proof-data
isNotExistend (accountProof) ? null : serializeAccount (accountProof), // the expected,
—serialized account

)

In case the account does not exist yet (which is the case if none == startNonce and codeHash
== '0xc5d2460186£7233c927e7db2dcc703c0e500b653caB82273b7bfad8045d85a470"), the proof
may end with one of these nodes:

* The last node is a branch, where the child of the next step does not exist.
* The last node is a leaf with a different relative key.
Both would prove that this key does not exist.

For eth_getStorageAt, an additional storage proof is required. This is created by using the storageHash of
the account and creating a MerkleProof using the hash of the storage key (keccak (key)) as path.

verifyMerkleProof (

bytes32 (accountProof.storageHash), // the storageRoot of the account

keccak (bytes32 (s.key)), // the path, which is the hash of the key

s.proof.map (bytes), // array of Buffer with the merkle-proof-data

s.value === '0x0' ? null : util.rlp.encode(s.value) // the expected value or none_
—to proof non-existence

))

76 Chapter 8. API RPC

https://eth.wiki/json-rpc/API#eth_getcode
https://eth.wiki/json-rpc/API#eth_gettransactioncount
https://eth.wiki/json-rpc/API#eth_getstorageat

Incubed Documentation, Release 2.3

Storage Trie
storage value
0x123456 Oxabcdef 0x98765 Oxfcab34
0x123456 Oxabcdef
State Trie

nonce | balance | storageHash | codeHash

l

0x123456 Oxabcdef 0x98765 Oxfcab34
0x123456 Oxabcdef
Blockheader
parentHash | ... | stateRoot | transactionRoot | receiptRoot

If the request requires proof (verification: proof) the node will provide an Account Proof as part of the in3-
section of the response. This proof section contains the following properties:

* type: constant: accountProof
* block : the serialized blockheader of the requested block (the last parameter of the request)
* signatures : aarray of signatures from the signers (if requested) of the above block.

e accounts: a Object with the addresses of all required accounts (in this case it is only one account) as key
and Proof as value. The DataStructure of the Proof for each account is exactly the same as the result of -
eth_getProof.

e finalityBlocks: a array of blockHeaders which were mined after the requested block. The number of
blocks depends on the request-property £inality. If this is not specified, this property will not be defined.

8.2. eth 77

https://eth.wiki/json-rpc/API#eth_getproof

Incubed Documentation, Release 2.3

Example
Request:
{
"method": "eth_getStorageAt",
"params": [
"0x27a37a1210Df14£7E058393d026e2fB53B7c£f8cl",
"oxo",
"latest"
] ’
"in3": |
"verification":"proof"
}
}
Response:
{
"id": 77,
"jsonrpc": "2.0",
"result": "0x5",
"in3": {
"proof": {
"type": "accountProof",
"block": "0xf90246...",
"signatures": [...],
"accounts": {
"0x27a37al210Df14£f7E058393d026e2fB53B7cf8cl": {
"accountProof": [
"0xf£f90211a0bf....",
"0xf£f90211a092....",
"0xf90211a0d4....",
"0xf90211a084....",
"0x£9019180a0...."
J 14
"address": "0x27a37al1210df14£f7e058393d026e2fb53b7cf8c1",
"balance": "0x11c37937e08000",
"codeHash":
—"0x3b4e727399e02beb6c92e8570bdccdd24b6al3efd47¢89579de5975edd861264e",
"nonce": "Ox1",
"storageHash":
—"0x595b6b8bfaad7a24d0e5725ba86887c81a9d99%ece3afccelfaf508184fcbeb81",
"storageProof": [
{
"key": "OxO0",
"proof": [
"0x£f90191a08e....",
"0x£871808080....",

—"0xe2a0200decd9548b62a8d60345a988386fc84babbc95484008£6362£93160ef3e56305"
1,

"value": "0x5"

(continues on next page)

78 Chapter 8. API RPC

Incubed Documentation, Release 2.3

(continued from previous page)

"currentBlock": 9912897,
"lastNodeList": 8057063

8.2.19 eth_estimateGas

See call proof

8.2.20 eth_call

calls a function of a contract (or simply executes the evm opcodes).
See JSON-RPC-Spec

e cth_call - executes a function and returns the result.

* eth_estimateGas - executes a function and returns the gas used.

Verifying the result of an et h_call is a little bit more complex because the response is a result of executing opcodes
in the vm. The only way to do so is to reproduce it and execute the same code. That’s why a call proof needs to provide
all data used within the call. This means:

¢ All referred accounts including the code (if it is a contract), storageHash, nonce and balance.

* All storage keys that are used (this can be found by tracing the transaction and collecting data based on the
SLOAD-opcode).

» All blockdata, which are referred at (besides the current one, also the BLOCKHASH-opcodes are referring to
former blocks).

For verifying, you need to follow these steps:
1. Serialize all used blockheaders and compare the blockhash with the signed hashes. (See BlockProof)
2. Verify all used accounts and their storage as showed in Account Proof.

3. Create a new VM with a MerkleTree as state and fill in all used value in the state:

// create new state for a vm
const state = new Trie()
const vm = new VM({ state })

// fill in values
for (const adr of Object.keys (accounts)) {
const ac = accounts[adr]

// create an account-object
const account = new Account ([ac.nonce, ac.balance, ac.stateRoot, ac.codeHash])

// 1f we have a code, we will set the code
if (ac.code) account.setCode(state, bytes(ac.code))

// set all storage-values
for (const s of ac.storageProof)
account.setStorage(state, bytes32(s.key), rlp.encode(bytes32(s.value)))

(continues on next page)

8.2. eth 79

https://eth.wiki/json-rpc/API#eth_call
https://eth.wiki/json-rpc/API#eth_estimateGas
https://github.com/ethereumjs/ethereumjs-vm

Incubed Documentation, Release 2.3

(continued from previous page)

// set the account data
state.put (address(adr), account.serialize())

// add listener on each step to make sure it uses only values found in the proof
vm.on('step', ev => {
if (ev.opcode.name === 'SLOAD') {
const contract = toHex(ev.address) // address of the current code
const storageKey = bytes32(ev.stack[ev.stack.length - 1]) // last element,
—on the stack is the key
if (!getStorageValue (contract, storageKey))
throw new Error(incomplete data: missing key storageKey /)

/// ... check other opcodes as well
})

// create a transaction

const tx = new Transaction (txData)
// run it
const result = await vm.runTx({ tx, block: new Block ([block, [1, [11) })

// use the return value
return result.vm.return

In the future, we will be using the same approach to verify calls with ewasm.

If the request requires proof (verification: proof) the node will provide an Call Proof as part of the in3-section
of the response. Details on how create the proof can be found in the CallProof-Chapter. This proof section contains
the following properties:

e type:constant: callProof
* block : the serialized blockheader of the requested block (the last parameter of the request)
* signatures : aarray of signatures from the signers (if requested) of the above block.

* accounts: a Object with the addresses of all accounts required to run the call as keys. This includes also all
storage values (SLOAD) including proof used. The DataStructure of the Proof for each account is exactly the
same as the result of - eth_getProof.

e finalityBlocks: a array of blockHeaders which were mined after the requested block. The number of
blocks depends on the request-property finality. If this is not specified, this property will not be defined.

Request:
{
"method": "eth_call",
"params": [
{
"to": "0x2736D225f85740£42D17987100dc8d58e9e16252",
"data":

—"0x5cf0£3570001L"
br
"latest"
1,
"in3": {

"verification":"proof"

(continues on next page)

80 Chapter 8. API RPC

https://eth.wiki/json-rpc/API#eth_getproof

Incubed Documentation, Release 2.3

(continued from previous page)

Response:

{
"result": "0x0000000000000000000000000...",
"in3": {
"proof": {
"type": "callProof",
"block": "0x£f90215a0c...",
"signatures": [...],
"accounts": {
"0x2736D225£85740£42D17987100dc8d58e9e16252": {
"accountProof": [
"0xf90211a095...",
"0xf90211a010...",
"0xf90211a062...",
"0xf90211a091...",
"0xf90211a03a...",
"0xf901flalOdl...",
"0xf8pb18080808..."
I
"address": "0x2736d225£85740£f42d17987100dc8d58e9e16252",
"balance": "Ox4fffb",
"codeHash":
—"0x2b8bdc59ce78fd8c248da7b5f82709e04£2149¢c39e899¢c4cdf4587063da8dc6o9",
"nonce": "0x1",
"storageHash":
—"0xbf904e79d4ebf8510b2380d81aab081334d79e231295ael1b87f2dd600558f126e",
"storageProof": [
{
"key": "O0x0",
"proof": [
"0xf901flalOdb74...",
"0xf87180808080...",
"0xe2a0200decd9....05"
1,
"value": "0x5"
}I
{
"key":
—"0x290decd9548b62a8d60345a988386£c84babbc95484008£6362£f93160ef3e569",
"proof": [
"0xf901flalOdb74...",
"0xf891a0795a99...",
"0xe2a020ab8540...43"
]I
"value": "0x43"

by

"key":
—"0xaaab8540682e3a537d17674663ea013e92c83£fdd69958£314b4521edb3b76f1a",
"proof": [
"0xf901flal0db747...",
"0x£891808080808...",
"0xf843a0207bd5ee. .. "

(continues on next page)

8.2. eth 81

Incubed Documentation, Release 2.3

(continued from previous page)

]I
"value":
—"0x68747470733a2f2f696e332e736c6f6360b2e69742f6d61696e6e65742f6e642d"
}
1

}

br
"currentBlock": 8040612,
"lastNodeList": 6619795

8.2.21 eth_accounts
8.2.22 eth_sign

8.2.23 eth_sendTransaction

See JSON-RPC-Spec
e eth_accounts - returns the unlocked accounts.
* eth_sign - signs data with an unlocked account.
* eth_sendTransaction - signs and sends a transaction.

Signing is not supported since the nodes are serving a public rpc-enpoint. These methods will return a error. The
client may still support those methods, but handle those requests internally.

8.2.24 eth_sendTransactionAndWait

Sends a Transaction just like eth_sendTransaction but instead of returning the TransactionHash it will wait
until the transaction is mined and return the transaction receipt. See eth_getTransactionReceipt.

8.2.25 eth_sendRawTransaction

See JISON-RPC-Spec
* eth_sendRawTransaction - sends a prviously signed transaction.

This Method does not require any proof. (even if requested). Clients must at least verify the returned transactionHash
by hashing the rawTransaction data. To know whether the transaction was actually broadcasted and mined, the client
needs to run a second request eth_getTransactionByHash which should contain the blocknumber as soon as
this is mined.

8.3 ipfs

A Node supporting IPFS must support these 2 RPC-Methods for uploading and downloading IPFS-Content. The node
itself will run a ipfs-client to handle them.

82 Chapter 8. API RPC

https://eth.wiki/json-rpc/API#eth_accounts
https://eth.wiki/json-rpc/API#eth_sign
https://eth.wiki/json-rpc/API#eth_sendTransaction
https://eth.wiki/json-rpc/API#eth_getTransactionReceipt
https://eth.wiki/json-rpc/API#eth_sendRawTransaction

Incubed Documentation, Release 2.3

Fetching ipfs-content can be easily verified by creating the ipfs-hash based on the received data and comparing it to
the requested ipfs-hash. Since there is no chance of manipulating the data, there is also no need to put a deposit or
convict a node. That’s why the registry-contract allows a zero-deposit fot ipfs-nodes.

8.3.1 ipfs_get
Fetches the data for a requested ipfs-hash. If the node is not able to resolve the hash or find the data a error should be
reported.
No proof or verification needed on the server side.
Parameters:
1. ipfshash: string - the ipfs multi hash
2. encoding: the encoding used for the response. (hex , base64 or ut £8)
Returns:
the content matching the requested hash.

Request:

{
"method":"ipfs_get",
"params": [
"OmSepGsypERJg71BSmM4Cjg7 j8tyAUNCw6ZDTeNdEBRUssD",
Hutf8ll

Response:

{
"id": 1,
"result": "I love Incubed",

8.3.2 ipfs_put

Stores ipfs-content to the ipfs network. Important! As a client there is no garuantee that a node made this content
available. (just like eth_sendRawTransaction will only broadcast it). Even if the node stores the content there
is no gurantee it will do it forever.

Parameters:

1. data: string - the content encoded with the specified encoding.

2. encoding: the encoding used for the response. (hex , base64 or ut£8)
Returns:
the ipfs multi hash

Request:

{
"method":"ipfs_put",
"params": [

(continues on next page)

8.3. ipfs 83

Incubed Documentation, Release 2.3

(continued from previous page)

"I love Incubed",
"ut£8"

Response:

{
mnigv. 1,
"result": "OmSepGsypERJgq71BSm4Cjg7j8tyAUNnCw6ZDTeNdE8RUssD",

8.4 btc

For bitcoin incubed follows the specification as defined in https://bitcoincore.org/en/doc/0.18.0/. Internally the in3-
server will add proofs as part of the responses. The proof data differs between the methods. You will read which proof
data will be provided and how the data can be used to prove the result for each method.

Proofs will add a special in3-section to the response containing a proo f- object. This object will contain parts or all
of the following properties:

* block

* final

¢ txIndex

* merkleProof

* chtx

* cbtxMerkleProof

8.4.1 btc_getblockheader

Returns data of block header for given block hash. The returned level of details depends on the argument verbosity.
Parameters:
1. hash : (string, required) The block hash

2. verbosity : (number or boolean, optional, default=1) O or false for the hex-encoded data, 1 or true for a json
object

3. in3.finality : (number, required) defines the amount of finality headers

4. in3.verification : (string, required) defines the kind of proof the client is asking for (must be never or
proof)

5. in3.preBIP34 : (boolean, required) defines if the client wants to verify blocks before BIP34 (height <
227836)

Returns:
* verbose 0 or false: a hex string with 80 bytes representing the blockheader
* verbose 1 or t rue: an object representing the blockheader:

— hash: hex - the block hash (same as provided)

84 Chapter 8. API RPC

https://bitcoincore.org/en/doc/0.18.0/

Incubed Documentation, Release 2.3

— confirmations: number - The number of confirmations, or -1 if the block is not on the main chain
— height: number : The block height or index

— version: number - The block version

— versionHex: hex - The block version formatted in hexadecimal

— merkleroot: hex - The merkle root (32 bytes)

— time: number - The block time in seconds since epoch (Jan 1 1970 GMT)

— mediantime: number - The median block time in seconds since epoch (Jan 1 1970 GMT)

— nonce: number - The nonce

— bits: hex - The bits (4 bytes as hex) representing the target

— difficulty: number - The difficulty

— chainwork: hex - Expected number of hashes required to produce the current chain (in hex)
— nTx: number - The number of transactions in the block.

— previousblockhash: hex - The hash of the previous block

nextblockhash: hex - The hash of the next block

The proof-object contains the following properties:
* for blocks before BIP34 (height < 227,836) and in3.preBIP34 = false

— final: hex - the finality headers, which are hexcoded bytes of the following headers (80 bytes each)
concatenated, the number depends on the requested finality (finality-property in the in3-section of
the request)

* for blocks before BIP34 (height < 227,836) and in3.preBIP34 =true

— final: hex - the finality headers, which are hexcoded bytes of the following headers (80 bytes each)
concatenated up to the next checkpoint (maximum of 200 finality headers, since the distance between
checkpoints = 200)

— height: number - the height of the block (block number)
* for blocks after BIP34 (height >= 227,836), the value of in3.preBIP34 does not matter

— final: hex - the finality headers, which are hexcoded bytes of the following headers (80 bytes each)
concatenated, the number depends on the requested finality (finality-property in the in3-section of
the request)

— cbtx: hex - the serialized coinbase transaction of the block (this is needed to get the verified block
number)

— cbtxMerkleProof: hex - the merkle proof of the coinbase transaction, proofing the correctness of the
cbtx.

Old blocks (height < 227,836) with in3.preBIP 34 disabled cannot be verified (proving the finality does not provide
any security as explained in preBIP34 proof). Old blocks with in.preBIP34 enabled can be verified by performing
a preBIP34 proof. Verifying newer blocks requires multiple proofs. The finality headers from the £inal-field will be
used to perform a finality proof. To verify the block number we are going to perform a block number proof using the
coinbase transaction (cbt x-field) and the merkle proof for the coinbase transaction (cbtxMerkleProof-field).

Example

Request:

8.4. btc 85

bitcoin.html#id1
bitcoin.html#id1
bitcoin.html#finality-proof
bitcoin.html#block-number-proof
bitcoin.html#transaction-proof-merkle-proof

Incubed Documentation, Release 2.3

"jsonrpc": "2.0",
"id":1,
"method": "getblockheader",
"params": ["000000000000000000103b2395£6cd94221b10d02eb9%be5850303c0534307220",
— true],
"in3":{
"finality":8,
"verification":"proof"

"preBIP34": true

Response:
{
midv. 1 ,
"jsonrpc": "2.0",
"result": {
"hash": "000000000000000000103b2395f6cd94221b10d02eb9%be5850303c0534307220",
"confirmations": 8268,

"height": 624958,

"version": 536928256,

"versionHex": "2000e000",

"merkleroot":
—"d786a334ea8c65f39272d5b9%0e505ac3170£39048420bd52525538a93770b359¢cb",

"time": 1586333924,

"mediantime": 1586332639,

"nonce": 1985217615,

"bits": "17143b41",

"difficulty": 13912524048945.91,

"chainwork™: "000e4c88b66c5ee78deff0d494
c_’"l

"nTx": 33,

"previousblockhash":
—"00000000000000000013cba040837778744ce66961lcfcf2e7c34bb3d194c7£49",

"nextblockhash":
—"0000000000000000000c799dc0e36302db7£fbb471711£140dc308508ef19e343"

by

"in3": {
"proof": {
"final": "0x00e0££2720723034053c305058beb92ed010...276470",
"cbtx": "0x0100000000010100000000000000000000000...39da2fc",
"cbtxMerkleProof": "0x6a8077bb4ce76b71d7742ddd368770279%9a64667b...52e688"

8.4.2 btc_getblock

Returns data of block for given block hash. The returned level of details depends on the argument verbosity.
Parameters:
1. blockhash : (string, required) The block hash

2. verbosity : (number or boolean, optional, default=true) O or false for hex-encoded data, 1 or true for a json

86 Chapter 8. API RPC

Incubed Documentation, Release 2.3

object, and 2 for json object with transaction data

3. in3.finality : (number, required) defines the amount of finality headers
4. in3.verification : (string, required) defines the kind of proof the client is asking for (must be never or
proof)
5. in3.preBIP34 : (boolean, required) defines if the client wants to verify blocks before BIP34 (height <
227836)
Returns

* verbose 0 or false : a string that is serialized, hex-encoded data for block hash

* verbose 1 or true: an object representing the block:

hash: hex - the block hash (same as provided)

confirmations : number - The number of confirmations, or -1 if the block is not on the main chain
size:

strippedsize:

weight:

height: number - The block height or index

version: number - The block version

versionHex: hex - The block version formatted in hexadecimal

merkleroot: hex - The merkle root (32 bytes)

tx: array of string - The transaction ids

time: number - The block time in seconds since epoch (Jan 1 1970 GMT)

mediantime: number - The median block time in seconds since epoch (Jan 1 1970 GMT)
nonce: number - The nonce

bits: hex - The bits (4 bytes as hex) representing the target

difficulty: number - The difficulty

chainwork: hex - Expected number of hashes required to produce the current chain (in hex)
nTx: number - The number of transactions in the block.

previousblockhash: hex - The hash of the previous block

nextblockhash: hex - The hash of the next block

* verbose 2: an object representing the block with information about each transaction:

.. .. same output as verbosity=1

tx: array of objects - The transactions in the format of the getrawtransaction-RPC. t x result is different
from verbosity=1

.. .. same output as verbosity=1

The proof-object contains the following properties:

* for blocks before BIP34 (height < 227836) and in3.preBIP34 = false

final: hex - the finality headers, which are hexcoded bytes of the following headers (80 bytes each)
concatenated, the number depends on the requested finality (finality-property in the in3-section of
the request)

8.4. btc

87

rpc.html#btc_getrawtransaction

Incubed Documentation, Release 2.3

* for blocks before BIP34 (height < 227836) and in3.preBIP34 = true

— final: hex - the finality headers, which are hexcoded bytes of the following headers (80 bytes each)
concatenated up to the next checkpoint (maximum of 200 finality headers, since the distance between
checkpoints = 200)

— height: number - the height of the block (block number)
* for blocks after BIP34 (height >= 227836), the value of in3.preBIP34 does not matter

— final: hex - the finality headers, which are hexcoded bytes of the following headers (80 bytes each)
concatenated, the number depends on the requested finality (finality-property in the in3-section of
the request)

— cbtx: hex - the serialized coinbase transaction of the block (this is needed to get the verified block
number)

— cbtxMerkleProof: hex - the merkle proof of the coinbase transaction, proofing the correctness of the
cbtx.

Old blocks (height < 227,836) with in3 . preBIP 34 disabled cannot be verified (proving the finality does not provide
any security as explained in preBIP34 proof). Old blocks with in.preBIP34 enabled can be verified by performing
a preBIP34 proof. Verifying newer blocks requires multiple proofs. The finality headers from the £inal-field will be
used to perform a finality proof. To verify the block number we are going to perform a block number proof using the
coinbase transaction (cbt x-field) and the merkle proof for the coinbase transaction (cbt xMerkleProof-field).

Example
Request:
{
"jsonrpc": "2.0",
"id":1,
"method": "getblock",
"params": ["00000000000000000000140a7289f3aada855d£d23b0bb13bb5502b0ca60cdd7",
—true],
"in3":{
"finality":8,
"verification":"proof",
"preBIP34": true
}
}
Response:
{
"id": 1,
"jsonrpc": "2.0",
"result": {
"hash": "00000000000000000000140a7289f3aada855dfd23b0bb13bb5502b0ca60cdd7",
"confirmations": 8226,
"strippedsize": 914732,
"size": 1249337,
"weight": 3993533,
"height": 625000,
"version": 1073733632,
"versionHex": "3fffe000",
"merkleroot":
—"4d51591497£1d646070£9f9fdeb50dc338e2a8bb9abcb721c55£452938165££8",
"tx"e [

(continues on next page)

88 Chapter 8. API RPC

bitcoin.html#id1
bitcoin.html#id1
bitcoin.html#finality-proof
bitcoin.html#block-number-proof
bitcoin.html#transaction-proof-merkle-proof

Incubed Documentation, Release 2.3

(continued from previous page)

"d79££c80e07£e9e0083319600c59d47afe69995b1357bebebdbal035675780290",

"6456819bfa0190a30788620153ea9a361083cb888b3662e2ff39c0f7adf16919"
J 14
"time": 1586364107,
"mediantime": 1586361287,
"nonce": 3963275925,

"bits": "171320bc",
"difficulty": 14715214060656.53,
"chainwork": "000e4ebal824303796d776922b

"nTx": 2626,
"previousblockhash":
—"000000000000000000068fblddc43ca83bcdbfb23444£7236992cfc565d40e08",
"nextblockhash":
—"000000000000000000103d94671593dab669025fecf7005de38dc2b2fa208dc7"
}l

"in3": |
"proof": {
"final": "0x00e00020d7cd60cab00255bbl3bbb023fd5d85daaa. . .bbd6e0f",
"cbtx": "0x0100000000010100000000000000000000000000000000. ..4ddd5c",
"cbtxMerkleProof": "0xa22e7468d9pf239167£f£f6£97d066818b4a5278d29fcl13dbchbd5.
—..4b2f3a"

}

8.4.3 btc_getrawtransaction

Returns the raw transaction data. The returned level of details depends on the argument verbosity.
Parameters:
1. txid: (string, required) The transaction id

2. verbosity : (number or boolean, optional, default=1) O or false for the hex-encoded data for txid, 1 or true
for a json object with information about txid

3. blockhash : (string, optional) The block in which to look for the transaction
4. in3.finality : (number, required) defines the amount of finality headers

5. in3.verification: (string, required) defines the kind of proof the client is asking for (must be never or
proof)

6. in3.preBIP34 : (boolean, required) defines if the client wants to verify blocks before BIP34 (height <
227836)

Returns:

» verbose 0 or false: a string that is serialized, hex-encoded data for t xid

verbose 1 or false: an object representing the transaction:

— in_active_chain: boolean - Whether specified block is in the active chain or not (only present with
explicit “blockhash” argument)

— hex: string - The serialized, hex-encoded data for t xid

8.4. btc 89

Incubed Documentation, Release 2.3

— txid: string - The transaction id (same as provided)

— hash: string - The transaction hash (differs from txid for witness transactions)

— size: number - The serialized transaction size

— vsize: number - The virtual transaction size (differs from size for witness transactions)

— weight: number - The transaction’s weight (between vsize*4-3 and vsize*4)

— version: number - The version

— locktime: number - The lock time

— vin: array of json objects

%

%

%

*k

txid: number - The transaction id
vout: number
scriptSig: json object - The script
- asm: string - asm
- hex: string - hex
sequence: number - The script sequence number

txinwitness: array of string - hex-encoded witness data (if any)

— vout: array of json objects

%

*k

%

value: number - The value in BTC
n: number - index
scriptPubKey: json object
- asm: string - asm
- hex: string - hex
- regSigs: number - The required sigs
- type: string - The type, eg ‘pubkeyhash’

- addresses: json array of strings (each representing a bitcoin adress)

blockhash: string - the block hash

— confirmations: number - The confirmations

blocktime: number - The block time in seconds since epoch (Jan 1 1970 GMT)

— time: number - Same as “blocktime”

The proof-object contains the following properties:

* for blocks before BIP34 (height < 227836) and in3.preBIP34 = false

— block: hex - a hex string with 80 bytes representing the blockheader

— final: hex - the finality headers, which are hexcoded bytes of the following headers (80 bytes each)
concatenated, the number depends on the requested finality (finality-property in the in3-section of

the request)

— txIndex: number - index of the transaction (txIndex=0 for coinbase transaction, necessary to cre-

ate/verify the merkle proof)

90

Chapter 8. API RPC

Incubed Documentation, Release 2.3

— merkleProof: hex - the merkle proof of the requested transaction, proving the correctness of the trans-
action

* for blocks before BIP34 (height < 227836) and in3.preBIP34 =true
— block: hex - a hex string with 80 bytes representing the blockheader

— final: hex - the finality headers, which are hexcoded bytes of the following headers (80 bytes each)
concatenated up to the next checkpoint (maximum of 200 finality headers, since the distance between
checkpoints = 200)

— txIndex: number - index of the transaction (t xIndex=0 for coinbase transaction, necessary to cre-
ate/verify the merkle proof)

— merkleProof: hex - the merkle proof of the requested transaction, proving the correctness of the trans-
action

— height: number - the height of the block (block number)
* for blocks after BIP34 (height >= 227836), the value of in3.preBIP34 does not matter
— block: hex - a hex string with 80 bytes representing the blockheader

— final: hex - the finality headers, which are hexcoded bytes of the following headers (80 bytes each)
concatenated, the number depends on the requested finality (finality-property in the in3-section of
the request)

— txIndex: number - index of the transaction (txIndex=0 for coinbase transaction, necessary to cre-
ate/verify the merkle proof)

— merkleProof: hex - the merkle proof of the requested transaction, proving the correctness of the trans-
action

— cbtx: hex - the serialized coinbase transaction of the block (this is needed to get the verified block
number)

— cbtxMerkleProof: hex - the merkle proof of the coinbase transaction, proving the correctness of the
cbtx

Transactions of old blocks (height < 227836) with in3.preBIP34 disabled cannot be verified (proving the finality
does not provide any security as explained in preBIP34 proof and relying on the merkle proof is only possible when the
block is final). Transactions of old blocks with in3.preBIP34 enabled can be verified by performing a preBIP34
proof and a merkle proof. Verifying newer blocks requires multiple proofs. The block header from the b1lock-field
and the finality headers from the final-field will be used to perform a finality proof. By doing a merkle proof
using the txIndex-field and the merkleProof-field the correctness of the requested transation can be proven.
Furthermore we are going to perform a block number proof using the coinbase transaction (cbtx-field) and the
merkle proof for the coinbase transaction (cbtxMerkleProof-field).

Example
Request:
{

"Jsonrpc": "2.0",

"id":1,

"method": "getrawtransaction",

"params": ["£3c06el17b04ef748ce6604ad68e509f68ca96914b57c2118albb%al09alo4ddat",
true,
"000000000000000000103b2395£6cd94221b10d02eb9%be5850303c0534307220"],

"in3":{

"finality":8,
"verification":"proof",
(continues on next page)
8.4. btc 91

bitcoin.html#id1
bitcoin.html#id1
bitcoin.html#id1
bitcoin.html#transaction-proof-merkle-proof
bitcoin.html#finality-proof
bitcoin.html#transaction-proof-merkle-proof
bitcoin.html#block-number-proof
bitcoin.html#transaction-proof-merkle-proof

Incubed Documentation, Release 2.3

(continued from previous page)

"preBIP34": true

Response:
{
"id": 1,
"Jsonrpc": "2.0",
"result": {
"in_active_chain": true,
"txid": "f3c06el7b04ef748ce6604ad68e50b9f68ca96914b57¢c2118albb9%a09%al94ddaf",
"hash": "f3c06el7b04ef748ce6604ad68e5b9f68ca%96914b57¢c2118albb%9a09%9al94ddaft",
"version": 1,
"size": 518,
"vsize": 518,
"weight": 2072,
"locktime": O,
"vin": [
{
"txid":
—"0a74f6e5f990c69af80da9f0d9878eabafbfb5fbb2d43£f1££899%bcdd641a098c",
"yvout": O,
"scriptSig": {
"asm": "30440220481f2b3ad49b202e26c73aclb7bce022e4a74af£f08473228cc.
—..254874",
"hex": "4730440220481f2b3a49p202e26c73aclb7bce022e4a74aff08473228.
—..254874"
by
"sequence": 4294967295
} 4
{
"txid":
—"869c5e82d4dfc3139c8al53d2eel26e30a467cf791718e6ea64120e5b19e5044",
"vout": O,
"scriptSig": {
"asm": "3045022100ae5bd019a63aed404b743c9ebecc77fbaab57e481f745e4. .
—.£3255d",
"hex": "483045022100ae5bd019%a63aed404b743c9%ebcc77fbaa657e481£745. .
—.£32554"
}y
"sequence": 4294967295
} ’
{
"txid":
—"8a03d29%alb8aed408c94a2aelb5bef8329bc3d6b04c063d36b2e8c997273fa8eff",
"yvout": 1,
"scriptSig": {
"asm": "304402200bf7c5c7caecd78bf6d7e9¢c5127¢71505034302056d1284. ..
—0045da",
"hex": "47304402200bf7c5c7caecd78bf6d7e9¢c5127¢71505034302056d12. ..
—0045da"
} ’
"sequence": 4294967295
}
] r
"vout": [

(continues on next page)

92 Chapter 8. API RPC

Incubed Documentation, Release 2.3

(continued from previous page)

"value": 0.00017571,
"n": O,
"scriptPubKey": {
"asm": "OP_DUP OP_HASHI160,
—53196749085367db9443ef9a5aec25cf0bdceedf OP_EQUALVERIFY OP_CHECKSIG",
"hex": "76a91453196749085367db9%9443ef9%abaec25cf0bdceedf88ac”,
"regSigs": 1,
"type": "pubkeyhash",
"addresses": [
"18aPWzBTglnzs90860Com3BQbxZWmV82UU"

"value": 0.00915732,

"n": 1,
"scriptPubKey": {
"asm": "OP_HASH160 8bb2b4b848d0b6336cc6d4ea57ae989630f447cba OP_
—EQUAL",
"hex": "a9148bb2b4b848d0b6336cc64ea57ae989630f447cbas877",
"regSigs": 1,
"type": "scripthash",
"addresses": [
"3ERfvuzAYPPpACivhlJInwYbBdrAjupTzbw"
1
}
}
I
"hex": "01000000038c091a64ddbc99f81f3fd4b2fbb5bfafa68e8...000000"
"blockhash": "000000000000000000103b2395f6cd94221b10d02eb9%0e5850303c0534307220
‘—’"l
"confirmations": 15307,
"time": 1586333924,
"blocktime": 1586333924
}I
"in3": {
"proof": {
"block": "0x00e00020497f4c193dbb347c2ecfcf6169e64c747877...045476",
"final": "0x00e0£f£f2720723034053c305058beb92ed0101b2294cd...276470",
"txIndex": 7,
"merkleProof": "0x348d4bb04943400a80fl62cdef6d4b746bcdaf0...52e688",
"cbtx": "0x010000000001010000000000000000000000000000000...9da2fc",
"cbtxMerkleProof": "0x6a8077bbdce76b71d7742ddd368770279%a...52e688"

8.4.4 btc_getblockcount

Returns the number of blocks in the longest blockchain.
Parameters:

1. in3.finality : (number, required) defines the amount of finality headers

8.4. btc 93

Incubed Documentation, Release 2.3

2. in3.verification : (string, required) defines the kind of proof the client is asking for (must be never or
proof)

Returns: Since we can’t prove the finality of the latest block we consider the current block count - amount
of finality(setin in3.finality-field) as the latest block. The number of this block will be returned. Setting
in3.finality=0 will return the actual current block count.

The proof-object contains the following properties:
* block: hex - a hex string with 80 bytes representing the blockheader

e final: hex - the finality headers, which are hexcoded bytes of the following headers (80 bytes each) concate-
nated, the number depends on the requested finality (finality-property in the in3-section of the request)

e cbtx: hex - the serialized coinbase transaction of the block (this is needed to get the verified block number)
e cbtxMerkleProof: hex - the merkle proof of the coinbase transaction, proving the correctness of the cbt x

The server is not able to prove the finality for the latest block (obviously there are no finality headers available yet).
Instead the server will fetch the number of the latest block and subtracts the amount of finality headers (set in in3.
finality-field) and returns the result to the client (the result is considered as the latest block number). By doing so
the server is able to provide finality headers. The block header from the b1 ock-field and the finality headers from the
final-field will be used to perform a finality proof. Having a verified block header (and therefore a verified merkle
root) enables the possibility of a block number proof using the coinbase transaction (cbt x-field) and the merkle proof
for the coinbase transaction (cbtxMerkleProof-field).

The client can set in3.finality equal to O to get the actual latest block number. Caution: This block is not final
and could no longer be part of the blockchain later on due to the possibility of a fork. Additionally, there may already
be a newer block that the server does not yet know about due to latency in the network.

Example

The actual latest block is block #640395 and in3. finality is setto 8. The server is going to calculate 640395
- 8 and returns 640387 as the latest block number to the client. The headers of block 640388..640395 will be
returned as finality headers.

Request:

{

"jsonrpc": "2.0",

"id":1,

"method": "getblockcount",

"params": [],

"in3":{
"finality":8,
"verification":"proof"

Response:

{
"id": 1,
"Jsonrpc": "2.0",
"result": 640387,
"in3": {
"proof": {
"block": "0x0000e020bd3eechbd741522e1aa78cd7b37574459050293%aef9%b...9c8b18

"final": "0x00008020f6ldfccd47a6daed717012221855196dee02d844ebb9c...774f4c

(continues on next page)

94 Chapter 8. API RPC

bitcoin.html#finality-proof
bitcoin.html#block-number-proof
bitcoin.html#transaction-proof-merkle-proof

Incubed Documentation, Release 2.3

(continued from previous page)

"cbtx": "0x02000000000101000000000000000000000000000000000000000...000000

"cbtxMerkleProof": "0xa3d607b274770911e53£06dbdb76440580££968239...0ba297"

8.4.5 btc_getbestblockhash

Returns the hash of the best (tip) block in the longest blockchain.
Parameters:
1. in3.finality : (number, required) defines the amount of finality headers

2. in3.verification : (string, required) defines the kind of proof the client is asking for (must be never or
proof)

Returns: Since we can’t prove the finality of the latest block we consider the current block count - amount
of finality (setin in3.finality-field) as the latest block. The hash of this block will be returned. Setting
in3.finality=0 will return will return the hash of the actual latest block.

The proof-object contains the following properties:
* block: hex - a hex string with 80 bytes representing the blockheader

e final: hex - the finality headers, which are hexcoded bytes of the following headers (80 bytes each) concate-
nated, the number depends on the requested finality (finality-property in the in3-section of the request)

* cbtx: hex - the serialized coinbase transaction of the block (this is needed to get the verified block number)
e cbtxMerkleProof: hex - the merkle proof of the coinbase transaction, proving the correctness of the cbt x

The server is not able to prove the finality for the latest block (obviously there are no finality headers available yet).
Instead the server will fetch the number of the latest block and subtracts the amount of finality headers (set in in3.
finality-field) and returns the hash of this block to the client (the result is considered as the latest block hash).
By doing so the server is able to provide finality headers. The block header from the block-field and the finality
headers from the £ inal-field will be used to perform a finality proof. Having a verified block header (and therefore a
verified merkle root) enables the possibility of a block number proof using the coinbase transaction (cbt x-field) and
the merkle proof for the coinbase transaction (cbt xMerkleProof-field).

The client can set in3.finality equal to O to get the actual latest block hash. Caution: This block is not final and
could no longer be part of the blockchain later on due to the possibility of a fork. Additionally, there may already be a
newer block that the server does not yet know about due to latency in the network.

Example

The actual latest block is block #640395 and in3. finality is setto 8. The server is going to calculate 640395
- 8 and returns the hash of block #640387 to the client. The headers of block 640388..640395 will be returned as
finality headers.

Request:
{
"Jsonrpc": "2.0",
"id":1,
"method": "getbestblockhash",
"params": [],
"in3":{

(continues on next page)

8.4. btc 95

bitcoin.html#finality-proof
bitcoin.html#block-number-proof
bitcoin.html#transaction-proof-merkle-proof

Incubed Documentation, Release 2.3

(continued from previous page)

"finality":8,

"verification":"proof"
}
}
Response:
{
"id": 1,
"jsonrpc": "2.0",
"result": "000000000000000000039cbb4e842de0de9651852122b117d7ae6d7ac4fcldfe"”,
"in3": {
"proof": {
"block": "0x0000e020bd3eecbd741522elaa78cd7b37574459050293%aef9%b...9c8b18",
"final": "0x00008020f6ldfcc47a6daed717012221855196dee02d844ebb9...774f4c",
"cbtx": "0x0200000000010100000000000000000000000000000000000000...000000",
"cbtxMerkleProof": "0xa3d6070274770911e53£06dbdb76440580££96823...0ba297"

8.4.6 btc_getdifficulty

Returns the proof-of-work difficulty as a multiple of the minimum difficulty.
Parameters:

1. blocknumber : (string or number, optional) Can be the number of a certain block to get its difficulty. To get
the difficulty of the latest block use latest, earliest, pending or leave params empty (Hint: Latest
block always means actual latest block minus in3.finality)

2. in3.finality : (number, required) defines the amount of finality headers

3. in3.verification : (string, required) defines the kind of proof the client is asking for (must be never or
proof)

4. in3.preBIP34 : (boolean, required) defines if the client wants to verify blocks before BIP34 (height <
227836)

Returns:
* blocknumber is a certain number: the difficulty of this block

* blocknumber is latest, earliest, pending or empty: the difficulty of the latest block (actual
latest blockminus in3.finality)

The proof-object contains the following properties:
* for blocks before BIP34 (height < 227836) and in3.preBIP34 = false
— block: hex - a hex string with 80 bytes representing the blockheader

— final: hex - the finality headers, which are hexcoded bytes of the following headers (80 bytes each)
concatenated, the number depends on the requested finality (finality-property in the in3-section of
the request)

* for blocks before BIP34 (height < 227836) and in3.preBIP34 = true

— block: hex - a hex string with 80 bytes representing the blockheader

96 Chapter 8. API RPC

Incubed Documentation, Release 2.3

— final: hex - the finality headers, which are hexcoded bytes of the following headers (80 bytes each)
concatenated up to the next checkpoint (maximum of 200 finality headers, since the distance between
checkpoints = 200)

— height: number - the height of the block (block number)
* for blocks after BIP34 (height >= 227836), the value of in3.preBIP34 does not matter
— block: hex - a hex string with 80 bytes representing the blockheader

— final: hex - the finality headers, which are hexcoded bytes of the following headers (80 bytes each)
concatenated, the number depends on the requested finality (finality-property in the in3-section of
the request)

— cbtx: hex - the serialized coinbase transaction of the block (this is needed to get the verified block
number)

— cbtxMerkleProof: hex - the merkle proof of the coinbase transaction, proving the correctness of the
cbtx

In case the client requests the diffictuly of a certain block (b1 ocknumber is a certain number) the b1 ock-field will
contain the block header of this block and the final-field the corresponding finality headers. For old blocks (height
< 227,836) with in3.preBIP34 disabled the result cannot be verified (proving the finality does not provide any
security as explained in preBIP34 proof). The result of old blocks with in.preBIP34 enabled can be verified by
performing a preBIP34 proof. In case the client requests the difficulty of the latest block the server is not able to
prove the finality for this block (obviously there are no finality headers available yet). The server considers the latest
block minus in3.finality as the latest block and returns its difficulty. The result can be verified by performing
multiple proof. The block header from the b1lock-field and the finality headers from the £inal-field will be used to
perform a finality proof. Having a verified block header (and therefore a verified merkle root) enables the possibility
of a block number proof using the coinbase transaction (cbt x-field) and the merkle proof for the coinbase transaction
(cbtxMerkleProof-field).

The result itself (the difficulty) can be verified in two ways:

* by converting the difficulty into a target and check whether the block hash is lower than the target (since we
proved the finality we consider the block hash as verified)

* by converting the difficulty and the bits (part of the block header) into a target and check if both targets are
similar (they will not be equal since the target of the bits is not getting saved with full precision - leading bytes
are equal)

Example

Request:

{

"jsonrpc": "2.0",

"id":1,

"method": "getdifficulty",

"params": [631910],

"in3": {
"finality":8,
"verification
"preBIP34": true

proof",

}

Response:

{
"id": 1,

(continues on next page)

8.4. btc 97

bitcoin.html#id1
bitcoin.html#id1
bitcoin.html#finality-proof
bitcoin.html#block-number-proof
bitcoin.html#transaction-proof-merkle-proof

Incubed Documentation, Release 2.3

(continued from previous page)

"Jjsonrpc": "2.0",

"result": 15138043247082.88,

"in3": {

"proof": {

"block": "0x00000020aa7531df9%e14536£3c92fb9479cfc4025...eebl5d",
"final": "O0x0000f£f3fdfdbl13£f86b9%bce93f6clllfeccecfdeb5...3c5846",
"cbtx": "0x010000000001010000000000000000000000000000...000000",
"cbtxMerkleProof": "0x48de085910879b0£f201b320a7dbcb65...002414"

8.4.7 btc_proofTarget

Whenever the client is not able to trust the changes of the target (which is the case if a block can’t be found in the
verified target cache and the value of the target changed more than the client’s limit max_diff) he will call this
method. It will return additional proof data to verify the changes of the target on the side of the client. This is not a
standard Bitcoin rpc-method like the other ones, but more like an internal method.

Parameters:

1.

A

o

target_dap: (string or number, required) the number of the difficulty adjustment period (dap) we are looking
for

verified_dap : (string or number, required) the number of the closest already verified dap
max_diff : (string or number, required) the maximum target difference between 2 verified daps
max_dap : (string or number, required) the maximum amount of daps between 2 verified daps

limit : (string or number, optional) the maximum amount of daps to return (0 = no limit) - this is important
for embedded devices since returning all daps might be too much for limited memory

in3.finality : (number, required) defines the amount of finality headers

in3.verification : (string, required) defines the kind of proof the client is asking for (must be never or
proof)

in3.preBIP34 : (boolean, required) defines if the client wants to verify blocks before BIP34 (height <
227836)

Hints:

difference between target_dap and verified_dap should be greater than 1
target_dap and verified_dap have to be greater than 0

limit will be set to 40 internaly when the parameter is equal to O or greater than 40
max_dap can’t be equal to 0

max_diff equal to 0 means no tolerance regarding the change of the target - the path will contain every dap
between target_dap and verified_dap (under consideration of 1imit)

total possible amount of finality headers (in3.finaliy * 1imit) can’t be greater than 1000

changes of a target will always be accepted if it decreased from one dap to another (i.e. difficulty to mine a
block increased)

98

Chapter 8. API RPC

Incubed Documentation, Release 2.3

* in case a dap that we want to verify next (i.e. add it to the path) is only 1 dap apart from a verified dap (i.e.
verified_dap or latest dap of the path) but not within the given limit (max_diff) it will still be added to
the path (since we can’t do even smaller steps)

Returns: A path of daps from the verified_dap to the target_dap which fulfils the conditions of max_diff,
max_dap and 1imit. Each dap of the path is a dap-object with corresponding proof data.

The dap-object contains the following properties:

* for blocks before BIP34 (height < 227836) and in3.preBIP34 = false

dap: number - the numer of the difficulty adjustment period
block: hex - a hex string with 80 bytes representing the (always the first block of a dap)

final: hex - the finality headers, which are hexcoded bytes of the following headers (80 bytes each)
concatenated, the number depends on the requested finality (finality-property in the in3-section of
the request)

* for blocks before BIP34 (height < 227836) and in3.preBIP34 = true

dap: number - the numer of the difficulty adjustment period
block: hex - a hex string with 80 bytes representing the blockheader

final: hex - the finality headers, which are hexcoded bytes of the following headers (80 bytes each)
concatenated up to the next checkpoint (maximum of 200 finality headers, since the distance between
checkpoints = 200)

height: number - the height of the block (block number)

* for blocks after BIP34 (height >= 227836), the value of in3.preBIP34 does not matter

dap: number - the numer of the difficulty adjustment period
block: hex - a hex string with 80 bytes representing the (always the first block of a dap)

final: hex - the finality headers, which are hexcoded bytes of the following headers (80 bytes each)
concatenated, the number depends on the requested finality (finality-property in the in3-section of
the request)

cbtx: hex - the serialized coinbase transaction of the block (this is needed to get the verified block
number)

cbtxMerkleProof: hex - the merkle proof of the coinbase transaction, proving the correctness of the
cbtx

The goal is to verify the target of the target_dap. We will use the daps of the result to verify the target step by
step starting with the verified_dap. For old blocks (height < 227,836) with in3.preBIP34 disabled the target
cannot be verified (proving the finality does not provide any security as explained in preBIP34 proof). For old blocks
with in.preBIP34 enabled the block header can be verified by performing a preBIP34 proof. Verifying newer
blocks requires multiple proofs. The block header from the block-field and the finality headers from the final-
field will be used to perform a finality proof. Having a verified block header allows us to consider the target of the
block header as verified. Therefore, we have a verified target for the whole dap. Having a verified block header
(and therefore a verified merkle root) enables the possibility of a block number proof using the coinbase transaction
(cbtx-field) and the merkle proof for the coinbase transaction (cbtxMerkleProof-field). This proof is needed to
verify the dap number (dap). Having a verified dap number allows us to verify the mapping between the target and
the dap number.

Example

Request:

8.4. btc

99

bitcoin.html#id1
bitcoin.html#id1
bitcoin.html#finality-proof
bitcoin.html#block-number-proof
bitcoin.html#transaction-proof-merkle-proof

Incubed Documentation, Release 2.3

"jsonrpc": "2.0",
llid": l,
"method": "btc_proofTarget",
"params": [230,200,5,5,15],
"in3ll . {
"finality" : 8,
"verification":"proof",

"preBIP34": true

Response:
{
"id": 1,
"Jsonrpc": "2.0",
"result": [
{
"dap": 205,
"block": "0x04000000e62ef28cb9793f4f9cd2a67a58c1e7b593129b9%b...0ab284",
"final": "0x04000000cc69b68b702321adf4b0c485fdbl1f3d6cldddl40...090a5b",
"cbhbtx": "0x01000000...1485ce370573be63d7cclb9efbad3489eb57¢c8...000000",
"cbtxMerkleProof": "Oxc72dffclcbdcbeab960d0d2bdb80012acf7f9c...affcf4d"
} ’
{
"dap": 210,
"block": "0x0000003021622c26ad4e62cafa8ed34c7e083f540bccc8392...b374ce",
"final": "0x00000020858f8e5124cd516f4d5e6a078f7083c12c48e8cd...308c3d",
"cbhtx": "0x01000000...c075061b4b6e434d696e657242332d50314861...000000",
"cbtxMerkleProof": "0xf2885d0bacl5fca7el644c1162899%ecd43d52b...93761d"
} 14
{
"dap": 215,
"block": "0x0000002025090b3b8e4f98290c7¢c9551d180eb2ad463f0b978...£f97b64",
"final": "0x0000002014c7c0ed7c33c5925907b508bebfe3974el1c99%9ab...eb554e",
"cbhbtx": "0x01000000...90133¢cf9%4blblc40faec077a7833c0felcccd74...000000",
"cbtxMerkleProof": "0x628c8d961adbl57£f800be7cfb03ffalb53d3ad...cab5a6l"
} 4
{
"dap": 220,
"block": "0x00000020££f45c783d09706e359dcc76083e15e51839%e4ed5...ddfele",
"final": "0x0000002039d2f8a1230dd0bee50034e8c63951ab812c0b89...5670c5",
"cbhbtx": "0x01000000...b98e79fb3edb88aefbc8ce59e82e99293e5b08...000000",
"cbtxMerkleProof": "Oxl6adb7aeec2cf254db0bab0f4a5083fb0ela3f...63a4f4"
} 14
{
"dap": 225,
"block": "0x02000020170fad0b6blccbdc4401d7blc8ee868c6977d6ece...1le7f8f",
"final": "0x0400000092945abbd7b9f0d407fcccbf418e4fc20570040c...a%240",
"cbhtx": "0x01000000...cf6e8f930achb8f38b588d76cd8c3da3258d5a7...000000",
"cbtxMerkleProof": "0x25575bcaf3el11970ccf835e88d6f97bedd6b85. . . .bfdfde"
}
1,
"in3": {
"lastNodeList": 3101668,
"execTime": 2760,

(continues on next page)

100 Chapter 8. API RPC

Incubed Documentation, Release 2.3

(continued from previous page)

"rpcTime": 172,

"rpcCount": 1,
"currentBlock": 3101713,
"version": "2.1.0"

}

This graph shows the usage of this method and visualizes the result from above. The client is not able to trust the
changes of the target due to his limits (max_diff and max_dap). This method provides a path of daps in which
the limits are fulfilled from dap to another. The client is going to trust the target of the target dap since he is able to
perform a step by step verification of the target by using the path of daps.

verified dap target dap
180684¢c3 | big change of the target » 18021b3e
200 230
“»18058436 » 18057228 » 180440c4 » 18038b85 » 18027293
205 210 215 220 225

step by step verification with path of daps

8.5 zksync

the zksync-plugin is able to handle operations to use zksync like deposit transfer or withdraw. Also see the #in3-config
on how to configure the zksync-server or account.

Also in order to sign messages you need to set a signer!
8.5.1 zksync_contract_address

params: none

returns the contract address

in3 zksync_contract_address | jg
{
"govContract": "0x34460CO0EB5074C29A9F6FE13b8e7E23A0D08aFOL",
"mainContract": "0xaBEA9132b05A70803a4E85094fD0el1800777fBEF"
}

8.5.2 zksync_tokens

params: none

8.5. zksync 101

https://zksync.io/

Incubed Documentation, Release 2.3

returns the list of available tokens

in3 zksync_tokens | jg
{
"BAT": {
"address": "0x0d8775£648430679a709e98d2b0cb6250d2887ef",
"decimals": 18,
"id": 8,

"symbol": "BAT"
by

"BUSD": {
"address": "Ox4fabbl45d64652a948d72533023f6e7a623c7c53",
"decimals": 18,
"id": o,

"symbol": "BUSD"
by

"DAI": {
"address": "Ox6b175474e89094c44da98b954eedeac495271d0f",
"decimals": 18,

"id": 1,
"symbol": "DAI"

}I

"ETH" : {

"address": "0x00™,
"decimals": 18,

"id": O,

"symbol": "ETH"

8.5.3 zksync_account_info

params:
¢ address (optional, if the pk is set it will be taken from there)
returns account_info from the server

Example:

in3 -pk 0xed41d2489571d322189246dafa5ebdelf4699£498000000000000000000000000 zksync_

—account_info | jgq
{
"address": "0x3b2albd631d9d7bl17e87429%9a8e78dbbd9%b4de292",
"committed": {
"balances": {},
"nonce": O,
"pubKeyHash": "sync:00"

by
"depositing": {

"balances": {}
}I
"id": null,
"verified": {
"balances": {},

(continues on next page)

102

Chapter 8. API RPC

Incubed Documentation, Release 2.3

(continued from previous page)

"nonce": 0O,
"pubKeyHash": "sync:00™"

8.5.4 zksync_tx_info

params:
e the txHash

returns the state or receipt of the the zksync-tx

in3 zksync_tx_info "sync-
—tx:e41d2489571d322189246dafabebdelf4699£498000000000000000000000000" | Jg

"block": null,
"executed": false,
"failReason": null,
"success": null

8.5.5 zksync_setKey

params: none
sets the signerkey based on the current pk

Example:

in3 -pk 0xe41d2489571d322189246dafabebdelf4699£498000000000000000000000000 zksync_
—setKey

"sync:e41d2489571d322189246dafa5ebdelf4699£498"

8.5.6 zksync_ethop_info

params:
e the opld

returns the state or receipt of the the PriorityOperation

8.5.7 zksync_get_token_price

params:
¢ the token-address

returns current token-price

8.5. zksync 103

Incubed Documentation, Release 2.3

in3 zksync_get_token_price WBTC

’11320.002167

8.5.8 zksync_get_tx_fee

params:
* txType (“Withdraw” or “Transfer”)
* address
* token

returns fee for a transaction

in3 zksync_get_tx_fee Transfer 0xabea9132b05a70803a4e85094fd0e1800777fbef BAT | Jjqgq

{
"feeType": "TransferToNew",
"gasFee": "47684047990828528",
"gasPriceWei": "116000000000",
"gasTxAmount": "350",
"totalFee": "66000000000000000",
"zkpFee": "18378682992117666"

}

8.5.9 zksync_syncKey

params: none

returns private key used for signing zksync-transactions

8.5.10 zksync_deposit

params: (passed as array in this order or as array with one JSON-Object, with those props)
¢ amount
* token
* approveDepositAmountForERC20
* account (if not given it will be taken from the current signer)

sends a deposit-transaction and returns the opld, which can be used to tradck progress.

in3 -pk <MY_PK> zksync_deposit 1000 WBTC false

8.5.11 zksync_transfer

params:

e to

104 Chapter 8. API RPC

Incubed Documentation, Release 2.3

* amount
* token
* account (if not given it will be taken from the current signer)

sends a zksync-transaction and returns data including the transactionHash.

in3 -pk <MY_PK> zksync_transfer 0xabea9132b05a70803a4e85094£d0e1800777fbef 100 WBTC

8.5.12 zksync_withdraw

params:
* ethAddress
¢ amount
* token
* account (if not given it will be taken from the current signer)

withdraws the amount to the given ethAddress for the given token.

in3 -pk <MY_PK> zksync_withdraw 0xabea9132b05a70803a4e85094£fd0e1800777fbef 100 WBTC

8.5.13 zksync_emergencyWithdraw

params:
¢ token

withdraws all tokens for the specified token as a onchain-transaction. This is useful in case the zksync-server is offline
or tries to be malicious.

in3 -pk <MY_PK> zksync_emergencyWithdraw WBTC

8.5. zksync 105

Incubed Documentation, Release 2.3

106 Chapter 8. API RPC

CHAPTER 9

API| Reference C

9.1 Overview

The C implementation of the Incubed client is prepared and optimized to run on small embedded devices. Because
each device is different, we prepare different modules that should be combined. This allows us to only generate the
code needed and reduce requirements for flash and memory.

9.1.1 Why C?

We have been asked a lot, why we implemented Incubed in C and not in Rust. When we started Incubed we began
with a feasibility test and wrote the client in TypeScript. Once we confirmed it was working, we wanted to provide
a minimal verifaction client for embedded devices. And yes, we actually wanted to do it in Rust, since Rust offers a
lot of safety-features (like the memory-management at compiletime, thread-safety, ...), but after considering a lot of
different aspects we made a pragmatic desicion to use C.

These are the reasons why:

Support for embedded devices.
As of today almost all toolchain used in the embedded world are build for C. Even though Rust may be able to still
use some, there are a lot of issues. Quote from rust-embedded.org:

Integrating Rust with an RTOS such as FreeRTOS or ChibiOS is still a work in progress; especially calling RTOS
functions from Rust can be tricky.

This may change in the future, but C is so dominant, that chances of Rust taking over the embedded development
completly is low.

Portability

C is the most portable programming language. Rust actually has a pretty admirable selection of supported targets for
a new language (thanks mostly to LLVM), but it pales in comparison to C, which runs on almost everything. A new

107

https://docs.rust-embedded.org/book/interoperability/#interoperability-with-rtoss

Incubed Documentation, Release 2.3

CPU architecture or operating system can barely be considered to exist until it has a C compiler. And once it does, it
unlocks access to a vast repository of software written in C. Many other programming languages, such as Ruby and
Python, are implemented in C and you get those for free too.

Most programing language have very good support for calling c-function in a shared library (like ctypes in python or
cgo in golang) or even support integration of C code directly like android studio does.

Integration in existing projects
Since especially embedded systems are usually written in C/C++, offering a pure C-Implementation makes it easy for
these projects to use Incubed, since they do not have to change their toolchain.

Even though we may not be able to use a lot of great features Rust offers by going with C, it allows to reach the goal to
easily integrate with a lot of projects. For the future we might port the incubed to Rust if we see a demand or chance
for the same support as C has today.

9.1.2 Modules

Incubed consists of different modules. While the core module is always required, additional functions will be prepared
by different modules.

108 Chapter 9. API Reference C

https://developer.android.com/studio/projects/add-native-code

Incubed Documentation, Release 2.3

Transports

transport_http
transport_curl

Verifiers

s Coe)

Bindings

BIGEXCIOIONE

Verifier

Incubed is a minimal verification client, which means that each response needs to be verifiable. Depending on the
expected requests and responses, you need to carefully choose which verifier you may need to register. For Ethereum,
we have developed three modules:

1. eth_nano: a minimal module only able to verify transaction receipts (eth_getTransactionReceipt).
. eth_basic: module able to verify almost all other standard RPC functions (except eth_call).
. eth_full: module able to verify standard RPC functions. It also implements a full EVM to handle eth_call.

. btc: module able to verify bitcoin or bitcoin based chains.

W B~ W N

. ipfs: module able to verify ipfs-hashes

9.1. Overview 109

Incubed Documentation, Release 2.3

Depending on the module, you need to register the verifier before using it. This is done by calling the
in3_register. .. function like in3_register_eth_full().

Transport

To verify responses, you need to be able to send requests. The way to handle them depends heavily on your hardware
capabilities. For example, if your device only supports Bluetooth, you may use this connection to deliver the request
to a device with an existing internet connection and get the response in the same way, but if your device is able to
use a direct internet connection, you may use a curl-library to execute them. This is why the core client only defines
function pointer in3_transport_send, which must handle the requests.

At the moment we offer these modules; other implementations are supported by different hardware modules.

1. transport_curl: module with a dependency on curl, which executes these requests and supports HTTPS. This
module runs a standard OS with curl installed.

2. transport_http: module with no dependency, but a very basic http-implementation (no https-support)

API
While Incubed operates on JSON-RPC level, as a developer, you might want to use a better-structured API to prepare
these requests for you. These APIs are optional but make life easier:

1. eth: This module offers all standard RPC functions as described in the Ethereum JSON-RPC Specification. In
addition, it allows you to sign and encode/decode calls and transactions.

2. usn: This module offers basic USN functions like renting, event handling, and message verification.
3. btc: Collection of Bitcoin-functions to access blocks and transactions.

4. ipfs: Simple Ipfs-functions to get and store ipfs-content

9.2 Building

While we provide binaries, you can also build from source:

9.2.1 requirements

¢ cmake

e curl : curl is used as transport for command-line tools, but you can also compile it without curl
(-DUSE_CURL=false -DCMD=false), if you want to implement your own transport.

Incubed uses cmake for configuring:

mkdir build && cd build
cmake -DCMAKE_BUILD_TYPE=Release .. && make
make install

9.2.2 CMake options

When configuring cmake, you can set a lot of different incubed specific like cmake -DEVM_GAS=false

110 Chapter 9. API Reference C

https://github.com/ethereum/wiki/wiki/JSON-RPC

Incubed Documentation, Release 2.3

ASMJS

compiles the code as asm.js.

Default-Value: -DASMJS=0FF

ASSERTIONS

includes assertions into the code, which help track errors but may cost time during runtime

Default-Value: -DASSERTIONS=0FF

BTC

if true, the bitcoin verifiers will be build

Default-Value: -DBTC=0N

BUILD_DOC

generates the documenation with doxygen.

Default-Value: -DBUILD_DOC=0FF

CMD

build the comandline utils

Default-Value: -DCMD=0N

CODE_COVERAGE

Builds targets with code coverage instrumentation. (Requires GCC or Clang)

Default-Value: -DCODE_COVERAGE=0FF

COLOR

Enable color codes for debug

Default-Value: -DCOLOR=0N

DEV_NO_INTRN_PTR

(dev option) if true the client will NOT include a void pointer (named internal) for use by devs)

Default-Value: —-DDEV_NO_INTRN_PTR=0N

ESP_IDF

include support for ESP-IDF microcontroller framework

Default-Value: -DESP_IDF=0FF

9.2. Building 111

Incubed Documentation, Release 2.3

ETH _BASIC

build basic eth verification.(all rpc-calls except eth_call)
Default-Value: —-DETH_BASIC=0ON

ETH FULL

build full eth verification.(including eth_call)
Default-Value: -DETH_FULL=0N

ETH _NANO

build minimal eth verification.(eth_getTransactionReceipt)
Default-Value: -DETH_NANO=0N

EVM_GAS

if true the gas costs are verified when validating a eth_call. This is a optimization since most calls are only interessted
in the result. EVM_GAS would be required if the contract uses gas-dependend op-codes.

Default-Value: —-DEVM__GAS=0N

FAST_MATH

Math optimizations used in the EVM. This will also increase the filesize.

Default-Value: —-DFAST MATH=OFF

GCC_ANALYZER

GCCI10 static code analyses
Default-Value: -DGCC_ANALYZER=0OFF
IN3API

build the USN-API which offer better interfaces and additional functions on top of the pure verification

Default-Value: -DIN3API=0ON

IN3_LIB

if true a shared anmd static library with all in3-modules will be build.

Default-Value: —-DIN3_LIB=0ON

112 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

IN3_SERVER

support for proxy server as part of the cmd-tool, which allows to start the cmd-tool with the -p option and listens to
the given port for rpc-requests

Default-Value: —-DIN3_SERVER=0FF
IN3_STAGING

if true, the client will use the staging-network instead of the live ones
Default-Value: —-DIN3_STAGING=OFF
IPFS

build IPFS verification

Default-Value: -DIPFS=0N

JAVA

build the java-binding (shared-lib and jar-file)
Default-Value: -DJAVA=0FF
LEDGER_NANO

include support for nano ledger
Default-Value: -DLEDGER_NANO=0FF
LOGGING

if set logging and human readable error messages will be inculded in th executable, otherwise only the error code is
used. (saves about 19kB)

Default-Value: -DLOGGING=0ON

MULTISIG

add capapbility to sign with a multig. Currrently only gnosis safe is supported

Default-Value: ~-DMULTISIG=0FF

PAY_ETH

support for direct Eth-Payment
Default-Value: -DPAY_ETH=O0OFF

9.2. Building 113

Incubed Documentation, Release 2.3

PKG_CONFIG_EXECUTABLE

pkg-config executable

Default-Value: -DPKG_CONFIG_EXECUTABLE=/opt/local/bin/pkg-config
POA

support POA verification including validatorlist updates
Default-Value: -DPOA=0OFF

SEGGER_RTT

Use the segger real time transfer terminal as the logging mechanism
Default-Value: -DSEGGER_RTT=0FF

TAG_VERSION

the tagged version, which should be used

Default-Value: -DTAG_VERSION=OFF

TEST

builds the tests and also adds special memory-management, which detects memory leaks, but will cause slower per-
formance

Default-Value: -DTEST=0FF

TRANSPORTS

builds transports, which may require extra libraries.

Default-Value: -DTRANSPORTS=0N

USE_CURL

if true the curl transport will be built (with a dependency to libcurl)
Default-Value: —-DUSE_ CURL=0ON

USE_PRECOMPUTED_EC

if true the secp256k1 curve uses precompiled tables to boost performance. turning this off makes ecrecover slower,
but saves about 37kb.

Default-Value: ~-DUSE_PRECOMPUTED_EC=0N

114 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

USE_SCRYPT

integrate scrypt into the build in order to allow decrypt_key for scrypt encoded keys.
Default-Value: —-DUSE_ SCRYPT=0ON

WASM

Includes the WASM-Build. In order to build it you need emscripten as toolchain. Usually you also want to turn off
other builds in this case.

Default-Value: -DWASM=0FF

WASM_EMBED

embedds the wasm as base64-encoded into the js-file

Default-Value: —-DWASM_EMBED=0N

WASM_EMMALLOC

use ther smaller EMSCRIPTEN Malloc, which reduces the size about 10k, but may be a bit slower
Default-Value: -DWASM_EMMALLOC=0N

WASM_SYNC

intiaializes the WASM synchronisly, which allows to require and use it the same function, but this will not be supported
by chrome (4k limit)

Default-Value: ~-DWASM_SYNC=0OFF

ZKSYNC

add RPC-functioin to handle zksync-payments

Default-Value: -DZKSYNC=0OFF

9.3 Examples

9.3.1 btc_transaction

source : in3-c/c/examples/btc_transaction.c

checking a Bitcoin transaction data

#include <in3/btc_api.h> // we need the btc-api

#include <in3/client.h> // the core client

#include <in3/in3 init.h> // this header will make sure we initialize the default,_
—verifiers and transports

#include <in3/utils.h> // helper functions

(continues on next page)

9.3. Examples 115

https://github.com/slockit/in3-c/blob/master/c/examples/btc_transaction.c

Incubed Documentation, Release 2.3

(continued from previous page)

#include <stdio.h>

int main() {
// create new incubed client for BTC
in3_t* in3 = in3_for_chain (CHAIN_ID_BTC);

// the hash of transaction that we want to get

bytes32_t tx_id;

hex_to_bytes("cd4leeelc2d97f6158ea3b3aebalab271a2174067a38d089cccleefbc796706e0", -1,
— tx_id, 32);

// fetch and verify the transaction
btc_transaction_t* tx = btc_get_transaction(in3, tx_id);

if (!tx)
// 1f the result is null there was an error an we can get the latest error,
—message from btc_last_error()
printf ("error getting the tx : %s\n", btc_last_error());
else {
// we loop through the tx outputs
for (int 1 = 0; 1 < tx->vout_len; i++)
// and prrint the values
printf ("Transaction vout #%d : value: %11lu\n", 1, tx->vout[i].value);

// don't forget the clean up!

free (tx);

// cleanup client after usage
in3_free (in3);

9.3.2 call_a_function

source : in3-c/c/examples/call_a_function.c

This example shows how to call functions on a smart contract eiither directly or using the api to encode the arguments

#include <in3/client.h> // the core client

#include <in3/eth_api.h> // functions for direct api-access

#include <in3/in3 init.h> // if included the verifier will automaticly be initialized.
#include <in3/log.h> // logging functions

#include <inttypes.h>

#include <stdio.h>

static in3_ret_t call_func_rpc(in3_t* c);
static in3_ret_t call_func_api(in3_t* ¢, address_t contract);

int main () {
in3_ret_t ret = IN3_OK;

// Remove log prefix for readability
in3_log_set_prefix("");

(continues on next page)

116 Chapter 9. API Reference C

https://github.com/slockit/in3-c/blob/master/c/examples/call_a_function.c

Incubed Documentation, Release 2.3

(continued from previous page)

// create new incubed client
in3_t* ¢ = in3_for_chain (CHAIN_ID_MAINNET) ;

// define a address (20byte)
address_t contract;

// copy the hexcoded string into this address
hex_to_bytes ("0x2736D225£85740£42D17987100dc8d58e9%9e16252", -1, contract, 20);

// call function using RPC
ret = call_func_rpc(c);

if (ret != IN3_OK) goto END;

// call function using APT

ret = call_func_api(c, contract);
if (ret != IN3_OK) goto END;
END:

// clean up
in3_free(c);
return 0;

in3_ret_t call func_rpc(in3_t«* c) {
// prepare 2 pointers for the result.
char xresult, =xerror;

// send raw rpc-request, which is then verified

in3_ret_t res = in3_client_rpc(

Cr [
. // the configured client

"eth_call", o
. // the rpc-method you want to call.

"I{\"to\":\"0x2736d225£85740£42d17987100dc8d58e9e16252\", \"data\":\"0x15625c5e\
—"}, \"latest\"1", // the signed raw txn, same as the one used in the API example

&result, o
— // the reference to a pointer which will hold the result

&error); o
— // the pointer which may hold a error message

// check and print the result or error
if (res == IN3_OK) {
printf ("Result: \n%s\n", result);
free (result);
return 0O;
} else {
printf ("Error sending tx: \n%s\n", error);
free (error);
return IN3_EUNKNOWN;

in3_ret_t call_func_api(in3_t* ¢, address_t contract) {

// ask for the number of servers registered

json_ctx_tx response = eth_call_fn(c, contract, BLKNUM_LATEST(),
—"totalServers () :uint256");

if (!response) {

(continues on next page)

9.3. Examples 117

Incubed Documentation, Release 2.3

(continued from previous page)

printf ("Could not get the response: %s", eth_last_error());
return IN3_EUNKNOWN;

// convert the response to a uint32_t,
uint32_t number_of_servers = d_int (response->result);

// clean up resources
json_free (response) ;

// output
printf ("Found %u servers registered : \n", number_of_servers);

// read all structs
for (uint32_t i = 0; 1 < number_of_servers; i++) {
response = eth_call_fn(c, contract, BLKNUM_LATEST(), "servers (uint256): (string,
—address,uint,uint,uint, address)", to_uint256(i));
if (!response) {
printf ("Could not get the response: %s", eth_last_error());
return IN3_EUNKNOWN;

charx* url = d_get_string_at (response->result, 0); // get the first item of_
—~the result (the url)
bytes_t* owner = d_get_bytes_at (response->result, 1); // get the second item,,

—of the result (the owner)
uint64_t deposit = d_get_long_at (response->result, 2); // get the third item of,
—the result (the deposit)

printf ("Server %i : %$s owner = %$02x%02x...", i, url, owner->datal[0O], owner—>

—datall]);
printf (", deposit = %" PRIu64 "\n", deposit);

// free memory
json_free (response);
}

return 0;

9.3.3 get_balance

source : in3-c/c/examples/get_balance.c

get the Balance with the API and also as direct RPC-call

#include <in3/client.h> // the core client

#include <in3/eth_api.h> // functions for direct api-access

#include <in3/in3 init.h> // if included the verifier will automaticly be initialized.
#include <in3/log.h> // logging functions

#include <in3/utils.h>

#include <stdio.h>

static void get_balance_rpc(in3_t+ in3);
static void get_balance_api (in3_t+x in3);

(continues on next page)

118 Chapter 9. API Reference C

https://github.com/slockit/in3-c/blob/master/c/examples/get_balance.c

Incubed Documentation, Release 2.3

(continued from previous page)

int main () {
// create new incubed client
in3_t* in3 = in3_for_chain (CHAIN_ID_MAINNET) ;

// get balance using raw RPC call
get_balance_rpc (in3);

// get balance using APIT
get_balance_api (in3);

// cleanup client after usage

in3_free (in3);

void get_balance_rpc (in3_t* in3) {
// prepare 2 pointers for the result.
char *result, =xerror;

// send raw rpc-request, which is then verified

in3_ret_t res = in3_client_rpc(
in3, // the,
—configured client
"eth_getBalance", // the rpc—

—method you want to call.

"[\"0xc94770007dda54cF92009BFF0dE90c06F603a09f\", \"latest\"]", // the,
—arguments as json-string

sresult, // the_
—reference to a pointer whill hold the result

serror) ; // the pointer,

—which may hold a error message

// check and print the result or error
if (res == IN3_OK) {
printf ("Balance: \n%s\n", result);
free (result);
} else {
printf ("Error getting balance: \n%s\n", error);
free (error);

void get_balance_api (in3_t* in3) {
// the address of account whose balance we want to get
address_t account;
hex_to_bytes ("0xc94770007dda54cF92009BFFO0dE90c06F603a09f", -1, account, 20);

// get balance of account
long double balance = as_double (eth_getBalance (in3, account, BLKNUM_EARLIEST()));

// 1if the result is null there was an error an we can get the latest error message,

—~from eth_lat_error()
balance ? printf ("Balance: %Lf\n", balance) : printf("error getting the balance
—%s\n", eth_last_error());

}

9.3. Examples

119

Incubed Documentation, Release 2.3

9.3.4 get_block

source : in3-c/c/examples/get_block.c

using the basic-module to get and verify a Block with the API and also as direct RPC-call

#include <in3/client.h> // the core client

#include <in3/eth_api.h> // functions for direct api-access
#include <in3/in3 init.h> // if included the verifier will automaticly be initialized.

#include <in3/log.h> // logging functions

#include <inttypes.h>
#include <stdio.h>

static void get_block_rpc(in3_tx in3);
static void get_block_api (in3_t* in3);

int main () {
// create new incubed client
in3_t* in3 = in3_for_chain (CHAIN_ID_MAINNET) ;

// get block using raw RPC call
get_block_rpc(in3);

// get block using APT
get_block_api(in3);

// cleanup client after usage

in3_free (in3);

void get_block_rpc(in3_t* in3) {
// prepare 2 pointers for the result.
char *result, =*error;

// send raw rpc-request, which is then verified

in3_ret_t res = in3_client_rpc(
in3, // the configured client
"eth_getBlockByNumber", // the rpc-method you want to call.
"[\"latest\", truel", // the arguments as json-string
&result, // the reference to a pointer whill hold the result
&error) ; // the pointer which may hold a error message

// check and print the result or error

if (res == IN3_OK) {
printf ("Latest block : \n%s\n", result);
free(result);

} else {

printf ("Error verifing the Latest block : \n%s\n",

free(error);

void get_block_api(in3_t+* in3) {
// get the block without the transaction details

error) ;

eth_block_t+ block = eth_getBlockByNumber (in3, BLKNUM(8432424), false);

(continues on next page)

120

Chapter 9. API Reference C

https://github.com/slockit/in3-c/blob/master/c/examples/get_block.c

Incubed Documentation, Release 2.3

(continued from previous page)

// 1if the result is null there was an error an we can get the latest error message,
—~from eth_lat_error()

if (!block)
printf ("error getting the block : %$s\n", eth_last_error());
else {

printf ("Number of transactions in Block #%1lu: %d\n", block->number, block->tx_

—count) ;
free (block);

9.3.5 get_logs

source : in3-c/c/examples/get_logs.c

fetching events and verify them with eth_getLogs

#include <in3/client.h> // the core client

#include <in3/eth_api.h> // functions for direct api-access

#include <in3/in3 init.h> // if included the verifier will automaticly be initialized.
#include <in3/log.h> // logging functions

#include <inttypes.h>

#include <stdio.h>

static void get_logs_rpc(in3_t* in3);
static void get_logs_api (in3_tx in3);

int main() {
// create new incubed client
in3_t* in3 = in3_for_chain (CHAIN_ID_MAINNET) ;
in3->chain_id = CHAIN_ID_KOVAN;

// get logs using raw RPC call
get_logs_rpc(in3);

// get logs using API
get_logs_api (in3);

// cleanup client after usage

in3_free (in3);

void get_logs_rpc(in3_t* in3) {
// prepare 2 pointers for the result.
char *result, =*error;

// send raw rpc-request, which is then verified

in3_ret_t res = in3_client_rpc(
in3, // the configured client
"eth_getLogs", // the rpc-method you want to call.
"r{y", // the arguments as json-string
&result, // the reference to a pointer whill hold the result
&error) ; // the pointer which may hold a error message

(continues on next page)

9.3. Examples 121

https://github.com/slockit/in3-c/blob/master/c/examples/get_logs.c

Incubed Documentation, Release 2.3

(continued from previous page)

// check and print the result or error

if (res IN3_OK) {
printf ("Logs \n%s\n",
free(result);

} else {
printf ("Error getting logs
free (error);

result);

\n%s\n",

void get_logs_api(in3_t* in3) {
// Create filter options
char b[30];
sprintf (b, "{\"fromBlock\":\"0x%" PRIx64
json_ctx_t* jopt parse_json (b) ;

// Create new filter with options
size_t fid eth_newFilter (in3, Jjopt);

// Get logs

eth_log_t* logs = NULL;
in3_ret_t ret = eth_getFilterLogs(in3,
if (ret != IN3_OK) {
printf ("eth_getFilterLogs () failed [%d]
return;

// print result

while (logs) {
eth_log_t*x 1 = logs;
printf ("
e \n");
printf ("\tremoved: %s\n", l->removed ?
printf ("\tlogId: %lu\n", 1l->log_index);
printf ("\tTxId: %lu\n", l->transaction_

printf ("\thash: ");

error) ;

"\"}", eth_blockNumber (in3) - 2);
fid, &logs);

\n", ret);

"true" "false");

index) ;

1->block_number) ;

ba_print (1->block_hash, 32);

printf ("\n\tnum: %" PRIu64 "\n",

printf ("\taddress: ");

ba_print (1->address, 20);

printf ("\n\tdata: ");

b_print (&1->data);

printf ("\ttopics[%lu]l: ", l->topic_count);

for (size_t i = 0;
printf ("\n\t");
ba_print (1->topics[i],

i < 1->topic_count;

32);
}
printf ("\n");
logs logs—>next;
free(l->data.data);
free(l->topics);
free(l);
}
eth_uninstallFilter (in3,
json_free (jopt);

fid);

i++) |

122

Chapter 9. API Reference C

Incubed Documentation, Release 2.3

9.3.6 get_transaction

source : in3-c/c/examples/get_transaction.c

checking the transaction data

#include <in3/client.h> // the core client

#include <in3/eth_api.h>

#include <in3/in3 curl.h> // transport implementation
#include <in3/in3 _init.h>

#include <in3/utils.h>

#include <stdio.h>

static void get_tx_rpc(in3_tx in3);
static void get_tx_api (in3_tx in3);

int main() {
// create new incubed client
in3_t+* in3 = in3_for_chain (CHAIN_ID_MAINNET) ;

// get tx using raw RPC call
get_tx_rpc(in3);

// get tx using API
get_tx_api(in3);

// cleanup client after usage

in3_free (in3);

void get_tx_rpc(in3_t* in3) {
// prepare 2 pointers for the result.
char xresult, =xerror;

// send raw rpc-request, which is then verified

in3_ret_t res = in3_client_rpc(
in3, /)
—the configured client
"eth_getTransactionByHash", /7

—the rpc—-method you want to call.
"[\"0xdd80249a0631cf0£1593c7a9c9£9b8545e6c88ab5252287c34bc5d12457eable\"]1", //.
—the arguments as json-string

sresult, /7
—the reference to a pointer which will hold the result
serror) ; /7

—the pointer which may hold a error message

// check and print the result or error
if (res == IN3_OK) {
printf("Latest tx : \n%s\n", result);
free (result);
} else {
printf ("Error verifing the Latest tx : \n%s\n", error);
free (error);

(continues on next page)

9.3. Examples 123

https://github.com/slockit/in3-c/blob/master/c/examples/get_transaction.c

Incubed Documentation, Release 2.3

(continued from previous page)

void get_tx_api(in3_t* in3) {

// the hash of transaction that we want to get

bytes32_t tx_hash;

hex_to_bytes ("0xdd80249a0631cf0£1593c7a9c9£9b8545e6c88ab5252287c34bc5d12457eable", -
—~1, tx_hash, 32);

// get the tx by hash
eth_tx_t* tx = eth_getTransactionByHash(in3, tx_hash);

// 1f the result is null there was an error an we can get the latest error message,
—~from eth _last_error()

if (!'tx)
printf ("error getting the tx : %s\n", eth_last_error());
else {

printf ("Transaction #%d of block #%11x", tx->transaction_index, tx->block_number);
free (tx);

9.3.7 get_transaction_receipt

source : in3-c/c/examples/get_transaction_receipt.c

validating the result or receipt of an transaction

#include <in3/client.h> // the core client

#include <in3/eth_api.h> // functions for direct api-access

#include <in3/in3 init.h> // if included the verifier will automaticly be initialized.
#include <in3/log.h> // logging functions

#include <in3/utils.h>

#include <inttypes.h>

#include <stdio.h>

static void get_tx_receipt_rpc(in3_t* in3);
static void get_tx_receipt_api (in3_t* in3);

int main() {
// create new incubed client
in3_t* in3 = in3_for_chain (CHAIN_ID_MAINNET) ;

// get tx receipt using raw RPC call
get_tx_receipt_rpc(in3);

// get tx receipt using API
get_tx_receipt_api (in3);

// cleanup client after usage
in3_free (in3);

void get_tx_receipt_rpc(in3_t* in3) {
// prepare 2 pointers for the result.
char *result, =*error;

(continues on next page)

124 Chapter 9. API Reference C

https://github.com/slockit/in3-c/blob/master/c/examples/get_transaction_receipt.c

Incubed Documentation, Release 2.3

(continued from previous page)

// send raw rpc-request, which is then verified

in3_ret_t res = in3_client_rpc(
in3, /7
—the configured client
"eth_getTransactionReceipt", /7

—the rpc-method you want to call.

"[\"0xdd80249a0631cf0f1593¢c7a9c9f9b8545e6c88ab5252287¢c34bc5d12457eab0e\" 1", //_
—the arguments as json-string

sresult, /7
—the reference to a pointer which will hold the result

serror); /7
—the pointer which may hold a error message

// check and print the result or error
if (res == IN3_OK) {
printf ("Transaction receipt: \n%s\n", result);
free (result);
} else {
printf ("Error verifing the tx receipt: \n%s\n", error);
free(error);

void get_tx_receipt_api(in3_t* in3) {

// the hash of transaction whose receipt we want to get

bytes32_t tx_hash;

hex_to_bytes ("0xdd80249a0631cf0£1593c7a9c9£f908545e6c88ab5252287c34bc5dl2457eable", -
-1, tx_hash, 32);

// get the tx receipt by hash
eth_tx_receipt_t«* txr = eth_getTransactionReceipt (in3, tx_hash);

// 1if the result is null there was an error an we can get the latest error message,
—from eth _last_error()
if (!txr)
printf ("error getting the tx : %s\n", eth_last_error());
else {
printf ("Transaction #%d of block #%11x, gas used = %" PRIu64 ", status = %s\n",_
—txr->transaction_index, txr->block_number, txr->gas_used, txr->status ? "success"
—"failed");
eth_tx_receipt_free(txr);

9.3.8 ipfs_put_get

source : in3-c/c/examples/ipfs_put_get.c

using the IPFS module

#include <in3/client.h> // the core client

#include <in3/in3 init.h> // if included the verifier will automaticly be initialized.
#include <in3/ipfs_api.h> // access ipfs-api

#include <in3/log.h> // logging functions

(continues on next page)

9.3. Examples 125

https://github.com/slockit/in3-c/blob/master/c/examples/ipfs_put_get.c

Incubed Documentation, Release 2.3

(continued from previous page)

#include <stdio.h>

#define LOREM_IPSUM "Lorem ipsum dolor sit amet"
#define return_err(err)
do {
printf(__FILE__ ":%d::Error %$s\n", __LINE__, err);
return;
} while (0)

— - —

static void ipfs_rpc_example (in3_tx c) {
char xresult, =xerror;
char tmp[100];

in3_ret_t res = in3_client_rpc(
CI
"ipfs_put",
"[\"" LOREM_IPSUM "\", \"utfs8\"]",
&result,
&error) ;
if (res != IN3_OK)

return_err (in3_errmsg(res));

printf ("IPFS hash: %s\n", result);
sprintf (tmp, "[%s, \"utf8\"]", result);
free(result);

result NULL;

res = in3_client_rpc(
Cy
"ipfs_get",
tmp,
&result,
&error) ;
if (res != IN3_OK)
return_err (in3_errmsg(res));
res = strcmp (result, "\"" LOREM_IPSUM "\"");
if (res) return_err ("Content mismatch");

static void ipfs_api_example (in3_t* c) {

bytes_t b = {.data = (uint8_t+) LOREM_IPSUM, .len = strlen (LOREM_IPSUM) };
charx multihash = ipfs_put (c, &b);
if (multihash == NULL)

return_err ("ipfs_put API call error");
printf ("IPFS hash: %s\n", multihash);

bytes_t* content = ipfs_get (c, multihash);
free (multihash);
if (content == NULL)

return_err ("ipfs_get API call error");

int res = strncmp((charx) content->data, LOREM_IPSUM, content->len);
b_free (content) ;
if (res)

return_err ("Content mismatch");

(continues on next page)

126 Chapter 9. API Reference C

Incubed Documentation, Release

2.3

(continued from previous page)

int main () {
// create new incubed client
in3_t* ¢ = in3_for_chain (CHAIN_ID_IPFS3);

// IPFS put/get using raw RPC calls
ipfs_rpc_example (c);

// IPFS put/get using API
ipfs_api_example (c);

// cleanup client after usage
in3_free(c);
return 0;

9.3.9 ledger_sign

source : in3-c/c/examples/ledger_sign.c

#include <in3/client.h> // the core client
#include <in3/eth_api.h> // functions for direct api-access
#include <in3/ethereum_apdu_client.h>

#include <in3/in3_init.h> // 1f included the verifier will automaticly be_,
—initialized.

#include <in3/ledger_signer.h> //to invoke ledger nano device for signing
#include <in3/log.h> // logging functions

#include <in3/utils.h>
#include <stdio.h>

static void send_tx_api(in3_t* in3);

int main () {

// create new incubed client

uint8_t bip_path[5] = {44, 60, 0, 0, O0};

in3_t* 1in3 = in3_for_chain (CHAIN_ID_MAINNET) ;

in3_log_set_level (LOG_DEBUG) ;

// setting ledger nano s to be the default signer for incubed client

// it will cause the transaction or any msg to be sent to ledger nanos device for,
—siging

eth_ledger_set_signer_txn(in3, bip_path);

// eth_ledger_set_signer (in3, bip_path);

// send tx using API
send_tx_api (in3) ;

// cleanup client after usage
in3_free (in3);

void send_tx_api(in3_t+ in3) {
// prepare parameters
address_t to, from;
hex_to_bytes ("0xC51fBbe0a68a7cA8d33f14a660126Da2A2FAF8bEf", -1, from, 20);
hex_to_bytes ("0xd46e8dd67c5d32be8058bb8eb970870£07244567", -1, to, 20);

(continues on next page)

9.3. Examples

127

https://github.com/slockit/in3-c/blob/master/c/examples/ledger_sign.c

Incubed Documentation, Release 2.3

(continued from previous page)

bytes_t* data = hex_to_new_bytes ("0x00", 0);

// send the tx

bytes_t* tx_hash = eth_sendTransaction(in3, from, to, OPTIONAL_T_VALUE (uint64_t,
—~0x96c0), OPTIONAL_T_VALUE (uint64_t, 0x9184e72a000), OPTIONAL_T VALUE (uint256_t, to_
—uint256(0x9184e72a)), OPTIONAL_T_VALUE (bytes_t, =xdata), OPTIONAL_T_UNDEFINED (uint64_
—t));

// 1f the result is null there was an error and we can get the latest error message,,
—~from eth _last_error()
if (!tx_hash)

printf("error sending the tx : %s\n", eth_last_error());
else {
printf ("Transaction hash: ");

b_print (tx_hash);
b_free (tx_hash);
}
b_free (data);

9.3.10 send_transaction

source : in3-c/c/examples/send_transaction.c

sending a transaction including signing it with a private key

#include <in3/client.h> // the core client

#include <in3/eth_api.h> // functions for direct api-access

#include <in3/in3 init.h> // if included the verifier will automaticly be initialized.
#include <in3/log.h> // logging functions

#include <in3/signer.h> // default signer implementation

#include <in3/utils.h>

#include <stdio.h>

// fixme: This is only for the sake of demo. Do NOT store private keys as plaintext.
#define ETH PRIVATE KEY
—"0x8dadef21b864d2cc526dbdb2al20bd2874c36c9d0alfb7f8c63d7f7a8b41de8f"

static void send_tx_rpc(in3_t* in3);
static void send_tx_api (in3_t* in3);

int main() {
// create new incubed client
in3_t* in3 = in3_for_chain (CHAIN_ID_MAINNET) ;

// convert the hexstring to bytes
bytes32_t pk;
hex_to_bytes (ETH_PRIVATE_KEY, -1, pk, 32);

// create a simple signer with this key
eth_set_pk_signer (in3, pk);

// send tx using raw RPC call
send_tx_rpc (in3);

(continues on next page)

128 Chapter 9. API Reference C

https://github.com/slockit/in3-c/blob/master/c/examples/send_transaction.c

Incubed Documentation, Release 2.3

(continued from previous page)

// send tx using APT
send_tx_api (in3);

// cleanup client after usage
in3_free (in3);

void send_tx_rpc (in3_t* in3) {
// prepare 2 pointers for the result.
char *result, =*error;

// send raw rpc-request, which is then verified

in3_ret_t res = in3_client_rpc(
in3, // the configured client
"eth_sendRawTransaction", // the rpc-method you want to call.
"[\"0xf892808609184e72a0008296c094d46e8dd67c5d32be8058bb8eb970870£0724456"

—"7849184e72aa9d46e8dd67¢c5d32be8d46e8dd67¢5d32be8058bb8eb970870£072445675058bb8eb9"
—"70870£07244567526a06f0103fccdcae0d6b265f8c38ee42f4a722c1cb36230fe8dad40315acc3051"

"9a8a06252a68b26a5575f76a65ac08a7£684bc37b0c98d9e715d73ddce696b58£2c72\"1", //_
—the signed raw txn, same as the one used in the API example

sresult, /7
—~the reference to a pointer which will hold the result
serror); /7

—the pointer which may hold a error message

// check and print the result or error
if (res == IN3_OK) ¢{
printf ("Result: \n%s\n", result);
free (result);
} else {
printf ("Error sending tx: \n%s\n", error);
free(error);

void send_tx_api (in3_t* in3) {
// prepare parameters
address_t to, from;
hex_to_bytes ("0x63FaC9201494f0bd17B9892B9faed4d52fe3BD377", -1, from, 20);
hex_to_bytes ("0xd46e8dd67c5d32be8058bb8eb970870£07244567", -1, to, 20);

bytes_t* data = hex_to_new_bytes(
—"d46e8dd67c5d32be8d46e8dd67¢c5d32be8058bb8eb970870£072445675058bb8eb970870£072445675
=", 82);

// send the tx

bytes_t* tx_hash = eth_sendTransaction(in3, from, to, OPTIONAL_T_VALUE (uint64_t,
—0x96c0), OPTIONAL_T_VALUE (uint64_t, 0x9184e72a000), OPTIONAL_T_VALUE (uint256_t, to_
—uint256(0x9184e72a)), OPTIONAL_T_VALUE (bytes_t, =data), OPTIONAL_T_UNDEFINED (uint64_
—t));

// if the result is null there was an error and we can get the latest error message,
—~from eth _last_error()
if (!tx_hash)
printf ("error sending the tx : %s\n", eth_last_error());

(continues on next page)

9.3. Examples 129

Incubed Documentation, Release 2.3

(continued from previous page)

else {
printf ("Transaction hash: ");
b_print (tx_hash);
b_free(tx_hash);

}

b_free (data);

9.3.11 usn_device

source : in3-c/c/examples/usn_device.c

a example how to watch usn events and act upon it.

#include <in3/client.h> // the core client

#include <in3/eth_api.h> // functions for direct api-access
#include <in3/in3 init.h> // if included the verifier will automaticly be initialized.
#include <in3/log.h> // logging functions

#include <in3/signer.h> // signer-api

#include <in3/usn_api.h>

#include <in3/utils.h>

#include <inttypes.h>

#include <stdio.h>

#include <time.h>

#if defined(_WIN32) || defined(WIN32)

#include <windows.h>

#else

#include <unistd.h>

#endif

static int handle_booking (usn_event_t»* ev) {

printf ("\n%s Booking timestamp=%" PRIu64 "\n", ev->type == BOOKING_START ? "START"
—: "STOP", ev->ts);

return O;

int main(int argc, charx argv([]) {
// create new incubed client
in3_t* ¢ = in3_for_chain (CHAIN_ID_MAINNET) ;

// switch to goerli
c->chain_id = 0x5;

// setting up a usn-device-config
usn_device_conf_t usn;

usn.booking_handler = handle_booking; //
< this is the handler, which is called for each rent/return or start/stop

usn.c = c; //
— the incubed client

usn.chain_id = c—>chain_id; //
— the chain_id

usn.devices = NULL; //
— this will contain the list of devices supported

usn.len_devices = 0; //

— and length of this 1ist

(continues on next page)

130 Chapter 9. API Reference C

https://github.com/slockit/in3-c/blob/master/c/examples/usn_device.c

Incubed Documentation, Release 2.3

(continued from previous page)

usn.now = 0; //
— the current timestamp
unsigned int wait_time = 5; //

— the time to wait between the internval
hex_to_bytes ("0x85Ec283a3Ed4b66dF4da23656d4BF8A507383bca", -1, usn.contract, 20); //
— address of the usn-contract, which we copy from hex

// register a usn-device
usn_register_device (&usn, "officelslockit");

// now we run en endless loop which simply wait for events on the chain.
printf ("\n start watching...\n");
while (true) {
usn.now = time (NULL) ; // update the_
—timestamp, since this 1is running on embedded devices, this may be depend on the_
—hardware.
unsigned int timeout = usn_update_state (&usn, wait_time) « 1000; // this will now,
—check for new events and trigger the handle booking if so.

// sleep
#if defined(_WIN32) || defined(WIN32)
Sleep (timeout) ;
#else
nanosleep((const struct timespec([]) {{0, timeout = 1000000L}}, NULL);
#endif
}

// clean up
in3_free(c);
return 0O;

9.3.12 usn_rent

source : in3-c/c/examples/usn_rent.c

how to send a rent transaction to a usn contract usinig the usn-api.

#include <in3/api_utils.h>

#include <in3/eth_api.h> // functions for direct api-access

#include <in3/in3 init.h> // if included the verifier will automaticly be initialized.
#include <in3/signer.h> // signer-api

#include <in3/usn_api.h> // api for renting

#include <in3/utils.h>

#include <inttypes.h>

#include <stdio.h>

void unlock_key (in3_t+* c, char* json_data, charx passwd) {
// parse the json
json_ctx_tx key_data = parse_json(json_data);
if (!key_data) {
perror ("key is not parseable!\n");
exit (EXIT_FAILURE) ;

(continues on next page)

9.3. Examples 131

https://github.com/slockit/in3-c/blob/master/c/examples/usn_rent.c

Incubed Documentation, Release 2.3

(continued from previous page)

// decrypt the key

uint8_t* pk = malloc(32);

if (decrypt_key (key_data->result, passwd, pk) != IN3_OK) {
perror ("wrong password!\n");
exit (EXIT_FAILURE) ;

// free json
json_free (key_data);

// create a signer with this key
eth_set_pk_signer(c, pk);

int main(int argc, char* argv[]) {
// create new incubed client
in3_t* ¢ = in3_for_chain (CHAIN_ID_GOERLI) ;

// address of the usn-contract, which we copy from hex
address_t contract;
hex_to_bytes ("0x85Ec283a3Ed4b66dF4da23656d4BF8A507383bca", -1, contract, 20);

// read the key from args — I know this is not safe, but this is just a example.
if (argc < 3) {
perror ("you need to provide a Jjson-key and password to rent it");
exit (EXIT_FAILURE) ;
}
char+ key_data argvi[l];
char* passwd = argvl[2];
unlock_key(c, key_data, passwd);

// rent it for one hour.
uint32_t renting_seconds = 3600;

// allocate 32 bytes for the resulting tx hash
bytes32_t tx_hash;

// start charging
if (usn_rent(c, contract, NULL, "office@slockit", renting_seconds, tx_hash))
printf ("Could not start charging\n");
else {
printf ("Charging tx successfully sent... tx_hash=0x");
for (int i = 0; i < 32; i++) printf("%02x", tx_hash[i]);
printf ("\n");

if (argc == 4) // just to include it : if you want to stop earlier, you can call
usn_return(c, contract, "officelslockit", tx_hash);

// clean up
in3_free(c);
return 0;

132 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

9.3.13 Building

In order to run those examples, you only need a c-compiler (gcc or clang) and curl installed.

’./build.sh

will build all examples in this directory. You can build them individually by executing:

’gcc -0 get_block_api get_block_api.c -1in3 -lcurl ‘

9.4 How it works

The core of incubed is the processing of json-rpc requests by fetching data from the network and verifying them. This
is why in the core-module it is all about rpc-requests and their responses.

9.4.1 the statemachine

Each request is represented internally by the in3_ctx_t -struct. This context is responsible for trying to find a
verifyable answer to the request and acts as a statemachine.

9.4. How it works 133

Incubed Documentation, Release 2.3

RPC-Request

ctx_new()

in3_ctx_t fetch http

CTX_WAITING_FOR_RESPONSE in3_ctx_add_response() CT_RPC

CTX_WAITING_TO_SEND

in3_ctx_exec_state() need input

CTX_ERROR 'CTX_SUCCESS in3_ctx_add_response() CT_SIGN

error response sign

ctx_free()

In order to process a request we follow these steps.

1.
2.

ctx_new which creates a new context by parsing a JSON-RPC request.

in3_ctx_exec_state this will try to process the state and returns the new state, which will be one of he
following:

CTX_SUCCESS - we have a response
CTX_ERROR - we stop because of an unrecoverable error

CTX_WAITING_TO_SEND - we need input and need to send out a request. By calling
in3_create_request () the ctx will switch to the state to CTX_WAITING_FOR_RESPONSE until all
the needed responses are repoorted. While it is possible to fetch all responses and add them before calling
in3_ctx_exec_state (), but it would be more efficient if can send all requests out, but then create a
response-queue and set one response add a time so we can return as soon as we have the first verifiable re-
sponse.

CTX_WAITING_FOR_RESPONSE - the request has been send, but no verifieable response is available. Once
the next (or more) responses have been added, we call in3_ctx_exec_state () again, which will verify

134

Chapter 9. API Reference C

Incubed Documentation, Release 2.3

all available responses. If we could verify it, we have a respoonse, if not we may either wait for more responses
(in case we send out multiple requests -> CTX_WAITING_FOR_RESPONSE) or we send out new requests
(CTX_WAITING_TO_SEND)

the in3_send_ctx-function will executly this:

in3_ret_t in3_send_ ctx (in3_ctx_t+* ctx) {
ctx_req_transports_t transports = {0};
while (true) {
switch (in3_ctx_exec_state(ctx)) {
case CTX_ERROR:
case CTX_ SUCCESS:
transport_cleanup(ctx, &transports, true);
return ctx->verification_state;

case CTX_WAITING_FOR_RESPONSE:
in3_handle_rpc_next (ctx, &transports);
break;

case CTX_WAITING_TO_SEND: {
in3_ctx_t* last = in3_ctx_last_waiting(ctx);
switch (last->type) {
case CT_SIGN:
in3_handle_sign(last);
break;
case CT_RPC:
in3_handle_rpc(last, &transports);

9.4.2 sync calls with in3_send_ctx

This statemachine can be used to process requests synchronously or asynchronously. The in3_send_ctx function,
which is used in most convinience-functions will do this synchronously. In order to get user input it relies on 2
callback-functions:

* tosign: in3_signer._t struct including its callback function is set in the in3_t configuration.

* to fetch data : a in3_transport_send function-pointer will be set in the in3_t configuration.

signing

For signing the client expects a in3 signer_t struct to be set. Setting should be done by using the
in3_set_signer () function. This function expects 3 arguments (after the client config itself):

e sign - this is a function pointer to actual signing-function. Whenever the incubed client needs a signature
it will prepare a signing context in3_sign ctx_t, which holds all relevant data, like message and the ad-
dress for signing. The result will always be a signature which you need to copy into the signature-field
of this context. The return value must signal the success of the execution. While IN3_OK represents success,
IN3_WAITINGcan be used to indicate that we need to execute again since there may be a sub-request that
needs to finished up before being able to sign. In case of an error ctx_set_error should be used to report
the details of the error including returning the IN3_E. . . as error-code.

9.4. How it works 135

Incubed Documentation, Release 2.3

* prepare_tx- this function is optional and gives you a chance to change the data before signing. For example
signing with a mutisig would need to do manipulate the data and also the target in order to redirect it to the
multisig contract.

e wallet - this is a optional void« which will be set in the signing context. It can be used to point to any data
structure you may need in order to sign.

As a example this is the implemantation of the signer-function for a simple raw private key:

in3_ret_t eth_sign_pk_ctx(in3_sign_ctx_t* ctx) {
uint8_t«+ pk = ctx->wallet;
switch (ctx—>type) {
case SIGN_EC_RAW:
return ec_sign_pk_raw(ctx->message.data, pk, ctx->signature);
case SIGN_EC_HASH:
return ec_sign_pk_hash (ctx->message.data, ctx->message.len, pk, hasher_sha3k,
—ctx->signature);
default:
return IN3_ENOTSUP;
}
return IN3_O0K;

The pk-signer uses the wallet-pointer to point to the raw 32 bytes private key and will use this to sign.

transport

The transport function is a function-pointer set in the client configuration (in3_t) which will be used in the
in3_send_ctx () function whenever data are required to get from the network. the function will geta request_t
object as argument.

The main responsibility of this function is to fetch the requested data and the call in3 ctx_add response to
report this to the context. if the request only sends one request to one url, this is all you have to do. But if the user
uses a configuration of request_count >1, the request object will contain a list of multiples urls. In this case
transport function still has 3 options to accomplish this:

1. send the payload to each url sequentially. This is NOT recommented, since this increases the time the user has
to wait for a response. Especially if some of the request may run into a timeout.

2. send the all in parallel and wait for all the finish. This is better, but it still means, we may have to wait until the
last one responses even though we may have a verifiable response already reported.

3. send them all in parallel and return as soon as we have the first response. This increases the performance since
we don’t have to wait if we have one. But since we don’t know yet whether this response is also correct, we
must be prepared to also read the other responses if needed, which means the transport would be called multiple
times for the same request. In order to process multiple calls to the same resouces the request-object contains
two fields:

e cptr - acustom voidx* which can be set in the first call pointing to recources you may need to continue in the
subsequent calls.

e action - This value is enum (#in3_req action_t), which indicates these current state

So only if you need to continue your call later, because you don’t want to and can’t set all the responses yet, you need
set the cptr to a non NULL value. And only in this case in3_send_ctx () will follow this process with these
states:

* REQ_ACTION_SEND - this will always be set in the first call.

136 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

* REQ_ACTION_RECEIVE - a call with this state indicates that there was a send call prior but since we do not
have all responses yet, the transport should now set the next reponse. So this call may be called multiple times
until either we have found a verifieable response or the number of urls is reached. Important during this call the
urls field of the request will be NULL since this should not send a new request.

* REQ_ACTION_CLEANUP - this will only be used if the cpt r was set before. Here the transport should only
clean up any allocated resources. This will also be called if not all responses were used.

While there are of course existing implementations for the transport-function (as default we use in3_curl_c),
especially for embedded devices you may even implement your own.

9.4.3 async calls

While for sync calls you can just implement a transport function, you can also take full control of the process which
allows to execute it completly async. The basic process is the same layed out in the state machine.

For the js for example the main-loop is part of a async function.

async sendRequest (rpc) {

// create the context
const r = in3w.ccall('in3_create_request_ctx', 'number', ['number', 'string'],
— [this.ptr, JSON.stringify (rpc)]);

[

// hold a queue for responses for the different request contexts
let responses = {}

try {
// main async loop
while (true) {

// execute and fetch the new state (in this case the ctx_execute-function,
—will return the status including the created request as json)
const state = JSON.parse(call_string('ctx execute', r))
switch (state.status) {
// CTX_ERROR
case 'error':
throw new Error (state.error || 'Unknown error')

// CTX_SUCCESS
case 'ok':
return state.result

// CTX_WAITING_FOR_RESPONSE
case 'waiting':
// await the promise for the next response (the state.request,
—contains the context-pointer to know which queue)
await getNextResponse (responses, state.request)
break

// CTX _WAITING_TO_SEND

case 'request': {
// the request already contains the type, urls and payload.
const req = state.request

switch (req.type) {
case 'sign':
try {

(continues on next page)

9.4. How it works 137

Incubed Documentation, Release 2.3

(continued from previous page)

// get the message and account from the request

const [message, account] = Array.isArray(reg.payload) 7
—req.payload[0] .params : req.payload.params;

// check 1if can sign

if (! (await this.signer.canSign (account))) throw new

—Error ("unknown account ' + account)
// and set the signature (65 bytes) as response.
setResponse (req.ctx, toHex(await this.signer.
—sign (message, account, true, false)), 0, false)
} catch (ex) {
// or set the error
setResponse (req.ctx, ex.message || ex, 0, true)
}

break;

case 'rpc':
// here we will send a new request, which puts its,
—responses in a queue
await getNextResponse (responses, redq)

}

finally {
// we always need to cleanup
in3w.ccall ('in3_request_free', 'void', ['number'], [r])

9.5 Plugins

While the core is kept as small as possible, we defined actions, which can be implemented by plugins. The core alone
would not be able to do any good. While the in3-c repository already provides default implementations for all actions,
as a developer you can always extend or replace those. There are good reasons to do so:

* optimizing by using a smaller plugin (like replacing the nodelist handling)
* allowing custom rpc-commands

* changing behavior ...

9.5.1 What is a plugin?

Each plugin needs to define those 3 things:
1. Actions - Which actions do I want handle. This is a bitmask with the actions set. You can use any combination.

2. Custom data - This optional data object may contain configurations or other data. If you don’t need to hold any
data, you may pass NULL

3. Exec-function - This is a function pointer to a function which will be called whenever the plugin is used.

With these 3 things you can register a plugin with the in3_plugin_register () -function:

138 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

return in3_plugin_register ("myplugin" // the plugin name
c, // the client
PLGN_ACT_TERM | PLGN_ACT_RPC_HANDLE, // the actions to register for
handle_rpc, // the plugin-function
cutom_data, // the custom data (if needed)
false); // a bool indicating whether it

—should always add or replace a plugin with the exact same actions.

The Plugin-function

Each Plugin must provide a PLugin-function to execute with the following signature:

in3_ret_t handle(

voidx* custom_data, // the custom data as passed in the register-function
in3_plugin_act_t action, // the action to execute
voidx arguments) ; // the arguments (depending on the action)

While the custom_data is just the pointer to your data-object, the arguments contain a pointer to a context
object. This object depends on the action you are reacting.

All plugins are stored in a linked list and when we want to trigger a specific actions we will loop through all, but only
execute the function if the required action is set in the bitmask. Except for PLGN_ACT_TERM we will loop until the
first plugin handles it. The handle-function must return a return code indicating this:

* IN3_OK - the plugin handled it and it was succesful

e IN3_WAITING - the plugin handled the action, but is waiting for more data, which happens in a sub context
added. As soon as this was resolved, the plugin will be called again.

* IN3_EIGNORE - the plugin did NOT handle the action and we should continue with the other plugins.

e IN3_E.. . - the plugin did handle it, but raised a error and returned the error-code. In addition you should
always use the current in3_ctx_tto report a detailed error-message (using ctx_set_error ())

9.5.2 Lifecycle
PLGN_ACT_TERM

This action will be triggered during in3_ free and must be used to free up resources which were allocated.

arguments : in3_t«* - the in3-instance will be passed as argument.

9.5.3 Transport

For Transport implementations you should always register for those 3 PLGN_ACT_TRANSPORT_SEND |
PLGN_ACT_TRANSPORT_RECEIVE | PLGN_ACT_TRANSPORT_CLEAN. This is why you can also use the macro
combining those as PLGN_ACT_TRANSPORT

PLGN_ACT_TRANSPORT_SEND

Send will be triggered only if the request is executed synchron, whenever a new request needs to be send out. This
request may contain multiple urls, but the same payload.

arguments : in3_request_t«* - arequest-object holding the following data:

9.5. Plugins 139

Incubed Documentation, Release 2.3

typedef struct in3_request {

char~ payload; // the payload to send

charx« urls; // array of urls

uint_ fastlé_t urls_len; // number of urls

in3_ctx_t= ctx; // the current context

voidx cptr; // a custom ptr to hold information during

} in3_request_t;

It is expected that a plugin will send out http-requests to each (iterating until urls_1len) url from urls with the
payload. if the payload is NULL or empty the request is a GET-request. Otherwise, the plugin must use send it with
HTTP-Header Content-Type: application/json and attach the payload.

After the request is send out the cptr may be set in order to fetch the responses later. This allows us the fetch
responses as they come in instead of waiting for the last response before continuing.

Example:

in3_ret_t transport_handle (void* custom_data, in3_plugin, in3_plugin_act_t action,
—voidx arguments) {
switch (action) {

case PLGN_ACT_TRANSPORT_SEND: {
in3_request_t* reqg = arguments; // cast it to in3 request_t#

// init the cptr

in3_curl_t+* c _malloc(sizeof (in3_curl_t));

c—>cm = curl_multi_init(); // init curl

c->start = current_ms () ; // keep the staring time
c; // set the cptr

reg->cptr

// define headers
curl_multi_setopt (c->cm, CURLMOPT_MAXCONNECTS, (long) CURL_MAX_ PARALLEL);
struct curl_slistx headers = curl_slist_append (NULL, "Accept: application/json

if (reg—>payload && *reg—>payload)

headers = curl_slist_append (headers, "Content-Type: application/json™);
headers = curl_slist_append(headers, "charsets: utf-8");
c—>headers = curl_slist_append (headers, "User—-Agent: in3 curl " IN3_VERSION) ;

// send out requests in parallel
for (unsigned int i = 0; i < reg->urls_len; i++)
readDataNonBlocking (c->cm, reg->urls[i], reg->payload, c->headers, reg->ctx—>

—raw_response + i, reg->ctx->client->timeout);

return IN3_OK;

// handle other actions

PLGN_ACT_TRANSPORT_RECEIVE

This will only triggered if the previously triggered PLGN_ACT_TRANSPORT_SEND
¢ was successfull (IN3_OK)

« if the responses were not all set yet.

140 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

e if a cptr was set
arguments : in3_request_t* - arequest-object holding the data. (the payload and urls may not be set!)

The plugin needs to wait until the first response was received (or runs into a timeout). To report, please use
‘in3_req_add_response()*

void in3_req_add_response (

in3_request_t»* req, // the the request

int index, // the index of the url, since this request could go_
—out to many urls

bool is_error, // if true this will be reported as error. the message,
—should then be the error-message

const charx data, // the data or the the string of the response

int data_len, // the length of the data or the the string (use -1 if
—~data is a null terminated string)

uint32_t time // the time (in ms) this request took in ms or 0 if not,

—possible (it will be used to calculate the weights)
)

In case of a succesful response:

in3_reqg_add_response (request, index, false, response_data, -1, current_ms() - start); ‘

in case of an error, the data is the error message itself:

in3_reqg_add_response (request, index, true, "Timeout waiting for a response”, -1, 0); ‘

PLGN_ACT_TRANSPORT_CLEAN

If a previous PLGN_ACT_TRANSPORT_SEND has set a cpt r this will be triggered in order to clean up memory.

arguments : in3_request_tx* - arequest-object holding the data. (the payload and urls may not be set!)

9.5.4 Signing

For Signing we have three different action. While PLGN_ACT_SIGN should alos react to
PLGN_ACT_SIGN_ACCOUNT, PLGN_ACT_SIGN_PREPARE can also be completly independent.

PLGN_ACT_SIGN

This action is triggered as a request to sign data.

arguments : in3_sign_ctx_tx - the sign context will hold those data:

typedef struct sign_ctx {

uint8_t signature[65]; // the resulting signature needs to be writte,
—into these bytes

d_signature_type_t type; // the type of signature

in3_ctx_tx* ctx; // the context of the request in order report,,
—errors

bytes_t message; // the message to sign

bytes_t account; // the account to use for the signature (1f set)

} in3_sign_ctx_t;

The signature must be 65 bytes and in the format , where v must be the recovery byte and should only be 1 or 0.

9.5. Plugins 141

Incubed Documentation, Release 2.3

r[32)1s[32]|v[1]

Currently there are 2 types of sign-request:
* SIGN_EC_RAW : the data is already 256bits and may be used directly

e SIGN_EC_HASH : the data may be any kind of message, and need to be hashed first. As hash we will use
Keccak.

Example:

in3_ret_t eth_sign_pk (void* data, in3_plugin_act_t action, wvoidx args) {
// the data are our pk
uint8_t+ pk = data;

switch (action) {

case PLGN_ACT SIGN: {
// cast the context
in3_sign_ctx_t* ctx = args;

// if there is a account set, we only sign if this matches our account
// this way we allow multiple accounts to added as plugin
if (ctx—>account.len == 20) {
address_t adr;
get_address (pk, adr);
if (memcmp (adr, ctx->account.data, 20))
return IN3_EIGNORE; // does not match, let someone else handle it

// sign based on sign type
switch (ctx->type) {
case SIGN_EC_RAW:
return ec_sign_pk_raw(ctx->message.data, pk, ctx->signature);
case SIGN_EC_HASH:
return ec_sign_pk_hash (ctx->message.data, ctx->message.len, pk, hasher_
—sha3k, ctx->signature);
default:
return IN3_ENOTSUP;

case PLGN_ACT_SIGN_ACCOUNT: ({
// cast the context
in3_sign_account_ctx_t* ctx = args;

// generate the address from the key
get_address (pk, ctx->account);
return IN3_OK;

default:
return IN3_ENOTSUP;

in3_ret_t eth_set_pk_signer (in3_t* in3, bytes32_t pk) {

(continues on next page)

142 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

(continued from previous page)

// we register for both ACCOUNT and SIGN
return plugin_register (in3, PLGN_ACT_SIGN_ACCOUNT
—~false);

}

PLGN_ACT_SIGN, eth_sign_pk, pk,.

PLGN_ACT_SIGN_ACCOUNT

if we are about to sign data and need to know the address of the account abnout to sign, this action will be triggered in
order to find out. This is needed if you want to send a transaction without specifying the £ rom address, we will still
need to get the nonce for this account before signing.

arguments : in3_sign_account_ctx_t«* - the account context will hold those data:

typedef struct sign_account_ctx {
in3_ctx_t* ctx; // the context of the request in order report errors
address_t account; // the account to use for the signature

} in3_sign_account_ctx_t;

The implementation should return a status code “IN3_OK" if it successfully wrote the address of the account into the
content:

Example:

in3_ret_t eth_sign_pk(voidx data, in3_plugin_act_t action, woidx args) {
// the data are our pk
uint8_t+ pk = data;

switch (action) {

case PLGN_ACT_SIGN_ACCOUNT: {
// cast the context
in3_sign_account_ctx_t* ctx = args;

// generate the address from the key
// and write it into account
get_address (pk, ctx—->account);
return IN3_OK;

// handle other actions

default:
return IN3_ENOTSUP;

PLGN_ACT_SIGN_PREPARE

The Prepare-action is triggered before signing and gives a plugin the chance to change the data. This is needed if you
want to send a transaction through a multisig. Here we have to change the data and t o address.

arguments: in3_sign_prepare_ctx_t« - the prepare context will hold those data:

9.5. Plugins 143

Incubed Documentation, Release 2.3

typedef struct sign_prepare_ctx {

struct in3_ctxx ctx; // the context of the request in order report errors
address_t account; // the account to use for the signature

bytes_t old_tx; // the data to sign

bytes_t new_tx; // the new data to be set

} in3_sign_prepare_ctx_t;

the tx-data will be in a form ready to sign, which means those are rlp-encoded data of a transaction without a signature,
but the chain-id as v-value.

In order to decode the data you must use rlp.h:

#define decode (data, index,dst,msg) if (rlp_decode_in 1list (data, index, dst) != 1)_
—return ctx_set_error(ctx, "invalid" msg "in txdata", IN3_EINVAL);

in3_ret_t decode_tx (in3_ctx_t* ctx, bytes_t raw, tx_data_t* result) {

decode (&raw, 0, &result->nonce , "nonce");
decode (&raw, 1, &result->gas_price, "gas_price");
decode (&raw, 2, &result->gas , "gas");
decode (&raw, 3, &result->to , "to");

decode (&raw, 4, &result->value , "value");
decode (&raw, 5, &result->data , "data");
decode (&raw, 6, &result->v , ")

return IN3_OK;

and of course once the data has changes you need to encode it again and set it as ‘nex_tx*

9.5.5 RPC Handling
PLGN_ACT_RPC_HANDLE

Triggered for each rpc-request in order to give plugins a chance to directly handle it. If no onoe handles it it will be
send to the nodes.

arguments: in3_rpc_handle_ctx_t« - the rpc_handle context will hold those data:

typedef struct {

in3_ctx_t=* ctx; // Request context.

d_token_t=* request; // request

in3_response_t+** response; // the response which a prehandle-method should set
} in3_rpc_handle_ctx_t;

the steps to add a new custom rpc-method will be the following.

1. get the method and params:

char+ method d_get_stringk (rpc—>request, K_METHOD) ;
d_token_t* params = d_get (rpc—>request, K_PARAMS);

1. check if you can handle it

2. handle it and set the result

in3_rpc_handle_with_int (rpc, result);

144 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

for setting the result you should use one of the in3_rpc_handle_ ... methods. Those will create the response
and build the JSON-string with the result. While most of those expect the result as a sngle value you can also return a
complex JSON-Object. In this case you have to create a string builder:

sb_t* writer = in3_rpc_handle_start (rpc);
sb_add_chars (writer, "{\"raw\":\"");
sb_add_escaped_chars (writer, raw_string);
// ... more data

sb_add_chars (writer, "}");

return in3_rpc_handle_finish (rpc);

1. In case of an error, simply set the error in the context, with the right message and error-code:

if (d_len(params)<1l) return ctx_set_error (rpc->ctx, "Not enough parameters", IN3_
EINVAL) ;

If the reequest needs additional subrequests, you need to follow the pattern of sending a request asynchron in a state
machine:

// we want to get the nonce.....
uint64_t nonce =0;

// check if a request is already existing

in3_ctx_t* ctx = ctx_find_required(rpc->ctx, "eth_getTransactionCount");
if (ctx) |

// found one - so we check if it is ready.

switch (in3_ctx_state(ctx)) {

// in case of an error, we report it back to the parent context
case CTX_ERROR:
return ctx_set_error (rpc->ctx, ctx->error, IN3_EUNKNOWN) ;
// if we are still waiting, we stop here and report 1it.
case CTX_WAITING_FOR_RESPONSE:
case CTX WAITING_TO_SEND:
return IN3_WAITING;

// 1f it 1is useable, we can now handle the result.
case CTX_SUCCESS: {

// check if the response contains a error.

TRY (ctx_check_response_error (ctx, 0))

// read the nonce
nonce = d_get_longk (ctx—>responses[0], K_RESULT);

}
else {
// no required context found yet, so we create one:

// since this is a subrequest it will be freed when the parent is freed.

// allocate memory for the request-string

charx req = _malloc(strlen(params) + 200);

// create it

sprintf (req, "{\"method\":\"eth_getTransactionCount\",\"jsonrpc\":\"2.0\",\"id\":1,\
—"params\": [\"%s\",\"latest\"]}", account_hex_string);

// and add the request context to the parent.

return ctx_add_required(parent, ctx_new(parent->client, req));

(continues on next page)

9.5. Plugins 145

Incubed Documentation, Release 2.3

(continued from previous page)

// continue here and use the nonce....

Here is a simple Example how to register a plugin hashing data:

static in3_ret_t handle_intern(void* pdata, in3_plugin_act_t action, wvoidx args) {
UNUSED_VAR (pdata) ;

// cast args
in3_rpc_handle_ctx_t+* rpc = args;

swtch (action) {
case PLGN_ACT RPC_HANDLE: {
// get method and params
charx method = d_get_stringk (rpc->request, K_METHOD) ;
d_token_t# params = d_get (rpc—>request, K_PARAMS);

// do we support it?
if (strcmp (method, "web3_sha3"™) == 0) {
// check the params
if (!params || d_len(params) != 1) return ctx_set_error (rpc->ctx, "invalid,
—params", IN3_EINVAL);
bytes32_t hash;
// hash the first param
keccak (d_to_bytes (d_get_at (params, 0)), hash);
// return the hash as resut.
return in3_rpc_handle_with_bytes (ctx, bytes(hash, 32));

// we don't support this method, so we ignore it.
return IN3_EIGNORE;

default:
return IN3_ENOTSUP;

in3_ret_t in3_register_rpc_handler (in3_tx c) {
return plugin_register (c, PLGN_ACT_RPC_HANDLE, handle_intern, NULL, false);

PLGN_ACT_RPC_VERIFY

This plugin reprresents a verifier. It will be triggered after we have received a response from a node.

arguments : in3_vctx_t« - the verification context will hold those data:

typedef struct {

in3_ctx_t=* ctx; // Request context.

in3_chain_t* chain; // the chain definition.

d_token_t~ result; // the result to verify

d_token_t* request; // the request sent.

d_token_t+* proof; // the delivered proof.

in3_t« client; // the client.

uint64_t last_validator_change; // Block number of last change of the validator,
—1list

(continues on next page)

146 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

(continued from previous page)

uint64_t currentBlock; // Block number of latest block
int index; // the index of the request within the bulk
} in3_vectx_t;

Example:

in3_ret_t in3_verify_ ipfs(voids pdata, in3_plugin_act_t action, voidx args) {
if (action!=PLGN_ACT_RPC_VERIFY) return IN3_ENOTSUP;
UNUSED_VAR (pdata) ;

// we want this verifier to handle ipfs—-chains

if (vc->chain->type != CHAIN_IPFS) return IN3_EIGNORE;
in3_vectx_t* vc = args;
charx* method = d_get_stringk (vc—>request, K_METHOD) ;

d_token_t* params = d_get (vc—->request, K_PARAMS);

// did we ask for proof?
if (in3_ctx_get_proof (vc—>ctx, vc->index) == PROOF_NONE) return IN3_OK;

// do we have a result? if not it is a vaslid error-response
if (!vc—>result)
return IN3_OK;

if (strcmp (method, "ipfs_get") == 0)
return ipfs_verify_hash(d_string(vc->result),
d_get_string_at (params, 1) ? d_get_string_at (params, 1)
—"base64d",
d_get_string_at (params, 0));

// could not verify, so we hope some other plugin will

return IN3_EIGNORE;

in3_ret_t in3_register_ipfs(in3_tx c) {
return plugin_register(c, PLGN_ACT_RPC_VERIFY, in3_verify_ipfs, NULL, false);

9.5.6 Cache/Storage

For Cache implementations you also need to register all 3 actions.

PLGN_ACT_CACHE_SET

This action will be triggered whenever there is something worth putting in a cache. If no plugin picks it up, it is ok,
since the cache is optional.

arguments : in3_cache_ctx_tx - the cache context will hold those data:

typedef struct in3_cache_ctx {
in3_ctx_t* ctx; // the request context
charx key; // the key to fetch

(continues on next page)

9.5. Plugins 147

Incubed Documentation, Release 2.3

(continued from previous page)

bytes_tx* content; // the content to set
} in3_cache_ctx_t;

in the case of CACHE_SET the content will point to the bytes we need to store somewhere. If for whatever reason the
item can not be stored, a IN3_EIGNORE should be send, since to indicate that no action took place.

Example:

e}
in3_ret_t handle_storage (voidx data, in3_plugin_act_t action, voidx arg) {
in3_cache_ctx_tx ctx = arg;
switch (action) {
case PLGN_ACT_CACHE_GET: {
ctx->content = storage_get_item(data, ctx->key);
return ctx->content ? IN3_OK : IN3_EIGNORE;
}
case PLGN_ACT_CACHE_SET: {
storage_set_item(data, ctx->key, ctx->content);
return IN3_OK;
}
case PLGN_ACT_CACHE_CLEAR: {
storage_clear (data);
return IN3_OK;
}
default: return IN3_EINVAL;

in3_ret_t in3_register_file_storage (in3_tx c) {
return plugin_register (c, PLGN_ACT_CACHE, handle_storage, NULL, true);

PLGN_ACT_CACHE_GET

This action will be triggered whenever we access the cache in order to get values.

arguments : in3_cache_ctx_t« - the cache context will hold those data:

typedef struct in3_cache_ctx {
in3_ctx_t* ctx; // the request context
char~ key; // the key to fetch
bytes_tx* content; // the content to set
} in3_cache_ctx_t;

in the case of CACHE_GET the content will be NULL and needs to be set to point to the found values. If we did not
find it in the cache, we must return IN3_EIGNORE.

Example:

‘c
ctx->content = storage_get_item(data, ctx->key);
return ctx->content ? IN3_OK : IN3_EIGNORE;

148 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

PLGN_ACT_CACHE_CLEAR

This action will clear all stored values in the cache.
arguments :NULL - so no argument will be passed.
9.5.7 Configuration

For Configuration there are 2 actions for getting and setting. You should always implement both.

Example:

static in3_ret_t handle_btc(void+ custom_data, in3_plugin_act_t action, wvoidx args) {
btc_target_conf_tx conf = custom_data;
switch (action) {
// clean up
case PLGN_ACT_TERM: {
if (conf->data.data) _free(conf->data.data);
_free(conf);
return IN3_OK;

// read config

case PLGN_ACT CONFIG_GET: {
in3_get_config_ctx_t* cctx = args;
sb_add_chars (cctx—>sb, ", \"maxDAP\":");
sb_add_int (cctx—>sb, conf->max_daps);
sb_add_chars (cctx->sb, ",\"maxDiff\":");
sb_add_int (cctx->sb, conf->max_diff);
return IN3_OK;

// configure
case PLGN_ACT CONFIG_SET: {
in3_configure_ctx_t* cctx = args;
if (cctx—>token—->key == key ("maxDAP"))
conf->max_daps = d_int (cctx—>token);
else if (cctx—>token->key == key ("maxDiff"))
conf->max_diff = d_int (cctx—>token);
else
return IN3_EIGNORE;
return IN3_OK;

case PLGN_ACT_RPC_VERIFY:
return in3_verify_ btc(conf, pctx);

default:
return IN3_ENOTSUP;

in3_ret_t in3_register_btc(in3_tx c) {
// init the config with defaults
btc_target_conf_tx tc = _calloc(l, sizeof (btc_target_conf_t));
tc—>max_daps = 20;

(continues on next page)

9.5. Plugins 149

Incubed Documentation, Release 2.3

(continued from previous page)

tc—>max_diff = 10;
tc->dap_limit 20;

return plugin_register(c, PLGN_ACT_RPC_VERIFY | PLGN_ACT_TERM | PLGN_ACT_CONFIG_GET,
— | PLGN_ACT_CONFIG_SET, handle_btc, tc, false);
}

PLGN_ACT_CONFIG_GET

This action will be triggered during in3_get_config () and should dump all config from all plugins.

arguments : in3_get_config_ctx_tx - the config context will hold those data:

typedef struct in3_get_config_ctx {
in3_t«* client;
sb_t* sb;

} in3_get_config_ctx_t;

if you are using any configuration you should use the sb field and add your values to it. Each property must start with
a comma.

in3_get_config_ctx_t* cctx = args;

sb_add_chars (cctx->sb, ", \"maxDAP\":");
sb_add_int (cctx->sb, conf->max_daps);
sb_add_chars (cctx->sb, ",\"maxDiff\":");

sb_add_int (cctx->sb, conf->max_diff);

PLGN_ACT_CONFIG_SET

This action will be triggered during the configuration-process. While going through all config-properties, it will ask
the plugins in case a config was not handled. So this action may be triggered multiple times. And the plugin should
only return IN3_OK if it was handled. If no plugin handles it, a error will be thrown.

arguments: in3_configure_ctx_t* - the cache context will hold those data:

typedef struct in3_configure_ctx {
in3_t«* client; // the client to configure
d_token_t* token; // the token not handled yet
} in3_configure_ctx_t;

In order to check if the token is relevant for you, you simply check the name of the property and handle its value:

in3_configure_ctx_t* cctx = pctx;

if (cctx—>token->key == key ("maxDAP"))
conf->max_daps = d_int (cctx—->token) ;

else if (cctx->token->key == key("maxDiff"))
conf->max_diff = d_int (cctx—>token);

else
return IN3_EIGNORE;

return IN3_O0K;

9.5.8 Payment

150 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

PLGN_ACT_PAY_PREPARE
PLGN_ACT_PAY_FOLLOWUP
PLGN_ACT_PAY_HANDLE
PLGN_ACT_PAY_SIGN_REQ

this will be triggered in order to sign a request. It will provide a request_hash and expects a signature.

arguments : in3_pay_sign_req_ctx_t«* - the sign context will hold those data:

typedef struct {
in3_ctx_t+* ctx;
d_token_t* request;
bytes32_t request_hash;
uint8_t signature[65];
} in3_pay_sign_req ctx_t;

It is expected that the plugin will create a signature and write it into the context.

Example:

in3_pay_sign_req ctx_tx ctx = args;
return ec_sign_pk_raw(ctx—->request_hash, pk->key, ctx->signature);

9.5.9 Nodelist
PLGN_ACT_NL_PICK_DATA
PLGN_ACT_NL_PICK_SIGNER

PLGN_ACT_NL_PICK_FOLLOWUP

9.6 Integration of Ledger Nano S

1. Ways to integrate Ledger Nano S
2. Build incubed source with ledger nano module

3. Start using ledger nano s device with Incubed

9.6.1 Ways to integrate Ledger Nano S

Currently there are two ways to integrate Ledger Nano S with incubed for transaction and message signing:
1. Install Ethereum app from Ledger Manager
2. Setup development environment and install incubed signer app on your Ledger device

Option 1 is the convinient choice for most of the people as incubed signer app is not available to be installed from
Ledger Manager and it will take efforts to configure development environment for ledger manager. The main differ-
ences in above approaches are following:

9.6. Integration of Ledger Nano S 151

Incubed Documentation, Release 2.3

If you are confortable with Option 1 , all you need to do is setup you Ledger device as per usual instructions and
install Ethereum app form Ledger Manager store. Otherwise if you are interested in Option 2 Please follow all the
instructions given in “Setup development environment for ledger nano s” section .

Ethereum official Ledger app requires rlp encoded transactions for signing and there
—1is not much scope for customization.Currently we have support for following,
—operations with Ethereum app:

1. Getting public key

2. Sign Transactions

3. Sign Messages

Incubed signer app required just hash , so it is better option if you are looking to
—integrate incubed in such a way that you would manage all data formation on your,
—end and use just hash to get signture from Ledger Nano S and use the signature as_,
—per your wish.

Setup development environment for ledger nano s

Setting up dev environment for Ledger nano s is one time activity and incubed signer application will be available to
install directly from Ledger Manager in future. Ledger nano applications need linux System (recommended is Ubuntu)
to build the binary to be installed on Ledger nano devices

Download Toolchains and Nanos ledger SDK (As per latest Ubuntu LTS)

Download the Nano S SDK in bolos-sdk folder

$ git clone https://github.com/ledgerhqg/nanos—-secure-sdk

Download a prebuild gcc and move it to bolos-sdk folder
Ref: https://launchpad.net/gcc-arm-embedded/+milestone/5-2016-gl-update

Download a prebuild clang and rename the folder to clang-arm-fropi then move it to,
—bolos—-sdk folder
Ref: http://releases.llvm.org/download.html#4.0.0

Add environment variables:

sudo —-H gedit /etc/environment

ADD PATH TO BOLOS SDK:
BOLOS_SDK="<path>/nanos-secure-sdk"

ADD GCCPATH VARIABLE
GCCPATH="<path>/gcc-arm-none-eabi-5_3-2016gl/bin/"

ADD CLANGPATH
CLANGPATH="<path>/clang-arm-fropi/bin/"

Download and install ledger python tools

Installation prerequisites :

152 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

sudo apt-get install libudev-dev <

sudo apt-get install libusb-1.0-0-dev

sudo apt-get install python-dev (python 2.7)
sudo apt-get install virtualenv

v »r A

Installation of ledgerblue:

$ virtualenv ledger
$ source ledger/bin/activate
$ pip install ledgerblue

Ref: https://github.com/LedgerHQ/blue-loader-python

Download and install ledger udev rules

run script from the above download

Open new terminal and check for following installations

$ sudo apt-get install gcc-multilib
$ sudo apt-get install libc6-dev:i386

Install incubed signer app

Once you complete all the steps, go to folder “c/src/signer/ledger-nano/firmware” and run following command , It will
ask you to enter pin for approve installation on ledger nano device. follow all the steps and it will be done.

make load

9.6.2 Build incubed source with ledger nano module

To build incubed source with ledger nano:-
1. Open root CMakeLists file and find LEDGER_NANO option
2. Turn LEDGER_NANO option ON which is by default OFF

3. Build incubed source

cd build
cmake .. && make

9.6.3 Start using ledger nano s device with Incubed

Open the application on your ledger nano s usb device and make signing requests from incubed.

Following is the sample command to sendTransaction from command line utility:-

9.6. Integration of Ledger Nano S 153

https://github.com/LedgerHQ/blue-loader-python

Incubed Documentation, Release 2.3

bin/in3 send -to 0xd46e8dd67c5d32be8058bb8eb970870£07244567 -gas 0x96c0 -value,
—0x9184e72a -path 0x2c3c000000 -debug

-path points to specific public/private key pair inside HD wallet derivation path . For Ethereum the default path is
m/44°/60°/0°/0 , which we can pass in simplified way as hex string i.e [44,60,00,00,00] => 0x2¢3c000000

If you want to use apis to integrate ledger nano support in your incubed application , feel free to explore apis given
following header files:-

ledger_signer.h : It contains APIs to integrate ledger nano device with incubed
—signer app.

ethereum_apdu_client.h : It contains APIs to integrate ledger nano device with_
—Ethereum ledger app.

9.7 Module api

9.7.1 btc_api.h

BTC APL

This header-file defines easy to use function, which are preparing the JSON-RPC-Request, which is then executed and
verified by the incubed-client.

File: c/src/api/btc/btc_api.h

btc_last_error ()

< The current error or null if all is ok

#define btc_last_error () api_last_error()

btc_transaction_in_t

the tx in

The stuct contains following fields:

uint32_t | vout the tx index of the output
bytes32_t txid the tx id of the output
uint32_t | sequence the sequence

bytes_t script the script

bytes_t txinwitness | witnessdata (if used)

btc_transaction_out_t

the tx out

The stuct contains following fields:

154 Chapter 9. API Reference C

https://github.com/slockit/in3-c/blob/master/c/src/api/btc/btc_api.h

Incubed Documentation, Release 2.3

uint64_t | value the value of the tx
uint32_t | n the index
bytes_t script_pubkey | the script pubkey (or signature)

btc_transaction_t

a transaction

The stuct contains following fields:

bool in_active_chain | true if it is part of the active chain

bytes_t data the serialized transaction-data

bytes32_t txid the transaction id

bytes32_t hash the transaction hash

uint32_t size raw size of the transaction

uint32_t vsize virtual size of the transaction

uint32_t weight weight of the tx

uint32_t version used version

uint32_t locktime locktime

btc_transaction_in_t * | vin array of transaction inputs

btc_transaction_out_t | vout array of transaction outputs

sk

uint32_t vin_len number of tx inputs

uint32_t vout_len number of tx outputs

bytes32_t blockhash hash of block containing the tx

uint32_t confirmations | number of confirmations or blocks mined on top of the containing
block

uint32_t time unix timestamp in seconds since 1970

uint32_t blocktime unix timestamp in seconds since 1970

btc_blockheader _t

the blockheader

The stuct contains following fields:

bytes32_t hash the hash of the blockheader

uint32_t | confirmations | number of confirmations or blocks mined on top of the containing block
uint32_t | height block number

uint32_t | version used version

bytes32_t merkleroot merkle root of the trie of all transactions in the block
uint32_t | time unix timestamp in seconds since 1970

uint32_t | nonce nonce-field of the block

uint8_t bits bits (target) for the block

bytes32_t chainwork total amount of work since genesis

uint32_t | n_tx number of transactions in the block

bytes32_t previous_hash | hash of the parent blockheader

bytes32_t next_hash hash of the next blockheader

uint8_t data raw serialized header-bytes

9.7. Module api

155

Incubed Documentation, Release 2.3

btc_block txdata t

a block with all transactions including their full data

The stuct contains following fields:

btc_block txids t

a block with all transaction ids

The stuct contains following fields:

btc_blockheader_t | header | the blockheader
uint32_t tx_len | number of transactions

btc_transaction_t * | tx array of transactiondata
btc_blockheader t | header | the blockheader
uint32_t tx_len number of transactions
bytes32_t * tx array of transaction ids

btc_get_transaction_bytes

bytes_tx btc_get_transaction_bytes (in3_t *in3, bytes32_t txid);

gets the transaction as raw bytes or null if it does not exist.

You must free the result with b_free() after use!

arguments:

in3_t*

in3

the in3-instance

bytes32_t

txid

the txid

returns: bytes_t «*

btc_get_transaction

btc_transaction_t* btc_get_transaction (in3_t

*in3, bytes32_t txid);

gets the transaction as struct or null if it does not exist.

You must free the result with free() after use!

arguments:

in3_t*

in3

the in3-instance

bytes32_t

txid

the txid

returns: btc_transaction t «*

156

Chapter 9

. APl Reference C

Incubed Documentation, Release 2.3

btc_get_blockheader

btc_blockheader_t+ btc_get_blockheader (in3_t *in3, bytes32_t blockhash);

gets the blockheader as struct or null if it does not exist.
You must free the result with free() after use!

arguments:

in3_t* in3 the in3-instance
bytes32_t | blockhash | the block hash

returns: btc_blockheader t «*

btc_get_blockheader_bytes

bytes_tx btc_get_blockheader_bytes (in3_t *in3, bytes32_t blockhash);

gets the blockheader as raw serialized data (80 bytes) or null if it does not exist.
You must free the result with b_free() after use!

arguments:

in3_t* in3 the in3-instance
bytes32_t | blockhash | the block hash

returns: bytes_t *

btc_get_block_txdata

btc_block_txdata_t+ btc_get_block_txdata (in3_t =in3, bytes32_t blockhash);

gets the block as struct including all transaction data or null if it does not exist.
You must free the result with free() after use!

arguments:

in3 t* in3 the in3-instance
bytes32_t | blockhash | the block hash

returns: btc_block txdata t =

btc_get_block_txids

btc_block_txids_t* btc_get_block_ txids(in3_t *in3, bytes32_t blockhash);

9.7. Module api 157

Incubed Documentation, Release 2.3

gets the block as struct including all transaction ids or null if it does not exist.
You must free the result with free() after use!

arguments:

in3_t* in3 the in3-instance
bytes32_t | blockhash | the block hash

returns: btc_block txids t *

btc_get_block_bytes

bytes_tx btc_get_block_bytes (in3_t xin3, bytes32_t blockhash);

gets the block as raw serialized block bytes including all transactions or null if it does not exist.
You must free the result with b_free() after use!

arguments:

in3 t* in3 the in3-instance
bytes32_t | blockhash | the block hash

returns: bytes_t *

btc_d to tx

btc_transaction_t+* btc_d_to_tx(d_token_t =*t);

Deserialization helpers.

arguments:

d_token_t * \ t ‘

returns: btc_transaction t «*

btc_d_to_blockheader

btc_blockheader_t* btc_d_to_blockheader (d_token_t =«t);

Deserializes a btc_transaction_t type.
You must free the result with free() after use!

arguments:

d_token_t * ‘ t ‘

returns: btc_blockheader t =

158 Chapter 9

. APl Reference C

Incubed Documentation, Release 2.3

btc_d to block txids

btc_block_txids_t+ btc_d_to_block_txids (d_token_t =*t);

Deserializes a bt c_blockheader_t type.
You must free the result with free() after use!

arguments:

d_token_t * \ t ‘

returns: btc_block txids_t #*

btc_d to block txdata

btc_block_txdata_t+* btc_d_to_block_txdata(d_token_t =t);

Deserializes a btc_block_txids_t type.
You must free the result with free() after use!

arguments:

d_token_t * ‘ t ‘

returns: btc_block txdata_ t «*

9.7.2 eth_api.h

Ethereum API.

This header-file defines easy to use function, which are preparing the JSON-RPC-Request, which is then executed and
verified by the incubed-client.

File: c/src/api/ethl/eth_api.h

BLKNUM (blk)

Initializer macros for eth_blknum_t.

’#define BLKNUM (blk) ((eth_blknum t){.u64 = blk, .is _ué64 = true})

BLKNUM_LATEST ()

’#define BLKNUM_LATEST () ((eth_blknum t){.def = BLK LATEST, .is_u64 = false})

BLKNUM_EARLIEST ()

9.7. Module api 159

https://github.com/slockit/in3-c/blob/master/c/src/api/eth1/eth_api.h

Incubed Documentation, Release 2.3

#define BLKNUM _FEARLIEST () ((eth_blknum t){.def = BLK_EARLIEST, .is _u64 = false})
BLKNUM_PENDING ()

The current error or null if all is ok.

’#define BLKNUM_PENDING () ((eth_blknum t){.def = BLK_PENDING, .is_u64 = false})

eth_last_error ()

’#define eth_last_error () api_last_error()

eth_blknum_def t

Abstract type for holding a block number.

The enum type contains the following values:

eth_tx_t

A transaction.

The stuct contains following fields:

BLK_LATEST
BLK_EARLIEST
BLK_PENDING

N = O

bytes32_t hash the blockhash
bytes32_t block_hash hash of ther containnig block
uint64_t | block_number number of the containing block
address_t from sender of the tx
uint64_t | gas gas send along
uint64_t | gas_price gas price used
bytes_t data data send along with the transaction
uint64_t | nonce nonce of the transaction
address_t to receiver of the address 0x0000.
. -Address is used for contract creation.
uint256_t value the value in wei send
int transaction_index | the transaction index
uint8_t signature signature of the transaction
eth_block_t
An Ethereum Block.

The stuct contains following fields:

160

Chapter 9

. APl Reference C

Incubed Documentation, Release 2.3

uint64_t | number the blockNumber

bytes32_t hash the blockhash

uinte64_t | gasUsed gas used by all the transactions

uint64_t | gasLimit gasLimit

address_t author the author of the block.

uint256_t difficulty the difficulty of the block.

bytes_t extra_data the extra_data of the block.

uint8_t logsBloom the logsBloom-data

bytes32_t parent_hash the hash of the parent-block

bytes32_t sha3_uncles root hash of the uncle-trie

bytes32_t state_root root hash of the state-trie

bytes32_t receipts_root root of the receipts trie

bytes32_t transaction_root | root of the transaction trie

int tx_count number of transactions in the block

eth_tx_t * tx_data array of transaction data or NULL if not requested
bytes32_t * | tx_hashes array of transaction hashes or NULL if not requested
uint64_t | timestamp the unix timestamp of the block

bytes_t * seal_fields sealed fields

int seal_fields_count | number of seal fields

eth_log_t

A linked list of Ethereum Logs

The stuct contains following fields:

bool removed true when the log was removed, due to a chain reorganization.
false if its a valid log

size_t log_index log index position in the block

size_t transac- transactions index position log was created from
tion_index

bytes32_t transac- hash of the transactions this log was created from
tion_hash

bytes32_t block_hash hash of the block where this log was in

uint64_t block_number the block number where this log was in

address_t address address from which this log originated

bytes_t data non-indexed arguments of the log

bytes32_t * topics array of 0 to 4 32 Bytes DATA of indexed log arguments

size_t topic_count counter for topics

eth_logstruct , | next pointer to next log in list or NULL

*

eth_tx_receipt_t

A transaction receipt.

The stuct contains following fields:

9.7. Module api

161

Incubed Documentation, Release 2.3

bytes32_t transaction_hash the transaction hash
int transaction_index the transaction index
bytes32_t block_hash hash of ther containnig block
uint64_t | block_number number of the containing block
uint64_t | cumula- total amount of gas used by block
tive_gas_used
uint64_t | gas_used amount of gas used by this specific transaction
bytes_t * contract_address contract address created (if the transaction was a contract creation) or
NULL
bool status 1 if transaction succeeded, O otherwise.
eth_log_t* | logs array of log objects, which this transaction generated

DEFINE_OPTIONAL_T

DEFINE_OPTIONAL_T (uint64_t);

Optional types.
arguments:
uint64_t

13

returns:

DEFINE_OPTIONAL_T

DEFINE_OPTIONAL_T (bytes_t);

arguments:

bytes_t

I3

returns:

DEFINE_OPTIONAL_T

DEFINE_OPTIONAL_T (address_t);

arguments:

address _t

13

returns:

162

Chapter 9. API Reference C

Incubed Documentation, Release 2.3

DEFINE_OPTIONAL_T

DEFINE_OPTIONAL_T (uint256_t);

arguments:

uint256 _t

I3

returns:

eth_getStorageAt

uint256_t eth_getStorageAt (in3_t *in3, address_t account, bytes32_t key, eth_blknum_t
—block);

Returns the storage value of a given address.

arguments:
in3 t* in3
address_t account
bytes32_t key
eth_blknum_t | block

returns: uint256_t

eth_getCode

bytes_t eth_getCode (in3_t *in3, address_t account, eth_blknum t block);

Returns the code of the account of given address.
(Make sure you free the data-point of the result after use.)

arguments:

in3_t* in3
address_t account
eth_blknum_t | block

returns: bytes_t

eth_getBalance

uint256_t eth_getBalance (in3_t »in3, address_t account, eth_blknum_t block);

Returns the balance of the account of given address.

arguments:

9.7. Module api 163

Incubed Documentation, Release 2.3

in3_t* in3
address _t account
eth_blknum_t | block

returns: uint256_t

eth_blockNumber

uint64_t eth_blockNumber (in3_t *in3);

Returns the current blockNumber, if bn==0 an error occured and you should check eth_last_error()

arguments:

returns: uint64_t

eth_gasPrice

uint64_t eth_gasPrice (in3_t *in3);

Returns the current price per gas in wei.

arguments:

returns: uint64_t

eth_getBlockByNumber

eth_block_t* eth_getBlockByNumber (in3_t *in3, eth_blknum_t number, bool include_tx);

Returns the block for the given number (if number==0, the latest will be returned).

If result is null, check eth_last_error()! otherwise make sure to free the result after using it!

arguments:
in3_t* in3
eth_blknum_t | number
bool include_tx

returns: eth_block_t *

eth_getBlockByHash

164 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

eth_block_t* eth_getBlockByHash(in3_t xin3, bytes32_t hash, bool include_tx);

Returns the block for the given hash.

If result is null, check eth_last_error()! otherwise make sure to free the result after using it!

arguments:
in3_t* in3
bytes32_t | hash
bool include_tx

returns: eth_block t *

eth_getLogs

eth_log_t+* eth_getLogs(in3_t *in3, char xfopt);

Returns a linked list of logs.
If result is null, check eth_last_error()! otherwise make sure to free the log, its topics and data after using it!

arguments:

in3_t* in3
char « | fopt

returns: eth_log t =«

eth_newfFilter

in3_ret_t eth _newFilter (in3_t %in3, json_ctx_t +*options);

Creates a new event filter with specified options and returns its id (>0) on success or 0 on failure.

arguments:

in3_t* in3
Jjson_ctx_t * | options

returns: in3 ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_newBlockFilter

in3_ret_t eth_newBlockFilter (in3_t %in3);

Creates a new block filter with specified options and returns its id (>0) on success or 0 on failure.

arguments:

9.7. Module api 165

Incubed Documentation, Release 2.3

returns: 1n3_ ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_newPendingTransactionFilter

in3_ret_t eth_newPendingTransactionFilter (in3_t *in3);

Creates a new pending txn filter with specified options and returns its id on success or 0 on failure.

arguments:

returns: in3_ ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_uninstallFilter

bool eth_uninstallFilter (in3_t %in3, size_t id);

Uninstalls a filter and returns true on success or false on failure.

arguments:

in3 t* in3
size_t | id

returns: bool

eth_getFilterChanges

in3_ret_t eth_getFilterChanges (in3_t *in3, size_t id, bytes32_t x+block_hashes, eth_
—log_t =*xlogs);

Sets the logs (for event filter) or blockhashes (for block filter) that match a filter; returns <0 on error, otherwise no.
of block hashes matched (for block filter) or O (for log filter)

arguments:

in3_t* in3

size_t id

bytes32_t ** | block_hashes
eth_log_t ** | logs

returns: 1n3_ ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

166 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

eth_getFilterLogs

in3_ret_t eth_getFilterLogs (in3_t *in3, size_t id, eth_log_t =xlogs);

Sets the logs (for event filter) or blockhashes (for block filter) that match a filter; returns <0 on error, otherwise no.

of block hashes matched (for block filter) or O (for log filter)

arguments:

in3_t* in3
size t id
eth_log_t ** | logs

returns: 1n3_ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_chainid

uint64_t eth_chainId(in3_t *in3);

Returns the currently configured chain id.

arguments:

returns: uint64_t

eth_getBlockTransactionCountByHash

uint64_t eth_getBlockTransactionCountByHash (in3_t %in3, bytes32_t hash);

Returns the number of transactions in a block from a block matching the given block hash.

arguments:

in3_t* in3
bytes32_t | hash

returns: uint64_t

eth_getBlockTransactionCountByNumber

uint64_t eth_getBlockTransactionCountByNumber (in3_t *in3, eth_blknum_t block);

Returns the number of transactions in a block from a block matching the given block number.

arguments:

9.7. Module api

167

Incubed Documentation, Release 2.3

in3_t* in3
eth_blknum_t | block

returns: uint64_t

eth_call_fn

json_ctx_t* eth_call_fn(in3_t %in3, address_t contract, eth_blknum_t block, char xfn_

—sig,...);

Returns the result of a function_call.

If result is null, check eth_last_error()! otherwise make sure to free the result after using it with json_free()!

arguments:
in3_t* in3
address_t contract
eth_blknum_t | block
char = fn_sig

returns: json_ctx_t =+

eth_estimate_fn

uint64_t eth_estimate_fn(in3_t +in3, address_t contract, eth_blknum_t block, char »fn_

—sig, ...);

Returns the result of a function_call.

If result is null, check eth_last_error()! otherwise make sure to free the result after using it with json_free()!

arguments:
in3 t* in3
address_t contract
eth_blknum_t | block
char =« fn_sig

returns: uint64_t

eth_getTransactionByHash

eth_tx_t+x eth_getTransactionByHash (in3_t *in3, bytes32_t tx_hash);

Returns the information about a transaction requested by transaction hash.

If result is null, check eth_last_error()! otherwise make sure to free the result after using it!

arguments:

168 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

in3_t* in3
bytes32_t | tx_hash

returns: eth tx t «*

eth_getTransactionByBlockHashAndIndex

eth_tx_t* eth_getTransactionByBlockHashAndIndex (in3_t =%in3, bytes32_t block_hash,
—~size_t index);

Returns the information about a transaction by block hash and transaction index position.
If result is null, check eth_last_error()! otherwise make sure to free the result after using it!

arguments:

in3_t* in3
bytes32_t | block_hash
size_t index

returns: eth_tx t *

eth_getTransactionByBlockNumberAndindex

eth_tx_t* eth_getTransactionByBlockNumberAndIndex (in3_t *in3, eth_blknum_t block,
—size_t index);

Returns the information about a transaction by block number and transaction index position.

If result is null, check eth_last_error()! otherwise make sure to free the result after using it!

arguments:
in3_t* in3
eth_blknum_t | block
size_t index

returns: eth _tx t *

eth_getTransactionCount

uint64_t eth_getTransactionCount (in3_t %in3, address_t address, eth_blknum_t block);

Returns the number of transactions sent from an address.

arguments:

in3_t* in3
address_t address
eth_blknum_t | block

returns: uint64_t

9.7. Module api 169

Incubed Documentation, Release 2.3

eth_getUncleByBlockNumberAndindex

eth_block_t* eth_getUncleByBlockNumberAndIndex (in3_t *in3, eth_blknum_t block, size_t

—index);

Returns information about a uncle of a block by number and uncle index position.

If result is null, check eth_last_error()! otherwise make sure to free the result after using it!

arguments:
in3_t* in3
eth_blknum_t | block
size_t index

returns: eth_block t #*

eth_getUncleCountByBlockHash

uint64_t eth_getUncleCountByBlockHash (in3_t *in3, bytes32_t hash);

Returns the number of uncles in a block from a block matching the given block hash.

arguments:

in3_t* in3
bytes32_t | hash

returns: uint64_t

eth_getUncleCountByBlockNumber

uint64_t eth_getUncleCountByBlockNumber (in3_t *in3, eth_blknum_t block);

Returns the number of uncles in a block from a block matching the given block number.

arguments:

in3_t* in3
eth_blknum_t | block

returns: uint64_t

eth_sendTransaction

bytes_t+ eth_sendTransaction(in3_t =%in3, address_t from, address_t to, OPTIONAL_
—T(uint64_t) gas, OPTIONAL_T (uint64_t) gas_price, OPTIONAL_T (uint256_t) wvalue,
—OPTIONAL_T (bytes_t) data, OPTIONAL_T (uint64_t) nonce);

170 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

Creates new message call transaction or a contract creation.

Returns (32 Bytes) - the transaction hash, or the zero hash if the transaction is not yet available. Free result after use
with b_free().

arguments:
in3_t* in3
address_t from
address_t to

OPTIONAL_T(uint64_t) | gas
OPTIONAL_T(uint64_t) | gas_price
(,) value

(,) data
OPTIONAL_T(uint64_t) | nonce

returns: bytes_t *

eth_sendRawTransaction

bytes_t* eth_sendRawTransaction(in3_t =%in3, bytes_t data);

Creates new message call transaction or a contract creation for signed transactions.

Returns (32 Bytes) - the transaction hash, or the zero hash if the transaction is not yet available. Free after use with
b_free().

arguments:

n3_t* | in3
bytes_t | data

returns: bytes_t x

eth_getTransactionReceipt

eth_tx_receipt_t* eth_getTransactionReceipt (in3_t xin3, bytes32_t tx_hash);

Returns the receipt of a transaction by transaction hash.
Free result after use with eth_tx_receipt_free()

arguments:

in3 t* in3
bytes32_t | tx_hash

returns: eth_tx_receipt_t =

eth_wait_for_receipt

9.7. Module api 171

Incubed Documentation, Release 2.3

char+ eth _wait_for_ receipt (in3_t *in3, bytes32_t tx_hash);

Waits for receipt of a transaction requested by transaction hash.

arguments:

in3_t*

in3

bytes32_t

tx_hash

returns: char =

eth_log_free

void eth_log_free(eth_log_t =xlogqg);

Frees a eth_log_t object.

arguments:

eth_log_t*

[log |

eth_tx_receipt_free

void eth_tx_receipt_free(eth_tx_receipt_t =*tx

r);

Frees a eth_tx_receipt_t object.

arguments:

eth_tx_receipt_t * | txr |

string_val_to_bytes

int string_val_to_bytes (char xval, char xunit

, bytes32_t target);

reades the string as hex or decimal and converts it into bytes.

the value may also contains a suffix as unit like ‘1.5eth which will convert it into wei. the target-pointer must be at
least as big as the strlen. The length of the bytes will be returned or a negative value in case of an error.

arguments:
char * | val
char * | unit
bytes32_t | target

returns: int

172

Chapter 9. API Reference C

Incubed Documentation, Release 2.3

in3_register_eth_api

in3_ret_t in3_register_eth_api (in3_t =*c);

this function should only be called once and will register the eth-API verifier.

arguments:

[e

returns: in3 ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

9.7.3 ipfs_api.h

IPFS APL

This header-file defines easy to use function, which are preparing the JSON-RPC-Request, which is then executed and
verified by the incubed-client.

File: c/src/api/ipfs/ipfs_api.h

ipfs_put

char+ ipfs_put (in3_t *in3, const bytes_t +content);

Returns the IPFS multihash of stored content on success OR NULL on error (check api_last_error()).
Result must be freed by caller.

arguments:

in3_t* in3
bytes_tconst, * | content

returns: char =

ipfs_get

bytes_t* ipfs_get (in3_t »in3, const char smultihash);

Returns the content associated with specified multihash on success OR NULL on error (check api_last_error()).
Result must be freed by caller.

arguments:

in3_t* in3
const char * | multihash

returns: bytes_t *

9.7. Module api 173

https://github.com/slockit/in3-c/blob/master/c/src/api/ipfs/ipfs_api.h

Incubed Documentation, Release 2.3

9.7.4 usn_api.h

USN APL

This header-file defines easy to use function, which are verifying USN-Messages.

File: c/src/api/usn/usn_api.h

usn_msg_type_t

The enum type contains the following values:

usn_event_type_t

USN_ACTION 0
USN_REQUEST 1
USN_RESPONSE | 2

The enum type contains the following values:

usn_booking_handler

BOOKING_NONE | 0

BOOKING_START

—_—

BOOKING_STOP

typedef int (x usn_booking_handler)

(usn_event_t =)

returns: int (*

usn_verify_message

usn_msg_result_t usn_verify message (usn_device_conf_t *conf, char xmessage);

arguments:

returns: usn_msqg_result_t

usn_register_device

usn_device_conf_t *

conf

char =

message

in3_ret_t usn_register_device (usn_device_conf_t *conf, char xurl);

arguments:

usn_device_conf_t *

conf

char «*

url

174

Chapter 9. API Reference C

https://github.com/slockit/in3-c/blob/master/c/src/api/usn/usn_api.h

Incubed Documentation, Release 2.3

returns: 1n3_ ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

usn_parse_url

usn_url_t usn_parse_url (char xurl);

arguments:

char =« \ url ‘

returns: usn_url_t

usn_update_state

unsigned int usn_update_state (usn_device_conf_t +conf, unsigned int wait_time);

arguments:

usn_device_conf_t * | conf
unsigned int wait_time

returns: unsigned int

usn_update_bookings

in3_ret_t usn_update_bookings (usn_device_conf_t +conf);

arguments:

’ usn_device_conf_t * \ conf ‘

returns: in3 ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

usn_remove_old_bookings

void usn_remove_old_bookings (usn_device_conf_t =conf);

arguments:

’ usn_device_conf _t * \ conf ‘

usn_get_next_event

9.7. Module api 175

Incubed Documentation, Release 2.3

usn_event_t usn_get_next_event (usn_device_conf_t =xconf);

arguments:

usn_device_conf _t * \ conf ‘

returns: usn_event_t

usn_rent

in3_ret_t usn_rent (in3_t xc, address_t contract, address_t token, char *url, uint32_t
—seconds, bytes32_t tx_hash);

arguments:
in3_t* c
address_t contract
address _t token
char = url

uint32_t | seconds
bytes32_t tx_hash

returns: 1n3_ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

usn_return

in3_ret_t usn_return(in3_t =xc, address_t contract, char xurl, bytes32_t tx_hash);

arguments:

in3_t* c
address t | contract
char =« url
bytes32_t | tx_hash

returns: in3 ret t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

usn_price

in3_ret_t usn_price(in3_t =*c, address_t contract, address_t token, char xurl, uint32_
—t seconds, address_t controller, bytes32_t price);

arguments:

176 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

in3_t* c

address _t contract
address_t token
char = url
uint32_t | seconds
address_t controller
bytes32_t price

returns: 1n3_ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

9.7.5 api_utils.h

Ethereum API utils.
This header-file helper utils for use with API modules.

File: c/src/api/utils/api_utils.h

set_error_fn

function to set error.

Will only be called internally. default implementation is NOT MT safe!

typedef void(x set_error_fn) (int err, const char xmsg)

get_error_fn

function to get last error message.

default implementation is NOT MT safe!

typedef charx (x get_error_fn) (void)

returns: char * (*

as_double

long double as_double (uint256_t d);

Converts a uint256_t in a long double.
Important: since a long double stores max 16 byte, there is no guarantee to have the full precision.
Converts a uint256_t in a long double.

arguments:

(256 [4]

returns: long double

9.7. Module api 177

https://github.com/slockit/in3-c/blob/master/c/src/api/utils/api_utils.h

Incubed Documentation, Release 2.3

as_long

uint64_t as_long(uint256_t d);

Converts a uint256_t in a long .

Important: since a long double stores 8 byte, this will only use the last 8 byte of the value.

Converts a uint256_t in a long .

arguments:

2567 4]

returns: uint64_t

to_uint256

uint256_t to_uint256 (uint64_t wvalue);

Converts a uint64_t into its uint256_t representation.

arguments:

uint64_t | value |

returns: uint256_t

decrypt_key

in3_ret_t decrypt_key(d_token_t +key_data,

char +password, bytes32_t dst);

Decrypts the private key from a json keystore file using PBKDF2 or SCRYPT (if enabled)

arguments:
d_token_t * | key_data
char = password
bytes32_t dst

returns: 1n3_ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

to_checksum

in3_ret_t to_checksum(address_t adr, chain_id_t chain_id,

char out[43]);

converts the given address to a checksum address.

If chain_id is passed, it will use the EIP1191 to include it as well.

arguments:

178

Chapter 9. API Reference C

Incubed Documentation, Release 2.3

address_t adr
chain_id_t | chain_id
char out

returns: 1n3_ ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

api_set_error_fn

void api_set_error_fn(set_error_fn fn);

arguments:

api_get_error_fn

set_error_fn \ fn ‘

void api_get_error_fn(get_error_fn fn);

arguments:

api_last_error

get_error_fn ‘ fn ‘

charx api_last_error()

’

returns current error or null if all is ok

returns: char =

9.8 Module core

9.8.1 client.h

this file defines the incubed configuration struct and it registration.

File: c/src/core/client/client.h

IN3_PROTO_VER

the protocol version used when sending requests from the this client

#define IN3_PROTO_VER

"2.1.0"

9.8. Module core

179

https://github.com/slockit/in3-c/blob/master/c/src/core/client/client.h

Incubed Documentation, Release 2.3

CHAIN_ID_MULTICHAIN

chain_id working with all known chains

#define CHAIN_ID MULTICHAIN 0x0

CHAIN_ID_MAINNET

chain_id for mainnet

#define CHAIN_ID MAINNET 0x01

CHAIN_ID_KOVAN

chain_id for kovan

#define CHAIN_ID KOVAN 0x2a

CHAIN_ID_TOBALABA

chain_id for tobalaba

#define CHAIN_ID TOBALABA 0x44d

CHAIN_ID_GOERLI

chain_id for goerlii

#define CHAIN_ID_ GOERLI 0x5

CHAIN_ID_EVAN

chain_id for evan

#define CHAIN_ID_EVAN 0x4bl

CHAIN_ID_EWC

chain_id for ewc

#define CHAIN_ID EWC 0xf6

CHAIN_ID_IPFS

chain_id for ipfs

#define CHAIN_ID IPFS 0x7d0

180 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

CHAIN_ID_BTC

chain_id for btc

#define CHAIN_ID BTC 0x99

CHAIN_ID_LOCAL

chain_id for local chain

#define CHAIN_ID LOCAL 0Ox11

DEF_REPL_LATEST_BLK

default replace_latest_block

#define DEF_REPI, LATEST BLK 6

in3_node_props_init (np)

Initializer for in3_node_props_t.

#define in3_node_props_init (np) #*(np) = 0

PLGN_ACT_TRANSPORT

#define PLGN_ACT_TRANSPORT (PLGN_ACT_TRANSPORT SEND | PLGN_ACT_TRANSPORT RECEIVE |,
—PLGN_ACT_TRANSPORT_CLEAN)

PLGN_ACT_CACHE

#define PLGN_ACT _CACHE (PLGN_ACT CACHE SET | PLGN_ACT CACHE GET | PLGN_ACT CACHE_
< CLEAR)

in3_for_chain (chain_id)

creates a new Incubes configuration for a specified chain and returns the pointer.

when creating the client only the one chain will be configured. (saves memory). but if you pass
CHAIN_ID_MULTICHAIN as argument all known chains will be configured allowing you to switch between chains
within the same client or configuring your own chain.

you need to free this instance with in3_free after use!
Before using the client you still need to set the tramsport and optional the storage handlers:

» example of initialization: , ** This Method is depricated. you should use in3_for_chain instead.**

9.8. Module core 181

Incubed Documentation, Release 2.3

// register verifiers
in3_register_eth_full();

// create new client
in3_t* client = in3_for_chain (CHAIN_ID_MAINNET) ;

// configure transport
client->transport = send_curl;

// configure storage
in3_set_storage_handler (c, storage_get_item, storage_set_item, storage_clear, NULL);

// ready to use

#define in3 for_chain (chain_id) in3 for chain_default (chain_1id)

assert_in3 (c)

#define assert_in3 (c) assert (c); \

assert (c->chain_id); \
assert (c->plugins); \
assert (c—>chains); \
assert (c—->request_count > 0); \
assert (c->chains_length > 0); \
assert (c->chains_length < 10); \
assert (c—>max_attempts > 0); \
assert (c—>proof >= 0 && c->proof <= PROOF_FULL); \
assert (c->proof >= 0 && c—->proof <= PROOF_FULL);

in3_chain_type t

the type of the chain.

for incubed a chain can be any distributed network or database with incubed support. Depending on this chain-type
the previously registered verifyer will be choosen and used.

The enum type contains the following values:

CHAIN_ETH 0 | Ethereum chain.
CHAIN_SUBSTRATE | 1 | substrate chain
CHAIN_IPFS 2 | ipfs verifiaction
CHAIN_BTC 3 | Bitcoin chain.
CHAIN_EOS 4 | EOS chain.
CHAIN_IOTA 5 | IOTA chain.
CHAIN_GENERIC 6 | other chains

in3_proof _t

the type of proof.
Depending on the proof-type different levels of proof will be requested from the node.

The enum type contains the following values:

182 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

PROOF_NONE 0 | No Verification.
PROOF_STANDARD | 1 | Standard Verification of the important properties.
PROOF_FULL 2 | All field will be validated including uncles.

in3_node_props_type _t

The enum type contains the following values:

NODE_PROP_PROOF 0Ox1 | filter out nodes which are providing no proof

NODE_PROP_MULTICHAIN?2 | filter out nodes other then which have capability of the same RPC endpoint
may also accept requests for different chains

NODE_PROP_ARCHIVE | 0x4 | filter out non-archive supporting nodes

NODE_PROP_HTTP 0x8 | filter out non-http nodes

NODE_PROP_BINARY 0x10| filter out nodes that don’t support binary encoding

NODE_PROP_ONION 0x20| filter out non-onion nodes

NODE_PROP_SIGNER 0x40| filter out non-signer nodes

NODE_PROP_DATA 0x80| filter out non-data provider nodes

NODE_PROP_STATS 0x100 filter out nodes that do not provide stats

NODE_PROP_MIN_BLO(‘Kiﬂﬂﬁ)lﬁlﬂﬂ‘out nodes that will sign blocks with lower min block height than speci-

fied

in3_flags_type t

a list of flags definiing the behavior of the incubed client.

They should be used as bitmask for the flags-property.

The enum type contains the following values:

FLAGS_KEEP_IN3 0x1 | the in3-section with the proof will also returned

FLAGS_AUTO_UPDATE_LISUx2 | the nodelist will be automaticly updated if the last_block is newer

FLAGS_INCLUDE_CODE | 0x4 | the code is included when sending eth_call-requests

FLAGS_BINARY 0x8 | the client will use binary format

FLAGS_HTTP 0x10 | the client will try to use http instead of https

FLAGS_STATS 0x20 | nodes will keep track of the stats (default=true)

FLAGS_NODE_LIST_NO_SI@®x40 | nodelist update request will not automatically ask for signatures and proof

FLAGS_BOOT_WEIGHTS | 0x80 | if true the client will initialize the first weights from the nodelist given by
the nodelist.

in3_node_attr_type _t

a list of node attributes (mostly used internally)

The enum type contains the following values:

ATTR_WHITELISTED

1

indicates if node exists in whiteList

ATTR_BOOT_NODE

2

used to avoid filtering manually added nodes before first nodeList update

9.8. Module core

183

Incubed Documentation, Release 2.3

in3_filter_type_t

Filter type used internally

when managing filters.

The enum type contains the following values:

in3_plugin_act_t

plugin action list

FILTER_EVENT 0 | Event filter.
FILTER_BLOCK Block filter.
FILTER_PENDING | 2 | Pending filter (Unsupported)

[

The enum type contains the following values:

PLGN_ACT_INIT

Ox1 initialize plugin - use for allocating/setting-up internal resources

PLGN_ACT_TERM

0x2 terminate plugin - use for releasing internal resources and cleanup.

PLGN_ACT_TRANSBORZT_SENDBds out a request - the transport plugin will receive a request_t as plgn_ctx, it

may set a cptr which will be passed back when fetching more resonses.

PLGN_ACT_TRANSBORYT REEERVEXt response - the transport plugin will receive a request_t as plgn_ctx,

which contains a cptr if set previously

PLGN_ACT_TRANSBORTO CLFAN transport resources - the transport plugin will receive a request_t as

plgn_ctx if the cptr was set.

PLGN_ACT_SIGN_ACQOfQUNTreturns the default account of the signer

PLGN_ACT_SIGN_PREPARE allowes a wallet to manipulate the payload before signing - the plgn_ctx will be

in3_sign_ctx_t.
This way a tx can be send through a multisig

PLGN_ACT_SIGN

0x80 | signs the payload - the plgn_ctx will be in3_sign_ctx_t.

PLGN_ACT_RPC_HANRI(M | a plugin may respond to a rpc-request directly (without sending it to the node).

PLGN_ACT_RPC_VERIX)0| verifies the response.

the plgn_ctx will be a in3_vctx_t holding all data

PLGN_ACT_CACHE |SER00| stores data to be reused later - the plgn_ctx will be a in3_cache_ctx_t containing

the data

PLGN_ACT_CACHE |(WEJ00| reads data to be previously stored - the plgn_ctx will be a in3_cache_ctx_t con-

taining the key.
if the data was found the data-property needs to be set.

PLGN_ACT_CACHE |

(Ckm clears alls stored data - plgn_ctx will be NULL

PLGN_ACT_CONFIG _SEDO$ gets a config-token and reads data from it

PLGN_ACT_CONFIG _(EcE(IO([) gets a stringbuilder and adds all config to it.

PLGN_ACT_PAY_PR

EBA&OE(I) prerpares a payment

PLGN_ACT_PAY_FO

LDOWU{®Ralled after a requeest to update stats.

PLGN_ACT_PAY_HANDBRBED(Chandles the payment

PLGN_ACT_PAY_SIdQ

¥NXREIQ(signs a request

PLGN_ACT_NL_PIC]

KQM?DQQ)icks the data nodes

PLGN_ACT_NL_PIC]

K OSTGO)EfRcks the signer nodes

PLGN_ACT_NL_PIC]

KQEI’IDI)MMPdfter receiving a response in order to decide whether a update is needed.

PLGN_ACT_LOG_ER

YRR0)Oport an error

chain_id t

type for a chain_id.

184

Chapter 9. API Reference C

Incubed Documentation, Release 2.3

typedef uint32_t chain_id_t

in3_node_props_t

Node capabilities.

’typedef uint64_t in3_node_props_t ‘

in3_node_attr_t

’typedef uint8_t in3_node_attr_t ‘

in3_node_t

incubed node-configuration.

These information are read from the Registry contract and stored in this struct representing a server or node.

The stuct contains following fields:

address_t ad- address of the server
dress
uint6d_t deposit | the deposit stored in the registry contract, which this would lose if it sends a wrong

blockhash

uint_fastlo_t

index

index within the nodelist, also used in the contract as key

uint_fastl6_t capac- | the maximal capacity able to handle
ity
in3_node_props_t| props used to identify the capabilities of the node.
See in3_node_props_type_t in nodelist.h
char » url the url of the node
uint_fast8_t | attrs bitmask of internal attributes

in3_node_weight_t

Weight or reputation of a node.

Based on the past performance of the node a weight is calculated given faster nodes a higher weight and chance when
selecting the next node from the nodelist. These weights will also be stored in the cache (if available)

The stuct contains following fields:

uint32_t | response_count counter for responses

uint32_t | total_response_time | total of all response times

uint64_t | blacklisted_until if >0 this node is blacklisted until k.
k is a unix timestamp

9.8. Module core

185

Incubed Documentation, Release 2.3

in3_whitelist_t

defines a whitelist structure used for the nodelist.

The stuct contains following fields:

bool needs_upda

teif true the nodelist should be updated and will trigger a in3_nodeList-request before the
next request is send.

uint64_t last_block

last blocknumber the whiteList was updated, which is used to detect changed in the

whitelist
ad- contract address of whiteList contract.
dress_t If specified, whiteList is always auto-updated and manual whiteList is overridden
bytes_t addresses | serialized list of node addresses that constitute the whiteList

in3_verified _hash_t

represents a blockhash which was previously verified

The stuct contains following fields:

in3_chain_t

uinté64_t

block_number

the number of the block

bytes32_t

hash

the blockhash

Chain definition inside incubed.

for incubed a chain can be any distributed network or database with incubed support.

The stuct contains following fields:

186

Chapter 9. API Reference C

Incubed Documentation, Release 2.3

bool dirty indicates whether the nodelist has been modified after last read from
cache

uint8_t version version of the chain

unsigned int nodelist_length | number of nodes in the nodeList

uintl6_t avg_block_time | average block time (seconds) for this chain (calculated internally)

chain_id_t chain_id chain_id, which could be a free or based on the public ethereum net-
worklId

in3_chain_type_t type chaintype

uint64_t last_block last blocknumber the nodeList was updated, which is used to detect
changed in the nodelist

in3_node_t * nodelist array of nodes

in3_node_weight_t * weights stats and weights recorded for each node

bytes_t ** init_addresses array of addresses of nodes that should always part of the nodeList

bytes_t * contract the address of the registry contract

bytes32_t registry_id the identifier of the registry

in3_verified_hash_t * verified_hashes | contains the list of already verified blockhashes

in3_whitelist_t * whitelist if set the whitelist of the addresses.

uinté64_t exp_last_block | the last_block when the nodelist last changed reported by this node

uint64_t timestamp approx.
time when nodelist must be updated (i.e. when reported last_block
will be considered final)

address_t node node that reported the last_block which necessitated a nodeList up-
date

struct nodelist_upd8_params

in3_chain::@7 =* T

in3_pay_prepare

payment prepearation function.

allows the payment to handle things before the request will be send.

typedef in3_ret_t (x in3_pay_prepare) (struct in3_ctx xctx, wvoid xcptr)

returns: in3 ret_t (= the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_pay_follow_up

called after receiving a parseable response with a in3-section.

typedef in3_ret_t (x in3_pay_follow_up) (struct in3_ctx *ctx, woid *node, d_token_t
—~*1n3, d_token_t xerror, void =xcptr)

returns: 1n3_ret_ t (+ the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_pay_free

free function for the custom pointer.

9.8. Module core 187

Incubed Documentation, Release 2.3

typedef void(x in3_pay_free) (void xcptr)

in3_pay_handle_request

handles the request.

this function is called when the in3-section of payload of the request is built and allows the handler to add properties.

typedef in3_ret_t (» in3_pay_handle_request) (struct in3_ctx xctx, sb_t =sb, wvoid
—xcptr)

returns: 1n3_ret_ t (* the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_pay _t

the payment handler.
if a payment handler is set it will be used when generating the request.

The stuct contains following fields:

in3_pay_prepare | prepare payment prepearation function.
in3_pay_follow_up follow_up | payment function to be called after the request.
in3_pay_handle_redhamt this function is called when the in3-section of payload of the request is built and
dle_request| allows the handler to add properties.
in3_pay_free free frees the custom pointer (cptr).
void * cptr custom object whill will be passed to functions
in3_t

Incubed Configuration.
This struct holds the configuration and also point to internal resources such as filters or chain configs.

The stuct contains following fields:

188 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

place_latest_h

uint8_t re- the number of request send when getting a first answer
quest_count
uint8_t signa- the number of signatures used to proof the blockhash.
ture_count
uint8_t re- if specified, the blocknumber latest will be replaced by blockNumber- spec-

lofikd value

uint_fast8_t

flags

a bit mask with flags defining the behavior of the incubed client.
See the FLAG. .. -defines

uintlé_t node_limit the limit of nodes to store in the client.
uintl6_t finality the number of signatures in percent required for the request
uintlé_t chains_length number of configured chains

uint_fastle_t

max_attempts

the max number of attempts before giving up

uint_fastlo6_t

max_verified_hashesiumber of verified hashes to cache (actual number may temporarily

exceed this value due to pending requests)

uint_fastlé6_t | al- number of currently allocated verified hashes
loc_verified_hashes
uint_fastl6_t | pending number of pending requests created with this instance
uint32_t cache_timeout number of seconds requests can be cached.
uint32_t timeout specifies the number of milliseconds before the request times out.
increasing may be helpful if the device uses a slow connection.
chain_id_t chain_id servers to filter for the given chain.
The chain-id based on EIP-155.
in3_plugin_suppphigie acts | bitmask of supported actions of all plugins registered with this client
in3_proof_t proof the type of proof used

uint64_t

min_deposit

min stake of the server.
Only nodes owning at least this amount will be chosen.

in3_node_props_t | node_props | used to identify the capabilities of the node.
in3_chain_t * chains chain spec and nodeList definitions
in3_filter_handler_t| filters filter handler
B
in3_plugin_t * plugins list of registered plugins
uint32_t id_count counter for use as JSON RPC id - incremented for every request
void * internal pointer to internal data
in3_filter_t

The stuct contains following fields:

bool is_first_usage | if true the filter was not used previously
in3_filter_type_t | type filter type: (event, block or pending)
uint64_t last_block block no.
when filter was created OR eth_getFilterChanges was called
char * options associated filter options
void (* release method to release owned resources
in3_plugin_t

plugin interface definition

The stuct contains following fields:

9.8. Module core

189

Incubed Documentation, Release 2.3

in3_plugin_supp_acts_t | acts bitmask of supported actions this plugin can handle
void * data opaque pointer to plugin data

in3_plugin_act_fn action_fn | plugin action handler

in3_plugin_t * next pointer to next plugin in list

in3_plugin_act_fn

plugin action handler
Implementations of this function must strictly follow the below pattern for return values -
* IN3_OK - successfully handled specified action
* IN3_WAITING - handling specified action, but waiting for more information
* IN3_EIGNORE - could handle specified action, but chose to ignore it so maybe another handler could handle it

e Other errors - handled but failed

typedef in3_ret_t (+ in3_plugin_act_fn) (void *plugin_data, in3_plugin_act_t action,
—void *plugin_ctx)

returns: in3 ret t (*the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_plugin_supp_acts t

typedef uint32_t in3_plugin_supp_acts_t

in3_filter_handler _t

Handler which is added to client config in order to handle filter.

The stuct contains following fields:

in3_filter_t ** | array
size_t count | array of filters

plgn_register

a register-function for a plugion.

typedef in3_ret_t (x plgn_register) (in3_t =xc)

returns: i1n3_ ret_ t (*the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_node_props_set

190 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

NONULL wvoid in3_node_props_set (in3_node_props_t *node_props, in3_node_props_type_t
—type, uint8_t wvalue);

setter method for interacting with in3_node_props_t.

arguments:
in3_node_props_t * node_props | pointer to the properties to change
in3_node_props_type_t | type key or type of the property
uint8_t value value to set

returns: NONULL void

in3_node_props_get

static uint32_t in3_node_props_get (in3_node_props_t np, in3_node_props_type_t t);

returns the value of the specified propertytype.
< the value to extract

arguments:

in3_node_props_t np | property to read from
in3_node_props_type_t | t

returns: uint32_t : value as a number

in3_node_props_matches

static bool in3_node_props_matches (in3_node_props_t np, in3_node_props_type_t t);

checkes if the given type is set in the properties
< the value to extract

arguments:

in3_node_props_t np | property to read from
in3_node_props_type_t | t

returns: bool : true if set

in3_new

in3_t* in3_new() __attribute__ ((deprecated("use in3_for_ chain (CHAIN_ID_ _MULTICHAIN)
=")));

creates a new Incubes configuration and returns the pointer.
This Method is depricated. you should use in3_for_chain (CHAIN_ID_MULTICHAIN) instead.

you need to free this instance with in3_ free after use!

9.8. Module core 191

Incubed Documentation, Release 2.3

Before using the client you still need to set the tramsport and optional the storage handlers:

 example of initialization:

// register verifiers
in3_register_eth_full();

// create new client
in3_t* client = in3_new();
// configure transport
client->transport = send_curl;
// configure storage

in3_set_storage_handler (c, storage_get_item,

// ready to use

storage_set_item, storage_clear, NULL);

returns: in3 t =« : the incubed instance.

in3_for_chain_default

in3_t* in3_for_chain_default (chain_id_t chain_id);

arguments:

chain_id_t | chain_id

the chain_id (see CHAIN_ID_... constants). \

returns: in3 t #

in3_client_rpc

NONULL in3_ret_t in3_client_rpc(in3_t =c,
—char xxresult, char xxerror);

const char *method,

const char *params,

sends a request and stores the result in the provided buffer

arguments:

in3_t* c \ the pointer to the incubed client config.

const method the name of the rpc-funcgtion to call.

char =

const paramsdocs for input parameter v.

char «

char =+ | re- pointer to string which will be set if the request was successfull. This will hold the result as
sult | json-rpc-string. (make sure you free this after use!)

char *x er- pointer to a string containg the error-message. (make sure you free it after use!)
ror

returns: 1n3_ret_ t NONULL the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

192

Chapter 9. API Reference C

Incubed Documentation, Release 2.3

in3_client_rpc_raw

NONULL in3_ret_t in3_client_rpc_raw(in3_t =c, const char *request, char xxresult,
—char *xerror);

sends a request and stores the result in the provided buffer, this method will always return the first, so bulk-requests
are not saupported.

arguments:

in3_t* c the pointer to the incubed client config.

const re- the rpc request including method and params.

char « quest

char x% | re- pointer to string which will be set if the request was successfull. This will hold the result as
sult | json-rpc-string. (make sure you free this after use!)

char *x er- pointer to a string containg the error-message. (make sure you free it after use!)
ror

returns: 1n3_ret_ tNONULL the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_client_exec_req

NONULL charx in3_client_exec_req(in3_t =*c, char =xreq);

executes a request and returns result as string.

in case of an error, the error-property of the result will be set. This fuinction also supports sending bulk-requests, but
you can not mix internal and external calls, since bulk means all requests will be send to picked nodes. The resulting
string must be free by the the caller of this function!

arguments:

in3_t* c the pointer to the incubed client config.
char =« | req | the request as rpc.

returns: NONULL char =

in3_client_register_chain

in3_ret_t in3_client_register_chain(in3_t =xclient, chain_id_t chain_id, in3_chain_
—type_t type, address_t contract, bytes32_t registry_id, uint8_t version, address_t
—wl_contract);

registers a new chain or replaces a existing (but keeps the nodelist)

arguments:

9.8. Module core 193

Incubed Documentation, Release 2.3

returns: 1n3_ret_ t the result-status of the function.

in3_t* client the pointer to the incubed client config.
chain_id_t chain_id the chain id.

in3_chain_type_t | type the verification type of the chain.
address_t contract contract of the registry.

bytes32_t registry_id | the identifier of the registry.

uint8_t version the chain version.

address_t wl_contract | contract of whiteList.

Please make sure you check if it was successfull (==IN3_OK)

in3_client_add_node

NONULL in3_ret_t in3_client_add_node (in3_t =client,
—1in3_node_props_t props,

chain_id_t chain_id,

address_t address);

char »url,

adds a node to a chain ore updates a existing node

[in] public address of the signer.

arguments:

in3_t* client the pointer to the incubed client config.
chain_id_t chain_id | the chain id.

char = url url of the nodes.

in3_node_props_t | props properties of the node.

address_t address

returns: in3_ ret_ tNONULL the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_client_remove_node

NONULL in3_ret_t in3_client_remove_node (in3_t =+client,
—address) ;

chain_id_t chain_id,

address_t,

removes a node from a nodelist

[in] public address of the signer.

arguments:

in3_t* client the pointer to the incubed client config.
chain_id_t | chain_id | the chain id.
address_t | address

returns: in3 ret tNONULL the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

194

Chapter 9. API Reference C

Incubed Documentation, Release 2.3

in3_client_clear_nodes

NONULL in3_ret_t in3_client_clear_nodes (in3_t =+client, chain_id_t chain_id);

removes all nodes from the nodelist
[in] the chain id.

arguments:

in3_t* client the pointer to the incubed client config.
chain_id t | chain_id

returns: 1n3 ret tNONULL the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_free

NONULL wvoid in3_free (in3_t =*a);

frees the references of the client

arguments:

in3_t * [a | the pointer to the incubed client config to free.

returns: NONULL void

in3_cache_init

NONULL in3_ret_t in3_cache_init (in3_t =*c);

inits the cache.
this will try to read the nodelist from cache.
inits the cache.

arguments:

[in3_1* | ¢ | the incubed client |

returns: 1n3_ret_ t NONULL the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_get_chain

NONULL in3_chain_t* in3_get_chain(const in3_t =xc);

9.8. Module core 195

Incubed Documentation, Release 2.3

returns the chain-config for the current chain_id.

arguments:

] in3_tconst, * \ c \ the incubed client

returns: in3 chain_ tNONULL , #*

in3_find_chain

NONULL in3_chain_t+* in3_find_chain(const in3_t +c, chain_id_t chain_id);

finds the chain-config for the given chain_id.
My return NULL if not found.

arguments:

in3_tconst, * | ¢ the incubed client
chain_id_t chain_id | chain_id

returns: 1n3 chain tNONULL , *

in3_configure

NONULL charx in3_configure (in3_t =xc, const char xconfig);

configures the clent based on a json-config.

For details about the structure of ther config see https://in3.readthedocs.io/en/develop/api-ts.html#type-in3config Re-
turns NULL on success, and error string on failure (to be freed by caller) - in which case the client state is undefined

arguments:

in3_t* c the incubed client
const char * | config | JSON-string with the configuration to set.

returns: NONULL char =

in3_get_config

NONULL charx in3_get_config(in3_t =xc);

gets the current config as json.
For details about the structure of ther config see https://in3.readthedocs.io/en/develop/api-ts.html#type-in3config

arguments:

[in3_1* | ¢ | the incubed client |

returns: NONULL char =

196 Chapter 9. API Reference C

https://in3.readthedocs.io/en/develop/api-ts.html#type-in3config
https://in3.readthedocs.io/en/develop/api-ts.html#type-in3config

Incubed Documentation, Release 2.3

9.8.2 context.h

Request Context. This is used for each request holding request and response-pointers but also controls the execution

process.

File: c/src/core/client/context.h

ctx_type

type of the request context,

The enum type contains the following values:

CT_RPC

0 | ajson-rpc request, which needs to be send to a incubed node

CT_SIGN

1 | asign request

state

The current state of the context.

you can check this state after each execute-call.

The enum type contains the following values:

CTX_SUCCESS

The ctx has a verified result.

CTX_WAITING_TO_

SEND

the request has not been sent yet

CTX_WAITING_FOR_RESPONSE

N = O

the request is sent but not all of the response are set ()

CTX_ERROR

-1 | the request has a error

ctx_type_t

type of the request context,

The enum type contains the following values:

CT_RPC

0 | ajson-rpc request, which needs to be send to a incubed node

CT_SIGN

1 | asignrequest

node_match_t

the weight of a certain node as linked list.

This will be used when picking the nodes to send the request to. A linked list of these structs desribe the result.

The stuct contains following fields:

unsigned int | index index of the node in the nodelist

bool blocked | if true this node has been blocked for sending wrong responses
uint32_t S The starting value.

uint32_t w weight value

weightstruct , * next next in the linkedlist or NULL if this is the last element

9.8. Module core

197

https://github.com/slockit/in3-c/blob/master/c/src/core/client/context.h

Incubed Documentation, Release 2.3

in3_response _t

response-object.

if the error has a length>0 the response will be rejected

The stuct contains following fields:

uint32_t | time | measured time (in ms) which will be used for ajusting the weights
in3_ret t state | the state of the response
sb_t data | a stringbuilder to add the result

in3_ctx_t

The Request config.

This is generated for each request and represents the current state. it holds the state until the request is finished and
must be freed afterwards.

The stuct contains following fields:

*

uint_ fast/8sign- number or addresses
ers_length
uintl6_t | len the number of requests
uint_fast|lattempt the number of attempts
ctx_type_t type the type of the request
in3_ret_t verifica- state of the verification
tion_state
char error in case of an error this will hold the message, if not it points to NULL
json_ctx_t re- the result of the json-parser for the request.

quest_conte

xt

json_ctx_t
3

re-

sponse_context

the result of the json-parser for the response.

d_token_t requests references to the tokens representring the requests
sk
d_token_t responses | references to the tokens representring the parsed responses

in3_response
¥

| raw_respon|

sethe raw response-data, which should be verified.

uint8_t signers the addresses of servers requested to sign the blockhash
*
node_match_ nodes selected nodes to process the request, which are stored as linked list.
%
cache_entry_f cache optional cache-entries.
* These entries will be freed when cleaning up the context.
in3_ctxstruct| required pointer to the next required context.
, ¥ if not NULL the data from this context need get finished first, before being able to
resume this context.
in3_t* client reference to the client
uint32_t | id JSON RPC id of request at index 0.
198 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

in3_ctx_state t

The current state of the context.
you can check this state after each execute-call.

The enum type contains the following values:

CTX_SUCCESS 0 | The ctx has a verified result.

CTX_WAITING _TO_SEND 1 the request has not been sent yet
CTX_WAITING_FOR_RESPONSE | 2 | the request is sent but not all of the response are set ()
CTX_ERROR -1 | the request has a error

ctx_new

NONULL in3_ctx_t* ctx_new(in3_t =xclient, const char *req data);

creates a new context.

the request data will be parsed and represented in the context. calling this function will only parse the request data,
but not send anything yet.

Important: the req_data will not be cloned but used during the execution. The caller of the this function is also
responsible for freeing this string afterwards.

arguments:

in3_t* client the client-config.
const char * | req_data | the rpc-request as json string.

returns: 1n3 ctx tNONULL , «*

in3_send_ctx

NONULL in3_ret_t in3_send_ctx (in3_ctx_t =*ctx);

sends a previously created context to nodes and verifies it.

The execution happens within the same thread, thich mean it will be blocked until the response ha beedn received and
verified. In order to handle calls asynchronously, you need to call the in3_ctx_execute function and provide the
data as needed.

arguments:

’ in3_ctx_t* \ ctx \ the request context.

returns: 1n3_ret_ t NONULL the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_ctx_last_waiting

9.8. Module core 199

Incubed Documentation, Release 2.3

NONULL in3_ctx_t* in3_ctx_last_waiting(in3_ctx_t =ctx);

finds the last waiting request-context.

arguments:

in3_ctx_t * | etx | the request context.

returns: in3 ctx tNONULL , #*

in3_ctx_exec_state

NONULL in3_ctx_state_t in3_ctx_exec_state (in3_ctx_t *ctx);

executes the context and returns its state.

arguments:

in3_ctx_t * | etx | the request context.

returns: 1n3 ctx state tNONULL

in3_ctx_execute

NONULL in3_ret_t in3_ctx_execute (in3_ctx_t =xctx);

execute the context, but stops whenever data are required.

This function should be used in order to call data in a asyncronous way, since this function will not use the transport-
function to actually send it.

The caller is responsible for delivering the required responses. After calling you need to check the return-value:
* IN3_WAITING : provide the required data and then call in3_ctx_execute again.
¢ IN3_OK : success, we have a result.

¢ any other status = error

sign data

CT_SIGN

) fetch data OT_RPO waiting

in3_ctx_add_response()

in3_ctx_add_response() IN3_WAITING
IN3_... error
» ctx_new() - H
RPC-Request in3_ctx_t in3_ctx_execute() o oK ctx_free()
response

200 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

Here is a example how to use this function:

in3_ret_t in3_send_ctx(in3_ctx_t+* ctx) {
in3_ret_t ret;
// execute the context and store the return value.
// 1if the return value is 0 == IN3 _OK, it was successful and we return,
// 1f not, we keep on executing
while ((ret = 1in3_ctx_execute(ctx))) {
// error we stop here, because this means we got an error
if (ret != IN3_WAITING) return ret;

// handle subcontexts first, if they have not been finished

while (ctx->required && in3_ctx_state(ctx->required) != CTX_SUCCESS) {
// exxecute them, and return the status if still waiting or error
if ((ret = in3_send_ctx(ctx->required))) return ret;

// recheck in order to prepare the request.

// 1f it is not waiting, then it we cannot do much, becaus it will an error or,
—successfull.

if ((ret = in3_ctx_execute(ctx)) != IN3_WAITING) return ret;

// only if there is no response yet...
if (!ctx—>raw_response) {

// what kind of request do we need to provide?
switch (ctx->type) {

// RPC-request to send to the nodes
case CT_RPC: {

// build the request
in3_request_t* request = in3_create_request (ctx);

// here we use the transport, but you can also try to fetch the data in_
—any other way.
ctx->client->transport (request) ;

// clean up
request_free (request);
break;

// this is a request to sign a transaction

case CT_SIGN: {
// read the data to sign from the request
d_token_t* params = d_get (ctx->requests[0], K_PARAMS);
// the data to sign

bytes_t data = d_to_bytes (d_get_at (params, 0));
// the account to sign with
bytes_t from = d_to_bytes(d_get_at (params, 1));

// prepare the response

ctx->raw_response = _malloc(sizeof (in3_response_t));
sb_init (&ctx—>raw_response[0].error);

sb_init (&ctx->raw_response[0].result);

// data for the signature

(continues on next page)

9.8. Module core 201

Incubed Documentation, Release 2.3

(continued from previous page)

uint8_t sig[65];

// use the signer to create the signature

ret = ctx->client->signer->sign(ctx, SIGN_EC_HASH, data, from,
// 1if it fails we report this as error

if (ret < 0) return ctx_set_error(ctx, ctx->raw_response->error.data,

—ret);
// otherwise we simply add the raw 65 bytes to the response.
sb_add_range (&ctx—>raw_response->result, (charx) sig, 0, 65);

}
// done...
return ret;

arguments:

’ in3_ctx_t* \ ctx \ the request context.

returns: 1n3_ret_tNONULL the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_ctx_state

NONULL in3_ctx_state_t in3_ctx_state(in3_ctx_t =*ctx);

returns the current state of the context.

arguments:

’ in3_ctx_t* \ ctx \ the request context.

returns: 1n3 ctx state tNONULL

ctx_get_error_data

char~ ctx_get_error_data(in3_ctx_t =xctx);

returns the error of the context.

arguments:

in3_ctx_t* \ ctx \ the request context.

returns: char =

ctx_get_response_data

202 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

char* ctx_get_response_data (in3_ctx_t =ctx);

returns json response for that context

arguments:

in3_ctx_t * | etx | the request context.

returns: char =

ctx_get_type

NONULL ctx_type_t ctx_get_type (in3_ctx_t =xctx);

returns the type of the request

arguments:

in3_ctx_t * | etx | the request context.

returns: ctx_type tNONULL

ctx_free

NONULL wvoid ctx_free (in3_ctx_t +*ctx);

frees all resources allocated during the request.
But this will not free the request string passed when creating the context!

arguments:

in3_ctx_t * | etx | the request context.

returns: NONULL void

ctx_add_required

NONULL in3_ret_t ctx_add_required(in3_ctx_t =*parent, in3_ctx_t *ctx);

adds a new context as a requirment.

Whenever a verifier needs more data and wants to send a request, we should create the request and add it as dependency
and stop.

If the function is called again, we need to search and see if the required status is now useable.

Here is an example of how to use it:

9.8. Module core 203

Incubed Documentation, Release 2.3

in3_ret_t get_from_nodes (in3_ctx_t* parent, char+ method, charx params, bytes_tx dst)
— {
// check if the method is already existing
in3_ctx_t* ctx = ctx_find_required(parent, method);
if (ctx) |
// found one - so we check 1f it 1is useable.
switch (in3_ctx_state(ctx)) {
// 1in case of an error, we report it back to the parent context
case CTX ERROR:
return ctx_set_error (parent, ctx->error, IN3_EUNKNOWN) ;
// 1f we are still waiting, we stop here and report it.
case CTX_WAITING_FOR_REQUIRED_CTX:
case CTX WAITING_FOR_RESPONSE:
return IN3_WAITING;

// if it is useable, we can now handle the result.
case CTX SUCCESS: {
d_token_t+ r = d_get (ctx—>responses[0], K_RESULT);
if (r) {
// we have a result, so write it back to the dst
xdst = d_to_bytes(r);
return IN3_OK;
} else
// or check the error and report it
return ctx_check_response_error (parent, 0);

// no required context found yet, so we create one:

// since this is a subrequest it will be freed when the parent is freed.

// allocate memory for the request-string

char+x req = _malloc(strlen(method) + strlen(params) + 200);

// create it

sprintf (req, "{\"method\":\"%s\",\"jsonrpc\":\"2.0\",\"id\":1,\"params\":%s}",
—method, params);

// and add the request context to the parent.

return ctx_add_required(parent, ctx_new(parent->client, req));

arguments:

in3_ctx_t * | parent | the current request context.
in3_ctx_t * | ctx the new request context to add.

returns: in3 ret_ t NONULL the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

ctx_find_required

NONULL in3_ctx_t* ctx_find_required(const in3_ctx_t *parent, const char xmethod);

searches within the required request contextes for one with the given method.

204 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

This method is used internaly to find a previously added context.

arguments:

in3_ctx_tconst, * | parent the current request context.
const char * | method | the method of the rpc-request.

returns: in3 ctx tNONULL , *

ctx_remove_required

NONULL in3_ret_t ctx_remove_required(in3_ctx_t +*parent, in3_ctx_t *ctx, bool rec);

removes a required context after usage.
removing will also call free_ctx to free resources.

arguments:

in3_ctx_t * | parent | the current request context.
in3_ctx_t* | ctx the request context to remove.
bool rec if true all sub contexts will adsp be removed

returns: 1n3_ret_tNONULL the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

ctx_check_response_error

NONULL in3_ret_t ctx_check_response_error(in3_ctx_t =*c, int 1i);

check if the response contains a error-property and reports this as error in the context.

arguments:

in3_ctx_t * | ¢ | the current request context.
int i | the index of the request to check (if this is a batch-request, otherwise 0).

returns: in3 ret tNONULL the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

ctx_get_error

NONULL in3_ret_t ctx_get_error(in3_ctx_t *ctx, int id);

determins the errorcode for the given request.

arguments:

in3_ctx_t * | ctx | the current request context.
int id | the index of the request to check (if this is a batch-request, otherwise 0).

9.8. Module core 205

Incubed Documentation, Release 2.3

returns: i1n3_ ret_tNONULL the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_client_rpc_ctx_raw

NONULL in3_ctx_t* in3_client_rpc_ctx_raw(in3_t =xc,

const char xrequest);

sends a request and returns a context used to access the result or errors.

This context MUST be freed with ctx_free(ctx) after usage to release the resources.

arguments:

in3_t*

C

the client config.

const char =

request

rpc request.

returns: in3 ctx tNONULL , *

in3_client_rpc_ctx

NONULL in3_ctx_t* in3_client_rpc_ctx (in3_t =*c,

—xparams) ;

const char xmethod, const char

sends a request and returns a context used to access the result or errors.

This context MUST be freed with ctx_free(ctx) after usage to release the resources.

arguments:

in3 t* c the clientt config.
const char * | method | rpc method.
const char x | params | params as string.

returns: in3 ctx tNONULL , *

in3_ctx_get_proof

NONULL in3_proof_t in3_ctx_get_proof (in3_ctx_t =xctx, int 1i);

determines the proof as set in the request.

arguments:

in3_ctx_ t* | ctx

the current request.

int i

the index within the request.

returns: in3_proof_ tNONULL

206

Chapter 9. API Reference C

Incubed Documentation, Release 2.3

ctx_get_node

static NONULL in3_node_t* ctx_get_node (const in3_chain_t xchain, const node_match_t_ |
—*xnode) ;

arguments:

in3_chain_tconst , * chain
node_match_tconst, * | node

returns: in3 node tNONULL , *

ctx_get_node_weight

static NONULL in3_node_weight_t«* ctx_get_node_weight (const in3_chain_t %chain, const_
—node_match_t =+node);

arguments:

in3_chain_tconst , * chain
node_match_tconst, * | node

returns: in3_node weight_ tNONULL , %

9.8.3 plugin.h

this file defines the plugin-contexts

File: c/src/core/client/plugin.h

in3_plugin_is_registered (client,action)

checks if a plugin for specified action is registered with the client

#define in3 _plugin_is_registered (client,action) ((client)->plugin_acts & (action))

plugin_register (c,acts,action_fn,data,replace_ex)

registers a plugin and uses the function name as plugin name

#define plugin register (c,acts,action_fn,data,replace _ex) in3 _plugin_register(
—#action_fn, ¢, acts, action_fn, data, replace_ex)

vc_err (ve,msg)

#define vc_err (vc,msg) vc_set_error (vc, NULL)

9.8. Module core 207

https://github.com/slockit/in3-c/blob/master/c/src/core/client/plugin.h

Incubed Documentation, Release 2.3

in3_signer_type_t

defines the type of signer used

The enum type contains the following values:

SIGNER_ECDSA | 1
SIGNER_EIP1271 | 2

d_signature_type t

type of the requested signature

The enum type contains the following values:

SIGN_EC_RAW | 0 | sign the data directly
SIGN_EC_HASH | 1 | hash and sign the data

in3_request _t

request-object.
represents a RPC-request

The stuct contains following fields:

char =* payload | the payload to send

char »*x urls array of urls

uint_fastlé_t | urls_len | number of urls

in3_ctxstruct , * ctx the current context

void = cptr a custom ptr to hold information during
uint32_t wait time in ms to wait before sending out the request

in3_transport_legacy

typedef in3_ret_t (* in3_transport_legacy) (in3_request_t *request)

returns: 1n3 ret_ t (*the result-status of the function.
Please make sure you check if it was successfull (==IN3_OK)
in3_sign_account_ctx_t

action context when retrieving the account of a signer.

The stuct contains following fields:

in3_ctxstruct , * ctx the context of the request in order report errors
address_t account the account to use for the signature
in3_signer_type_t | signer_type | the type of the signer used for this account.

208 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

in3_sign_prepare_ctx_t

action context when retrieving the account of a signer.

The stuct contains following fields:

in3_ctxstruct, * | ctx the context of the request in order report errors
address _t account | the account to use for the signature

bytes_t old_tx

bytes_t new_tx

in3_sign_ctx_t

signing context.

This Context is passed to the signer-function.

The stuct contains following fields:

bytes_t signature | the resulting signature
d_signature_type_t | type the type of signature
in3_ctxstruct , * ctx the context of the request in order report errors
bytes_t message | the message to sign
bytes_t account the account to use for the signature
in3_configure_ctx_t
context used during configure
The stuct contains following fields:
in3_t* client the client to configure
d_token_t * | token the token not handled yet
char » error_msg | message in case of an incorrect config

in3_get_config_ctx_t

context used during get config

The stuct contains following fields:

in3_t* | client

the client to configure

sb_t * sb

stringbuilder to add json-config

in3_storage_get_item

storage handler function for reading from cache.

typedef bytes_t* (+ in3_storage_get_item) (void *cptr, const char xkey)

returns: bytes_t * (+: the found result. if the key is found this function should return the values as bytes otherwise

NULL.

9.8. Module core

209

Incubed Documentation, Release 2.3

in3_storage_set_item

storage handler function for writing to the cache.

typedef void(x in3_storage_set_item) (void xcptr, const char xkey, bytes_t =*value)

in3_storage_clear

storage handler function for clearing the cache.

typedef void(x in3_storage_clear) (void xcptr)

in3_cache ctx t

context used during get config

The stuct contains following fields:

in3_ctx_t* | ctx the request context
char « key the key to fetch
bytes_t * content | the content to set

in3_plugin_register

in3_ret_t in3_plugin_register (const char xname, in3_t =xc, in3_plugin_supp_acts_t acts,
— 1n3_plugin_act_fn action_fn, void xdata, bool replace_ex);

registers a plugin with the client

arguments:
const char =* name the name of the plugin (optional), which is ignored if LOGGIN is not
defined
in3_t* c the client
in3_plugin_supp_actsacts the actions to register for combined with OR
in3_plugin_act_fn ac- the plugin action function
tion_fn
void = data an optional data or config struct which will be passed to the action func-
tion when executed
bool re- if this is true and an plugin with the same action is already registered, it
place_ex | will replace it

returns: 1n3_ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_register_default

void in3_register_default (plgn_register reg_fn);

210 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

adds a plugin rregister function to the default.
All defaults functions will automaticly called and registered for every new in3_t instance.

arguments:

plgn_register | reg_fn

in3_plugin_execute_all

in3_ret_t in3_plugin_execute_all (in3_t xc, in3_plugin_act_t action, woid *plugin_ctx);

executes all plugins irrespective of their return values, returns first error (if any)

arguments:
in3_t* c
in3_plugin_act_t | action
void « plugin_ctx

returns: 1n3_ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_plugin_execute_first

in3_ret_t in3_plugin_execute_first (in3_ctx_t =xctx, in3_plugin_act_t action, woid
—*plugin_ctx);

executes all plugin actions one-by-one, stops when a plugin returns anything other than IN3_EIGNORE.

returns IN3_EPLGN_NONE if no plugin was able to handle specified action, otherwise returns IN3_OK plugin errors
are reported via the in3_ctx_t

arguments:
in3_ctx_t* ctx
in3_plugin_act_t | action
void « plugin_ctx

returns: 1n3_ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_plugin_execute_first_or_none

in3_ret_t in3_plugin_execute_first_or_none(in3_ctx_t =*ctx, in3_plugin_act_t action,
—void *plugin_ctx);

same as in3_plugin_execute_first(), but returns IN3_OK even if no plugin could handle specified action

arguments:

9.8. Module core 211

Incubed Documentation, Release 2.3

in3_ctx_t * ctx
in3_plugin_act_t | action
void = plugin_ctx

returns: 1n3_ ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_rpc_handle_start

NONULL sb_t+* in3_rpc_handle_start (in3_rpc_handle_ctx_t xhctx);

creates a response and returns a stringbuilder to add the result-data.

arguments:

in3_rpc_handle_ctx_t * \ hetx ‘

returns: sb_ t NONULL , #*

in3_rpc_handle_finish

NONULL in3_ret_t in3_rpc_handle_finish (in3_rpc_handle_ctx_t xhctx);

finish the response.

arguments:

’ in3_rpc_handle_ctx_t * \ hctx ‘

returns: 1n3_ret_ t NONULL the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_rpc_handle_with_bytes

NONULL in3_ret_t in3_rpc_handle_with_bytes (in3_rpc_handle_ctx_t ~+hctx, bytes_t data);

creates a response with bytes.

arguments:

in3_rpc_handle_ctx_t * | hetx
bytes_t data

returns: in3 ret_tNONULL the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

212 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

in3_rpc_handle_with_string

NONULL in3_ret_t in3_rpc_handle_with_string(in3_rpc_handle_ctx_t ~+hctx, char xdata);

creates a response with string.

arguments:

in3_rpc_handle_ctx_t *

hctx

char x*

data

returns: in3 ret tNONULL the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_rpc_handle_with_int

NONULL in3_ret_t in3_rpc_handle_with_int (in3_rpc_handle_ctx_t xhctx,

uint64_t value);

creates a response with a value which is added as hex-string.

arguments:

in3_rpc_handle_ctx_t *

hctx

uint64_t

value

returns: 1n3_ret_ t NONULL the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_get_request_payload

char+ in3_get_request_payload(in3_request_t =*request);

getter to retrieve the payload from a in3_request_t struct

arguments:

returns: char =

in3_get_request_urls

| in3_requesi_t * | request | request struct

char++ in3_get_request_urls (in3_request_t =*request);

getter to retrieve the urls list from a in3_request_t struct

arguments:

returns: char =*x*

| in3_requesi_t * | request | request struct

9.8. Module core

213

Incubed Documentation, Release 2.3

in3_get_request_urls_len

int in3_get_request_urls_len (in3_request_t *request);

getter to retrieve the urls list length from a in3_request_t struct

arguments:

in3_request_t * | request | request struct

returns: int

in3_get_request_timeout

uint32_t in3_get_request_timeout (in3_request_t +*request);

getter to retrieve the urls list length from a in3_request_t struct

arguments:

in3_request_t * | request | request struct

returns: uint32_t

in3_req_add_response

NONULL wvoid in3_reqg add_response (in3_request_t =xreq, int index, bool is_error, const
—char +data, int data_len, uint32_t time);

adds a response for a request-object.

This function should be used in the transport-function to set the response.

arguments:
in3_request_t * | req the the request
int index the index of the url, since this request could go out to many urls
bool is_error | if true this will be reported as error. the message should then be the error-message
const char data the data or the the string
*
int data_len | the length of the data or the the string (use -1 if data is a null terminated string)
uint32_t time the time this request took in ms or 0 if not possible (it will be used to calculate the
weights)

returns: NONULL void

in3_ctx_add_response

NONULL wvoid in3_ctx_add_response (in3_ctx_t =»ctx, int index, bool is_error, const char
—+data, int data_len, uint32_t time);

214 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

adds a response to a context.

This function should be used in the transport-function to set the response.

arguments:
in3_ctx_t * ctx the current context
int index the index of the url, since this request could go out to many urls
bool is_error | if true this will be reported as error. the message should then be the error-message
const char data the data or the the string
*
int data_len | the length of the data or the the string (use -1 if data is a null terminated string)
uint32_t time the time this request took in ms or O if not possible (it will be used to calculate the
weights)

returns: NONULL void

in3_set_default_legacy_transport

void in3_set_default_legacy_transport (in3_transport_legacy transport);

defines a default transport which is used when creating a new client.

arguments:

] in3_transport_legacy | transport | the default transport-function.

in3_sign_ctx_get_message

bytes_t in3_sign_ctx_get_message (in3_sign_ctx_t =xctx);

helper function to retrieve and message from a in3_sign_ctx_t
helper function to retrieve and message from a in3_sign_ctx_t

arguments:

] in3_sign_ctx_t *

ctx \ the signer context

returns: bytes_t

in3_sign_ctx_get_account

bytes_t in3_sign_ctx_get_account (in3_sign_ctx_t =xctx);

helper function to retrieve and account from a in3_sign_ctx_t
helper function to retrieve and account from a in3_sign_ctx_t

arguments:

in3_sign_ctx_t * \ ctx \ the signer context

9.8. Module core 215

Incubed Documentation, Release 2.3

returns: bytes_t

in3_sign_ctx_set_signature_hex

void in3_sign_ctx_set_signature_hex (in3_sign_ctx_t +*ctx, const char xsignature);

helper function to retrieve the signature from a in3_sign_ctx_t

arguments:

in3_sign_ctx_t * ctx the signer context
const char « | signature | the signature in hex

create_sign_ctx

NONULL in3_sign_ctx_t+* create_sign_ctx(in3_ctx_t =ctx);

creates a signer ctx to be used for async signing.

arguments:

in3_cix_t * | etx [the rpc context

returns: in3_sign_ctx tNONULL , *

in3_set_storage_handler

void in3_set_storage_handler (in3_t xc, in3_storage_get_item get_item, in3_storage_set_
—item set_item, in3_storage_clear clear, wvoid x*cptr);

create a new storage handler-object to be set on the client.
the caller will need to free this pointer after usage.

arguments:

in3_t* c the incubed client

in3_storage_get_item | get_item | function pointer returning a stored value for the given key.
in3_storage_set_item | set_item | function pointer setting a stored value for the given key.
in3_storage_clear clear function pointer clearing all contents of cache.

void = cptr custom pointer which will will be passed to functions

vc_set_error

in3_ret_t vc_set_error (in3_vctx_t +*vc, char xmsg);

arguments:

in3_vetx_t* | ve the verification context.
char = msg | the error message.

216 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

returns: in3 ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

9.8.4 bytes.h

util helper on byte arrays.

File: c/src/core/util/bytes.h

bb_new ()

creates a new bytes_builder with a initial size of 32 bytes

#define bb_new () bb_newl (32)

bb_read (bb,i,vptr)

#define bb_read (_bb_,_i_,_vptr_) bb_readl((_bb_), (_i_), (_vptr_), sizeof (*_vptr_))

bb_read_next (bb,iptr,vptr)

#define bb_read _next (_bb_,_iptr._,_vptr_) do {

o\
size t _1_ = sizeof (x_vptr_); \
bb_readl ((_bb_), *(_iptr_), (_vptr_), _1_); \
*(_iptr_) += _1_; \

} while (0)

bb_readl (bb,i,vptr,l)

#define bb_readl (_bb_,_i_,_vptr_,_1_) memcpy((_vptr_), (_bb_)->b.data + (_i_), _1_)

b_read (b,i,vptr)

#define b_read (_b_,_i_,_vptr._) b_readl((_b_), (_i_), _vptr_, sizeof(x_vptr_))

b_readl (b,i,vptr,I)

#define b_readl (_b_,_i_,_vptr_,_1) memcpy(_vptr_, (_b_)->data + (_i_), (_1_))

address_t

pointer to a 20byte address

9.8. Module core 217

https://github.com/slockit/in3-c/blob/master/c/src/core/util/bytes.h

Incubed Documentation, Release 2.3

typedef uint8_t address_t[20]

bytes32_t

pointer to a 32byte word

typedef uint8_t bytes32_t[32]

wilen_t

number of bytes within a word (min 1byte but usually a uint)

typedef uint_fast8_t wlen_t

bytes_t

a byte array

The stuct contains following fields:

uint8_t =« | data | the byte-data
uint32_t len the length of the array ion bytes

b_new

RETURNS_NONULL bytes_t* b_new(const uint8_t +data, uint32_t len);

allocates a new byte array with O filled

arguments:

const uint8_t * | data
uint32_t len

returns: bytes tRETURNS_NONULL , %

b_get_data

NONULL uint8_t+ b_get_data (const bytes_t xb);

gets the data field from an input byte array

arguments:

bytes_tconst , * ‘ b ‘

returns: NONULL uint8_t =

218 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

b_get _len

NONULL uint32_t b_get_len (const bytes_t xb);

gets the len field from an input byte array

arguments:

bytes_tconst , * \ b ‘

returns: NONULL uint32_t

b_print

NONULL wvoid b_print (const bytes_t =xa);

prints a the bytes as hex to stdout

arguments:

bytes_tconst , * ‘ a ‘

returns: NONULL void

ba_print

NONULL void ba_print (const uint8_t xa, size_t 1);

prints a the bytes as hex to stdout

arguments:

const uint8_t % | a
size_t 1

returns: NONULL void

b_cmp

NONULL int b_cmp (const bytes_t xa, const bytes_t «b);

compares 2 byte arrays and returns 1 for equal and 0 for not equal

arguments:

bytes_tconst, * | a
bytes_tconst, * | b

returns: NONULL int

9.8. Module core 219

Incubed Documentation, Release 2.3

bytes_cmp

int bytes_cmp (const bytes_t a,

const bytes_t b);

compares 2 byte arrays and returns 1 for equal and 0O for not equal

arguments:

returns: int

b_free

bytes_tconst

bytes_tconst

void b_free (bytes_t =a);

frees the data

arguments:

b_concat

(e i*]

bytes_t b_concat (int cnt,...);

duplicates the content of bytes

arguments:

returns: bytes_t

b_dup

int

cnt

NONULL bytes_t* b_dup (const bytes_t =«a);

clones a byte array

arguments:

returns: bytes tNONULL ,

bytes_tconst , * ‘ a ‘

220

Chapter 9. API Reference C

Incubed Documentation, Release 2.3

b_read_byte

NONULL uint8_t b_read_byte (bytes_t *b, size_t x*pos);

reads a byte on the current position and updates the pos afterwards.

arguments:

bytes_t * b
size_t x | pos

returns: NONULL uint8_t

b_read_int

NONULL uint32_t b_read_int (bytes_t xb, size_t =xpos);

reads a integer on the current position and updates the pos afterwards.

arguments:

bytes_t * b
size_t = | pos

returns: NONULL uint32_t

b_read_long

NONULL uint64_t b_read_long(bytes_t *b, size_t +*pos);

reads a long on the current position and updates the pos afterwards.

arguments:

bytes_t * b
size_t x | pos

returns: NONULL uint64_t

b_new_chars

NONULL charx b_new_chars (bytes_t xb, size_t xpos);

creates a new string (needs to be freed) on the current position and updates the pos afterwards.

arguments:

bytes_t * b
size_t =« | pos

returns: NONULL char =

9.8. Module core 221

Incubed Documentation, Release 2.3

b_new_fixed_bytes

NONULL bytes_t* b_new_fixed_bytes (bytes_t =xb,

size_t «pos,

int len);

reads bytes with a fixed length on the current position and updates the pos afterwards.

arguments:

returns: bytes_ tNONULL , *

bb_newl

bytes_t * b
size_t x | pos
int len

bytes_builder_t* bb_newl (size_t 1);

creates a new bytes_builder

arguments:

returns: bytes_builder t =

bb_free

size_t “

NONULL wvoid bb_free (bytes_builder_t «bb);

frees a bytebuilder and its content.

arguments:

] bytes_builder_t * \ bb ‘

returns: NONULL void

bb_check_size

NONULL int bb_check_size (bytes_builder_t +bb,

size_t len);

internal helper to increase the buffer if needed

arguments:

bytes_builder_t *

bb

size_t

len

returns: NONULL int

222

Chapter 9.

API Reference C

Incubed Documentation, Release 2.3

bb_write_chars

NONULL wvoid bb_write_chars (bytes_builder_t +bb, char *c, int len);

writes a string to the builder.

arguments:

bytes_builder_t * | bb
char = c
int len

returns: NONULL void

bb_write_dyn_bytes

NONULL wvoid bb_write_dyn_bytes (bytes_builder_t =xbb, const bytes_t =*src);

writes bytes to the builder with a prefixed length.

arguments:

bytes_builder_t * | bb
bytes_tconst, * src

returns: NONULL void

bb_write_fixed_bytes

NONULL wvoid bb_write_fixed_bytes (bytes_builder_t «bb, const bytes_t xsrc);

writes fixed bytes to the builder.

arguments:

bytes_builder_t * | bb
bytes_tconst, * src

returns: NONULL void

bb_write_int

NONULL wvoid bb_write_int (bytes_builder_t »*bb, uint32_t val);

writes a ineteger to the builder.

arguments:

bytes_builder_t * | bb
uint32_t val

returns: NONULL void

9.8. Module core 223

Incubed Documentation, Release 2.3

bb_write_long

NONULL void bb_write_long(bytes_builder_t +bb, uint64_t wval);

writes s long to the builder.

arguments:

returns: NONULL void

bb_write_long_be

bytes_builder_t *

bb

uintod_t

val

NONULL wvoid bb_write_long_be (bytes_builder_t =+bb,

uint64_t wval, int len);

writes any integer value with the given length of bytes

arguments:

returns: NONULL void

bb_write_byte

bytes_builder_t * | bb
uint64_t val
int len

NONULL wvoid bb_write_byte (bytes_builder_t +bb, uint8_t val);

writes a single byte to the builder.

arguments:

returns: NONULL void

bb_write_raw_bytes

bytes_builder_t *

bb

uint8_t

val

NONULL wvoid bb_write_raw_bytes (bytes_builder_t =bb, wvoid *ptr,

size_t len);

writes the bytes to the builder.

arguments:
bytes_builder_t * | bb
void =* ptr
size_ t len
224 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

returns: NONULL void

bb_clear

NONULL void bb_clear (bytes_builder_t +bb);

resets the content of the builder.

arguments:

bytes_builder_t * \ bb ‘

returns: NONULL void

bb_replace

NONULL wvoid bb_replace (bytes_builder_t «bb, int offset, int delete_len, uint8_t =xdata,
— int data_len);

replaces or deletes a part of the content.

arguments:
bytes_builder_t * | bb
int offset
int delete_len
uint8_t =« data
int data_len

returns: NONULL void

bb_move_to_bytes

RETURNS_NONULL NONULL bytes_t+* bb_move_to_bytes (bytes_builder_t =«bb);

frees the builder and moves the content in a newly created bytes struct (which needs to be freed later).

arguments:

] bytes_builder_t * \ bb \

returns: bytes tRETURNS_NONULL NONULL , «*

bb_read_long

NONULL uint64_t bb_read_long(bytes_builder_t xbb, size_t *i);

9.8. Module core 225

Incubed Documentation, Release 2.3

reads a long from the builder

arguments:

bytes_builder_t * | bb
size_t =* i

returns: NONULL uint64d_t

bb_read_int

NONULL uint32_t bb_read_int (bytes_builder_t +bb, size_t +i);

reads a int from the builder

arguments:

bytes_builder_t * | bb

size_t = i

returns: NONULL uint32_t

bytes

static bytes_t bytes (uint8_t *a, uint32_t len);

converts the given bytes to a bytes struct

arguments:

uint8_t * | a
uint32_t len

returns: bytes_t

cloned_bytes

bytes_t cloned_bytes (bytes_t data);

cloned the passed data

arguments:

bytes_t | data |

returns: bytes_t

b_optimize_len

226 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

static NONULL wvoid b_optimize_len (bytes_t «b);

< changed the data and len to remove leading 0-bytes

arguments:

(s 7 # b

returns: NONULL void

9.8.5 data.h

json-parser.

The parser can read from :
* json
* bin

When reading from json all ‘Ox’... values will be stored as bytes_t. If the value is lower than OxFFFFFFF, it is
converted as integer.

File: c/src/core/util/data.h
DATA DEPTH_MAX

the max DEPTH of the JSON-data allowed.

It will throw an error if reached.

’ #define DATA DEPTH MAX 11

printX

’#define printX printf

fprintX

’#define fprintX fprintf

snprintX

’#define snprintX snprintf

vprintX

’#define vprintX vprintf

9.8. Module core 227

https://github.com/slockit/in3-c/blob/master/c/src/core/util/data.h

Incubed Documentation, Release 2.3

d_type_t

type of a token.

The enum type contains the following values:

T_BYTES 0 | content is stored as data ptr.

T_STRING 1 | content is stored a c-str

T_ARRAY 2 | the node is an array with the length stored in length
T_OBJECT 3 | the node is an object with properties
T_BOOLEAN | 4 | boolean with the value stored in len

T_INTEGER 5 | ainteger with the value stored

T_NULL 6 | a NULL-value

d_key_t

typedef uintlé6_t d_key_t

d_token_t

a token holding any kind of value.

use d_type, d_len or the cast-function to get the value.

The stuct contains following fields:

uint8_t =« | data | the byte or string-data
uint32_t len the length of the content (or number of properties) depending + type.
d_key_t key | the key of the property.

str_range_t

internal type used to represent the a range within a string.

The stuct contains following fields:

json_cix_t

char «*

data

pointer to the start of the string

size_t

len

len of the characters

parser for json or binary-data.

it needs to freed after usage.

The stuct contains following fields:

228

Chapter 9. API Reference C

Incubed Documentation, Release 2.3

d_token_t * result the list of all tokens.
the first token is the main-token as returned by the parser.
char = c pointer to the src-data
size_t allocated | amount of tokens allocated result
size_t len number of tokens in result
size_t depth max depth of tokens in result
uint8_t * | Kkeys
size_t keys_last
d_iterator _t

iterator over elements of a array opf object.

usage:

for (d_iterator_t iter = d_iter(parent); iter.left ; d_iter_next(&iter)) {
uint32_t val = d_int (iter.token);

The stuct contains following fields:

d_token_t * | token | current token
int left number of result left

d_to_bytes

bytes_t d_to_bytes(d_token_t «xitem);

returns the byte-representation of token.

In case of a number it is returned as bigendian. booleans as 0x01 or 0x00 and NULL as Ox. Objects or arrays will
return Ox.

arguments:

d_token_t * ‘ item ‘

returns: bytes_t

d_bytes to

int d_bytes_to(d_token_t xitem, uint8_t xdst, const int max);

writes the byte-representation to the dst.
details see d_to_bytes.

arguments:

d_token_t * item
uint8_t x | dst
const int | max

9.8. Module core 229

Incubed Documentation, Release 2.3

returns: int

d_bytes

bytes_t* d_bytes(const d_token_t xitem);

returns the value as bytes (Carefully, make sure that the token is a bytes-type!)

arguments:

d_token_tconst, * | item ‘
returns: bytes_t «*
d_bytesl
bytes_tx d_bytesl(d_token_t xitem, size_t 1);
returns the value as bytes with length 1 (may reallocates)
arguments:

d_token_t * | item
size_t 1
returns: bytes_t *
d_string
char+ d_string(const d_token_t xitem);
converts the value as string.
Make sure the type is string!
arguments:
’ d_token_tconst, * ‘ item ‘

returns: char x
d_int
int32_t d_int (const d_token_t *item);
returns the value as integer.
only if type is integer
arguments:

d_token_tconst, * ‘ item ‘
230 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

returns: int32_t

d_intd

int32_t d_intd(const d_token_t *item, const uint32_t def_val);

returns the value as integer or if NULL the default.
only if type is integer

arguments:

d_token_tconst , * item
const uint32_t | def _val

returns: int32_t

d_long

uint64_t d_long(const d_token_t xitem);

returns the value as long.
only if type is integer or bytes, but short enough

arguments:

d_token_tconst , *

item ‘

returns: uint64_t

d_longd

uint64_t d_longd(const d_token_t xitem, const uint64_t def_val);

returns the value as long or if NULL the default.
only if type is integer or bytes, but short enough

arguments:

d_token_tconst, * item
const uint64_t | def _val

returns: uint64_t

d_create_bytes vec

bytes_txx d_create_bytes_vec (const d_token_t =xarr);

9.8. Module core 231

Incubed Documentation, Release 2.3

arguments:

d_token_tconst , * ‘ arr ‘

returns: bytes_t %

d_type

static d_type_t d_type(const d_token_t xitem);

creates a array of bytes from JOSN-array
type of the token

arguments:

d_token_tconst , * ‘ item ‘

returns: d_type_t

d_len

static int d_len(const d_token_t xitem);

< number of elements in the token (only for object or array, other will return 0)

arguments:

’ d_token_tconst , * ‘ item ‘

returns: int

d_eq

bool d_eg(const d_token_t =xa, const d_token_t «b);

compares 2 token and if the value is equal

arguments:

d_token_tconst, * | a
d_token_tconst, * | b

returns: bool

keyn

NONULL d_key_t keyn(const char xc, const size_t len);

232

Chapter 9.

API Reference C

Incubed Documentation, Release 2.3

generates the keyhash for the given stringrange as defined by len

arguments:

const char = | ¢
const size_t | len

returns: NONULL d_key_t

ikey

d_key_t ikey(json_ctx_t +*ctx, const char xname);

returnes the indexed key for the given name.

arguments:

json_ctx_t * ctx
const char * | name

returns: d_key_t

d_get

d_token_t+* d_get(d_token_t xitem, const uintl6_t key);

returns the token with the given propertyname (only if item is a object)

arguments:

d_token_t * item
const uintlé6_t | Kkey

returns: d_token t *

d_get_or

d_token_tx d_get_or(d_token_t xitem, const uintl6_t keyl, const uintlé6_t key2);

returns the token with the given propertyname or if not found, tries the other.
(only if item is a object)

arguments:

d_token_t * item
const uintlé6_t | keyl
const uintl6_t | key2

returns: d_token_ t #*

9.8. Module core 233

Incubed Documentation, Release 2.3

d_get_at

d_token_tx d_get_at (d_token_t xitem, const uint32_t index);

returns the token of an array with the given index

arguments:

d_token_t * item
const uint32_t | index

returns: d_token t #*

d_next

d_token_t* d_next (d_token_t *item);

returns the next sibling of an array or object

arguments:

d_token_t * ‘ item ‘

returns: d_token_t #*

d_serialize_binary

NONULL wvoid d_serialize_binary (bytes_builder_t =«bb, d_token_t =xt);

write the token as binary data into the builder

arguments:

bytes_builder_t * | bb
d_token_t * t

returns: NONULL void

parse_binary

NONULL Jjson_ctx_t* parse_binary(const bytes_t =xdata);

parses the data and returns the context with the token, which needs to be freed after usage!

arguments:

’ bytes_tconst , * ‘ data ‘

returns: json_ctx_tNONULL , «*

234 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

parse_binary_str

NONULL json_ctx_t* parse_binary_str (const char xdata, int len);

parses the data and returns the context with the token, which needs to be freed after usage!

arguments:

const char x | data
int len

returns: json_ctx_ tNONULL , *

parse_json

NONULL Jjson_ctx_t* parse_json(const char xjs);

parses json-data, which needs to be freed after usage!

arguments:

] const char =* \js \

returns: json_ctx_tNONULL , #*

parse_json_indexed

NONULL Jjson_ctx_t* parse_json_indexed (const char xjs);

parses json-data, which needs to be freed after usage!

arguments:

const char =« \js‘

returns: json_ctx_ tNONULL , =

json_free

NONULL void json_free(json_ctx_t xparser_ctx);

frees the parse-context after usage

arguments:

json_ctx_t * | parser_ctx

returns: NONULL void

9.8. Module core 235

Incubed Documentation, Release 2.3

d_to_json

NONULL str_range_t d_to_json(const d_token_t xitem);

returns the string for a object or array.
This only works for json as string. For binary it will not work!

arguments:

d_token_tconst , * \ item ‘

returns: str._range_ tNONULL

d_create_json

char* d_create_json(json_ctx_t =*ctx, d_token_t xitem);

creates a json-string.
It does not work for objects if the parsed data were binary!

arguments:

Jjson_ctx_t * | ctx
d_token_t* | item

returns: char =

json_create

json_ctx_t* json_create();

returns: json_ctx_t =+

json_create_null

NONULL d_token_t* Json_create_null (json_ctx_t =Jjp);

arguments:

json_ctx_t * \ ip ‘

returns: d_token tNONULL , «*

json_create_bool

NONULL d_token_t»* json_create_bool (json_ctx_t *jp, bool value);

236

Chapter 9. API Reference C

Incubed Documentation, Release 2.3

arguments:

Json_ctx_t * | jp
bool value

returns: d_token_ tNONULL , «*

json_create_int

NONULL d_token_t»* json_create_int (json_ctx_t *jp, uint64_t value);

arguments:

Json_ctx_t * | jp
uint64_t | value

returns: d_token tNONULL , «*

json_create_string

NONULL d_token_t»* json_create_string(json_ctx_t +jp, char *value, int len);

arguments:

Jjson_ctx_t * | jp
char = value
int len

returns: d_token tNONULL , «*

json_create_bytes

NONULL d_token_t»* Jjson_create_bytes (json_ctx_t =jp, bytes_t value);

arguments:

Json_ctx_t * | jp
bytes_t value

returns: d_token tNONULL , «*

json_create_object

NONULL d_token_t»* Jjson_create_object (json_ctx_t =*jp);

9.8. Module core 237

Incubed Documentation, Release 2.3

arguments:

returns: d_token tNONULL , *

json_create_array

json_ctx_t * ‘ ip ‘

NONULL d_token_t»* Json_create_array(json_ctx_t =jp);

arguments:

returns: d_token tNONULL , «*

json_object_add_prop

json_ctx_t * \ ip ‘

NONULL d_token_t* json_object_add_prop(d_token_t =xobject,

—*value);

d_key_t key, d_token_t

arguments:

d_token_t * | object

d_key_t key

d_token_t * | value

returns: d_token tNONULL , #*

json_array_add_value

NONULL d_token_t»* json_array_add_value (d_token_t =xobject,

d_token_t =xvalue);

arguments:

d_token_t * | object

d_token_t * | value

returns: d_token tNONULL , «*

d_get_keystr

char* d_get_keystr (json_ctx_t *json, d_key_t k);

returns the string for a key.
This only works for index keys or known keys!

arguments:

238

Chapter 9. API Reference C

Incubed Documentation, Release 2.3

returns: char =

key

json_ctx_t *

json

d_key_t

static NONULL d_key_t key(const char x*c);

arguments:

returns: NONULL d_key_t

d_get_stringk

const char =« \c‘

static charx d_get_stringk(d_token_t =»r,

d_key_t k);

reads token of a property as string.

arguments:
d_token_t* | r
d_key_t k
returns: char x*
d_get_string
static charx d_get_string(d_token_t =*r, char xk);
reads token of a property as string.
arguments:
d _token_t* | r
char = k

returns: char «*

d_get_string_at

static char+ d_get_string_at (d_token_t =»r,

uint32_t pos);

reads string at given pos of an array.

arguments:

9.8. Module core

239

Incubed Documentation, Release 2.3

d_token_t* | r
uint32_t | pos
returns: char *
d_get_intk
static int32_t d_get_intk(d_token_t »*r, d_key_t k);
reads token of a property as int.
arguments:
d _token_t* | r
d_key_t k
returns: int32_t
d_get_intkd
static int32_t d_get_intkd(d_token_t xr, d_key_t k, uint32_t d);
reads token of a property as int.
arguments:
d_token_t* | r
d_key_t k
uint32_t | d
returns: int32_t
d_get_int
static int32_t d_get_int (d_token_t xr, char xk);
reads token of a property as int.
arguments:
d_token_t* | r
char =« k

returns: int32_t

240

Chapter 9. API Reference C

Incubed Documentation, Release 2.3

d_get_int_at

static int32_t d_get_int_at (d_token_t »r, uint32_t pos);

reads a int at given pos of an array.

arguments:

d_token_t* | r
uint32_t | pos

returns: int32_t

d_get_longk

static uint64_t d_get_longk(d_token_t »*r, d_key_t k);

reads token of a property as long.

arguments:

d_token_t* | r
d_key_t k

returns: uint64_t

d_get_longkd

static uint64_t d_get_longkd(d_token_t *r, d_key_t k, uinté64_t d);

reads token of a property as long.

arguments:

d_token_t* | r
d_key_t
uint64_t | d

=

returns: uint64_t

d_get_long

static uint64_t d_get_long(d_token_t =*r, char xk);

reads token of a property as long.

arguments:

d_token_t * | r
char = k

returns: uint64_t

9.8. Module core 241

Incubed Documentation, Release 2.3

d_get_long_at

static uint64_t d_get_long_at (d_token_t »*r, uint32_t pos);

reads long at given pos of an array.

arguments:

d_token_t* | r
uint32_t | pos

returns: uint64_t

d_get_bytesk

static bytes_tx d_get_bytesk(d_token_t xr, d_key_t k);

reads token of a property as bytes.

arguments:

d _token_ t* | r
d_key_t k

returns: bytes_t *

d_get_bytes

static bytes_t*x d_get_bytes(d_token_t xr, char «k);

reads token of a property as bytes.

arguments:

d _token_t* | r
char =« k

returns: bytes_t *

d_get_bytes_at

static bytes_tx d_get_bytes_at (d_token_t xr, uint32_t pos);

reads bytes at given pos of an array.

arguments:

d_token_t* | r
uint32_t | pos

returns: bytes_t x

242

Chapter 9.

API Reference C

Incubed Documentation, Release 2.3

d_is_binary_ctx

static bool d_is_binary_ctx(json_ctx_t =*ctx);

check if the parser context was created from binary data.

arguments:

json_cix_t * | etx |

returns: bool

d_get_byteskl

bytes_t* d_get_byteskl (d_token_t xr, d_key_t k, uint32_t minl);

arguments:

d token_ t* | r
d_key_t k
uint32_t | minl

returns: bytes_t *

d_getl

d_token_tx d_getl(d_token_t xitem, uintlé6_t k, uint32_t minl);

arguments:

d_token_t * | item
uintlée_t | k
uint32_t | minl

returns: d_token_ t #*

d_iter

d_iterator_t d_iter(d_token_t =xparent);

creates a iterator for a object or array

arguments:

d_token_t * | parent

returns: d_iterator t

9.8. Module core 243

Incubed Documentation, Release 2.3

d_iter_next

static bool d_iter_next (d_iterator_t +const iter);

fetched the next token an returns a boolean indicating whther there is a next or not.

arguments:

d_iterator_t *const \ iter ‘

returns: bool

9.8.6 debug.h

logs debug data only if the DEBUG-flag is set.

File: c/src/core/util/debug.h

dbg_log (msg,...)

logs a debug-message including file and linenumber

dbg_log_raw (msg,...)

logs a debug-message without the filename

msg_dump

void msg_dump (const char *s, const unsigned char xdata, unsigned len);

dumps the given data as hex coded bytes to stdout

arguments:
const char x S
const unsigned char = | data
unsigned len

9.8.7 error.h

defines the return-values of a function call.

File: c/src/core/util/error.h

DEPRECATED

depreacted-attribute

#define DEPRECATED __attribute__ ((deprecated))

244 Chapter 9. API Reference C

https://github.com/slockit/in3-c/blob/master/c/src/core/util/debug.h
https://github.com/slockit/in3-c/blob/master/c/src/core/util/error.h

Incubed Documentation, Release 2.3

OPTIONAL_T (t)

Optional type similar to C++ std::optional Optional types must be defined prior to usage (e.g.

DEFINE_OPTIONAL_T(int)) Use OPTIONAL_T_UNDEFINED(t) & OPTIONAL_T_ VALUE(t, v) for easy initial-
ization (rvalues) Note: Defining optional types for pointers is ill-formed by definition. This is because redundant

#define OPTIONAIL T (t) opt_##t

DEFINE_OPTIONAL_T (1)

Optional types must be defined prior to usage (e.g.

DEFINE_OPTIONAL_T(int)) Use OPTIONAL_T_UNDEFINED(t) & OPTIONAL_T_VALUE(t, v) for easy initial-
ization (rvalues)

#define DEFINE_OPTIONAL T (t) typedef struct { \
t value; \
bool defined; \

} OPTIONAL T (t)

OPTIONAL_T_UNDEFINED (t)

marks a used value as undefined.

#define OPTIONAL T _UNDEFINED (t) ((OPTIONAL T (t)){.defined = false})

OPTIONAL_T_VALUE (t,v)

sets the value of an optional type.

#define OPTIONAL T _VALUE (t,v) ((OPTIONAL T(t)){.value = v, .defined = true})

in3_ret_t

ERROR types used as return values.

All values (except IN3_OK) indicate an error. IN3_WAITING may be treated like an error, since we have stop
executing until the response has arrived, but it is a valid return value.

The enum type contains the following values:

9.8. Module core 245

Incubed Documentation, Release 2.3

IN3_OK 0 Success.
IN3_EUNKNOWN -1 Unknown error - usually accompanied with specific error msg.
IN3_ENOMEM -2 | No memory.
IN3_ENOTSUP -3 | Not supported.
IN3_EINVAL -4 | Invalid value.
IN3_EFIND -5 Not found.
IN3_ECONFIG -6 | Invalid config.
IN3_ELIMIT -7 Limit reached.
IN3_EVERS -8 | Version mismatch.
IN3_EINVALDT -9 Data invalid, eg.
invalid/incomplete JSON
IN3_EPASS -10 | Wrong password.
IN3_ERPC -11 | RPC error (i.e.
in3_ctx_t::error set)
IN3_ERPCNRES -12 | RPC no response.
IN3_EUSNURL -13 | USN URL parse error.
IN3_ETRANS -14 | Transport error.
IN3_ERANGE -15 | Not in range.
IN3_WAITING -16 | the process can not be finished since we are waiting for responses
IN3_EIGNORE -17 | Ignorable error.
IN3_EPAYMENT_REQUIRED | -18 | payment required
IN3_ENODEVICE -19 | harware wallet device not connected
IN3_EAPDU -20 | error in hardware wallet communication
IN3_EPLGN_NONE -21 | no plugin could handle specified action
in3_errmsg

char+ in3_errmsg(in3_ret_t err);

converts a error code into a string.

These strings are constants and do not need to be freed.

arguments:

[in3_rei_t | err | the error code |

returns: char «*

9.8.8 scache.h

util helper on byte arrays.

File: c/src/core/util/scache.h

cache_props

The enum type contains the following values:

246

Chapter 9. API Reference C

https://github.com/slockit/in3-c/blob/master/c/src/core/util/scache.h

Incubed Documentation, Release 2.3

CACHE_PROP_MUST_FREE

0x1 | indicates the content must be freed

CACHE_PROP_SRC_REQ

0x2 | the value holds the src-request

CACHE_PROP_ONLY_EXTERNAL

0x4 | should only be freed if the context is external

cache_props_t

The enum type contains the following values:

CACHE_PROP_MUST_FREE

0x1 | indicates the content must be freed

CACHE_PROP_SRC_REQ

0x2 | the value holds the src-request

CACHE_PROP_ONLY_EXTERNAL

0x4 | should only be freed if the context is external

cache_entry _t

represents a single cache entry in a linked list.

These are used within a request context to cache values and automaticly free them.

The stuct contains following fields:

bytes_t key an optional key of the entry

bytes_t value the value

uint8_t buffer | the buffer is used to store extra data, which will be cleaned when freed.
cache_props_t props | if true, the cache-entry will be freed when the request context is cleaned up.
cache_entrystruct, * | next pointer to the next entry.

in3_cache_get_entry

bytes_t* in3_cache_get_entry(cache_entry_t =xcache, bytes_t xkey);

get the entry for a given key.

arguments:

cache_entry_t *

cache

the root entry of the linked list.

bytes_t *

key

the key to compare with

returns: bytes_t «*

in3_cache_add_entry

cache_entry_t* in3_cache_add_entry (cache_entry_t =xxcache, bytes_t key, bytes_t value);

adds an entry to the linked list.

arguments:

cache_entry_t ** | cache | the root entry of the linked list.
bytes_t key an optional key
bytes_t value | the value of the entry

9.8. Module core

247

Incubed Documentation, Release 2.3

returns: cache_entry_ t «*

in3_cache_free

void in3_cache_free(cache_entry_t xcache, bool is_external);

clears all entries in the linked list.

arguments:

cache_entry_t * | cache

the root entry of the linked list.

bool is_external

true if this is the root context or an external.

in3_cache_add_ptr

static NONULL cache_entry_t+ in3_cache_add_ptr (cache_entry_t +*xcache, void xptr);

adds a pointer, which should be freed when the context is freed.

arguments:

cache_entry_t **

cache

the root entry of the linked list.

void =*

ptr

pointer to memory which shold be freed.

returns: cache_entry_ tNONULL ,

9.8.9 stringbuilder.h

simple string buffer used to dynamicly add content.

File: c/src/core/util/stringbuilder.h

sb_add_hexuint (sb,i)

*

shortcut macro for adding a uint to the stringbuilder using sizeof(i) to automaticly determine the size

#define sb_add_hexuint (sb,1) sb_add _hexuint_1(sb, 1, sizeof(i))

sb_t

string build struct, which is able to hold and modify a growing string.

The stuct contains following fields:

char = | data the current string (null terminated)
size_t | allocted | number of bytes currently allocated
size_t | len the current length of the string

248

Chapter 9. API Reference C

https://github.com/slockit/in3-c/blob/master/c/src/core/util/stringbuilder.h

Incubed Documentation, Release 2.3

sb_stack

static NONULL sb_t sb_stack (char «p);

creates a stringbuilder which is allocating any new memory, but uses an existing string and is used directly on the

stack.

Since it will not grow the memory you need to pass a char* which allocated enough memory.

arguments:

[char =[]

returns: sb_ t NONULL

sb_new

sb_t* sb_new(const char xchars);

creates a new stringbuilder and copies the inital characters into it.

arguments:

const char « | chars |

returns: sb_t *

sb_init

NONULL sb_t+* sb_init (sb_t +*sb);

initializes a stringbuilder by allocating memory.

arguments:

sb_t

returns: sb_t NONULL , #*

sb_free

NONULL wvoid sb_free(sb_t +sb);

frees all resources of the stringbuilder

arguments:

KXY

returns: NONULL void

9.8. Module core

249

Incubed Documentation, Release 2.3

sb_add_char

NONULL sb_t+* sb_add_char(sb_t =*sb, char c);

add a single character

arguments:

sb_t* | sb
char | ¢

returns: sb tNONULL , %

sb_add_chars

NONULL sb_t+* sb_add_chars (sb_t xsb, const char +chars);

adds a string

arguments:

sb_t * sb
const char =* | chars

returns: sb_t NONULL , #*

sb_add_range

NONULL sb_t«* sb_add_range (sb_t xsb, const char xchars, int start, int len);

add a string range

arguments:
sb_t* sb
const char =« | chars
int start
int len

returns: sb_tNONULL , *

sb_add_key_value

NONULL sb_t+ sb_add_key_value(sb_t =sb, const char +key, const char xvalue, int value_
—len, bool as_string);

adds a value with an optional key.
if as_string is true the value will be quoted.

arguments:

250 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

sb_t * sb

const char * | key
const char = | value
int value_len
bool as_string

returns: sb_ tNONULL , *

sb_add_bytes

sb_tx sb_add_bytes(sb_t =sb, const char xprefix, const bytes_t xbytes, int len, bool
—as_array);

add bytes as Ox-prefixed hexcoded string (including an optional prefix), if len>1 is passed bytes maybe an array (if
as_array==true)

arguments:
sb_t * sb
const char x | prefix
bytes_tconst , * bytes
int len
bool as_array

returns: sb_t #

sb_add_hexuint_|

NONULL sb_t* sb_add_hexuint_1(sb_t =+sb, uintmax_t uint, size_t 1);

add a integer value as hexcoded, Ox-prefixed string

Other types not supported

arguments:
sb_t* sb
uintmax_t | uint
size_t 1

returns: sb_ t NONULL , #*

sb_add_escaped_chars

NONULL sb_tx* sb_add_escaped_chars(sb_t +sb, const char xchars);

add chars but escapes all quotes

arguments:

9.8. Module core 251

Incubed Documentation, Release 2.3

sb_t * sb
const char =* | chars

returns: sb tNONULL , %

sb_add_int

NONULL sb_t+* sb_add_int (sb_t *sb, uint64_t val);

adds a numeric value to the stringbuilder

arguments:

sb_t* sb
uint64_t | val

returns: sb_ t NONULL , #*

format_json

NONULL charx format_json(const char *json);

format a json string and returns a new string, which needs to be freed

arguments:

const char x ‘json‘

returns: NONULL char =

sb_add_rawbytes

sb_t* sb_add_rawbytes (sb_t +sb, char *prefix, bytes_t b, unsigned int fix_size);

arguments:
sb_t * sb
char » prefix
bytes_t b
unsigned int | fix_size

returns: sb_t #

sb_print

sb_t* sb_print (sb_t #*sb, const char «fmt,...);

252 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

arguments:

sb_t * sb
const char = | fmt

returns: sb_t *

sb_vprint

sb_t* sb_vprint (sb_t =sb, const char *~fmt, va_list args);

arguments:
sb_t * sb
const char x | fmt
va_list args

returns: sb_t #

9.8.10 utils.h

utility functions.

File: c/src/core/util/utils.h

_strtoull (str,endptr,base)

#define _strtoull (str,endptr,base) strtoull (str, endptr, base)

SWAP (a,b)

simple swap macro for integral types

#define SWAP (a,b) { \
void+ p = a; \
a = b; \
b = p; \
}
min (a,b)

simple min macro for interagl types

#define min (a,b) ((a) < (b) ? (a) : (b))

9.8. Module core 253

https://github.com/slockit/in3-c/blob/master/c/src/core/util/utils.h

Incubed Documentation, Release 2.3

max (a,b)

simple max macro for interagl types

#define max (a,b) ((a) > (b) ? (a) : (b))

IS_APPROX (n1,n2,err)

Check if nl & n2 are at max err apart Expects nl & n2 to be integral types.

#define IS _APPROX (nl,n2,err) ((nl > n2) ? ((nl - n2) <= err) : ((n2 -

nl) <= err))

STR_IMPL_ (x)

simple macro to stringify other macro defs eg.

usage - to concatenate a const with a string at compile time -> define SOME_CONST_UINT 10U printf(”Using default

value of “ STR(SOME_CONST_UINT));

’#define STR_IMPI (x) #x

STR (x)

’#define STR (x) STR_IMPI_ (x)

optimize_len (a,l)

changes to pointer (a) and it length (1) to remove leading 0 bytes.

#define optimize len (a,1) while (1 > 1 && *a == 0) { \
1==; \
a++; \
}
TRY (exp)

executes the expression and expects the return value to be a int indicating the error.

if the return value is negative it will stop and return this value otherwise continue.

#define TRY (exp) { \
int _r = (exp); \
if (_r < 0) return _r; \

}

TRY_FINAL (exp,final)

executes the expression and expects the return value to be a int indicating the error.

if the return value is negative it will stop and return this value otherwise continue.

254 Chapter 9

. APl Reference C

Incubed Documentation, Release 2.3

#define TRY_FINAL (exp,final) { \
int _r = (exp); \
final; \
if (_r < 0) return _r; \

EXPECT_EQ (exp,val)

executes the expression and expects value to equal val.

if not it will return IN3_EINVAL

#define EXPECT_EQ (exp,val) if ((exp) != val) return IN3 _EINVAL;

TRY_SET (var,exp)

executes the expression and expects the return value to be a int indicating the error.

the return value will be set to a existing variable (var). if the return value is negative it will stop and return this value
otherwise continue.

#define TRY_SET (var,exp) | \
var = (exp); \
if (var < 0) return var; \

TRY_GOTO (exp)

executes the expression and expects the return value to be a int indicating the error.

if the return value is negative it will stop and jump (goto) to a marked position “clean”. it also expects a previously
declared variable “in3_ret_t res”.

#define TRY _GOTO (exp) { \
res = (exp); \
if (res < 0) goto clean; \

}

time_func

Pluggable functions: Mechanism to replace library functions with custom alternatives.
This is particularly useful for embedded systems which have their own time or rand functions.
eg. // define function with specified signature uint64_t my_time(void* t) { /... }

// then call in3_set_func_*() int main() { in3_set_func_time(my_time); // Henceforth, all library calls will use
my_time() instead of the platform default time function } time function defaults to k_uptime_get() for zeohyr and
time(NULL) for other platforms expected to return a u64 value representative of time (from epoch/start)

typedef uinté64_t (» time_func) (void «t)

returns: uint64_t (*

9.8. Module core 255

Incubed Documentation, Release 2.3

rand_func

rand function defaults to k_uptime_get() for zeohyr and rand() for other platforms expected to return a random number

typedef int (x rand_func) (void =xs)

returns: int (*

srand_func

srand function defaults to NOOP for zephyr and srand() for other platforms expected to set the seed for a new sequence
of random numbers to be returned by in3_rand()

’typedef void(» srand_func) (unsigned int s)

bytes_to_long

’uint64_t bytes_to_long(const uint8_t +data, int len);

converts the bytes to a unsigned long (at least the last max len bytes)

arguments:

const uint8_t =« | data
int len

returns: uint64_t

bytes_to_int

static uint32_t bytes_to_int (const uint8_t +data, int len);

converts the bytes to a unsigned int (at least the last max len bytes)

arguments:

const uint8_t =« | data
int len

returns: uint32_t

char_to_long

uint64_t char_to_long(const char xa, int 1);

converts a character into a uint64_t

arguments:

const char x | a
int 1

256 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

returns: uint64_t

hexchar_to_int

uint8_t hexchar_to_int (char c);

converts a hexchar to byte (4bit)

arguments:

returns: uint8_t

u64_to_str

const charx u64_to_str(uint64_t value, char *pBuf, int szBuf);

converts a uint64_t to string (char*); buffer-size min.
21 bytes

arguments:

uint64_t | value
char = pBuf
int szBuf

returns: const char =

hex_to_bytes

int hex_to_bytes (const char rhexdata, int hexlen, uint8_t xout, int outlen);

convert a ¢ hex string to a byte array storing it into an existing buffer.

arguments:
const char =« | hexdata
int hexlen
uint8_t = out
int outlen

returns: int

hex_to_new_bytes

bytes_t* hex_to_new_bytes (const char xbuf, int len);

9.8. Module core 257

Incubed Documentation, Release 2.3

convert a ¢ string to a byte array creating a new buffer

arguments:

const char x | buf
int len

returns: bytes_t *

bytes_to_hex

int bytes_to_hex (const uint8_t +buffer, int len, char xout);

convefrts a bytes into hex

arguments:

const uint8_t = | buffer
int len
char =« out

returns: int

sha3

bytes_tx sha3(const bytes_t =xdata);

hashes the bytes and creates a new bytes_t

arguments:

bytes_tconst, * \ data ‘

returns: bytes_t *

keccak

int keccak (bytes_t data, wvoid =xdst);

writes 32 bytes to the pointer.

arguments:

bytes_t data
void * | dst

returns: int

258 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

long_to_bytes

void long_to_bytes (uint64_t val, uint8_t «dst);

converts a long to 8 bytes

arguments:

uinté64_t val
uint8_t * | dst

int_to_bytes

void int_to_bytes (uint32_t val, uint8_t *dst);

converts a int to 4 bytes

arguments:

uint32_t val
uint8_t * | dst

_strdupn

char* _strdupn(const char *src, int len);

duplicate the string

arguments:

const char x | src
int len

returns: char =

min_bytes_len

int min_bytes_len (uint64_t val);

calculate the min number of byte to represents the len

arguments:

| uint64_t | val |

returns: int

9.8. Module core 259

Incubed Documentation, Release 2.3

uint256_set

void uint256_set (const uint8_t «+src, wlen_t src_len, bytes32_t dst);

sets a variable value to 32byte word.

arguments:
const uint8_t =« | src
wlen_t src_len
bytes32_t dst
str_replace

charx str_replace(char xorig, const char xrep, const char xwith);

replaces a string and returns a copy.

arguments:

char x orig
const char x | rep
const char x | with

returns: char =

str_replace_pos

char+ str_replace_pos(char xorig, size_t pos, size_t len,

const char =xrep);

replaces a string at the given position.

arguments:
char =x orig
size_t pos
size_t len
const char x | rep
returns: char x
str_find
char+ str_find(char xhaystack, const char xneedle);
lightweight strstr() replacements
arguments:
char =« haystack
const char = | needle
260 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

returns: char =

str_remove_html

char+ str_remove_html (char *data);

remove all html-tags in the text.

arguments:

returns: char «*

current_ms

char =« ‘ data ‘

uint64_t current_ms();

current timestamp in ms.

returns: uint64_t

memiszero
static bool memiszero (uint8_t *ptr, size_t 1);
arguments:
uint8_t * | ptr
size_t 1

returns: bool

in3_set_func_time

void in3_set_func_time (time_func fn);

arguments:

in3_time

’ time_func ‘ fn ‘

uint64_t in3_time (void *t);

arguments:

9.8. Module core

261

Incubed Documentation, Release 2.3

returns: uint64_t

in3_set_func_rand

void in3_set_func_rand(rand_func fn);

arguments:

’ rand_func ‘ fn ‘

in3_rand

int in3_rand(void =xs);

arguments:

[void + 5]

returns: int

in3_set_func_srand

void in3_set_func_srand(srand_func fn);

arguments:

] srand_func ‘ fn ‘

in3_srand

void in3_srand(unsigned int s);

arguments:

unsigned int ‘s‘

in3_sleep

void in3_sleep (uint32_t ms);

arguments:

uint32_t [ms |

262

Chapter 9. API Reference C

Incubed Documentation, Release 2.3

parse_float_val

int64_t parse_float_val (const char *data, int32_t expo);

parses a float-string and returns the value as int

arguments:

const char »* | data | the data string

int32_t expo | the exponent

returns: int64_t

9.9 Module pay

9.9.1 pay_eth.h

USN APL

This header-file defines easy to use function, which are verifying USN-Messages.

File: c/src/pay/eth/pay_eth.h

in3_pay_eth_config_t

The stuct contains following fields:

uint64_t | bulk_size
uint64_t | max_price
uint64_t | nonce
uint64_t | gas_price

in3_register_pay_eth

’void in3_register_pay_eth();

pay_eth_configure

’char* pay_eth_configure (in3_t +*c, d_token_t +*cconfiqg);

arguments:

in3_t*

d_token_t *

cconfig

returns: char =

9.9. Module pay

263

https://github.com/slockit/in3-c/blob/master/c/src/pay/eth/pay_eth.h

Incubed Documentation, Release 2.3

9.9.2 zksync.h

ZKSync APL

This header-file registers zksync api functions.
File: c/src/pay/zksync/zksync.h
zk_msg_type

The enum type contains the following values:

ZK_TRANSFER | 5
ZK_WITHDRAW | 3

zk_msg_type _t

’typedef enum zk_msg_type zk_msg_type_t

in3_register_zksync

in3_ret_t in3_register_zksync(in3_t =*c);

arguments:

returns: in3 ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

zksync_sign_transfer

in3_ret_t zksync_sign_transfer (sb_t =*sb, zksync_tx_data_t =+data, in3_ctx_t »ctx,
—uint8_t =xsync_key);

arguments:
sb_t* sb
zksync_tx_data_t * | data
in3_ctx_t * ctx
uint8_t = sync_key

returns: in3 ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

264 Chapter 9. API Reference C

https://github.com/slockit/in3-c/blob/master/c/src/pay/zksync/zksync.h

Incubed Documentation, Release 2.3

zksync_sign_change_pub_key

in3_ret_t zksync_sign_change_pub_key (sb_t =xsb, in3_ctx_t »*ctx, uint8_t =xsync_pub_key,

—uint32_t nonce, uint8_t raccount, uint32_t account_id);

[

arguments:

sb_t* sb

in3_ctx_t * ctx

uint8_t * | sync_pub_key
uint32_t nonce
uint8_t =« | account
uint32_t account_id

returns: 1n3_ ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

9.10 Module signer

9.10.1 ethereum_apdu_client.h

this file defines the incubed configuration struct and it registration.

File: c/src/signer/ledger-nano/signer/ethereum_apdu_client.h

eth_ledger_set_signer_txn

in3_ret_t eth_ledger_set_signer_txn(in3_t xin3, uint8_t +bip_path);

attaches ledger nano hardware wallet signer with incubed .
bip32 path to be given to point the specific public/private key in HD tree for Ethereum!

arguments:

in3_t* in3
uint8_t =« | bip_path

returns: in3 ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_ledger_get_public_addr

in3_ret_t eth_ledger_get_public_addr (uint8_t +i_bip_path, uint8_t *o_public_key);

returns public key at the bip_path .
returns IN3_ENODEVICE error if ledger nano device is not connected

arguments:

9.10. Module signer

265

https://github.com/slockit/in3-c/blob/master/c/src/signer/ledger-nano/signer/ethereum_apdu_client.h

Incubed Documentation, Release 2.3

uint8_t =«

i_bip_path

uint8_t =

o_public_key

returns: 1n3_ ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

9.10.2 ledger_signer.h

this file defines the incubed configuration struct and it registration.

File: c/src/signer/ledger-nano/signer/ledger_signer.h

eth_ledger_set_signer

in3_ret_t eth_ledger_set_signer (in3_t +»1in3, uint8_t +bip_path);

attaches ledger nano hardware wallet signer with incubed .

bip32 path to be given to point the specific public/private key in HD tree for Ethereum!

arguments:

in3_t*

in3

uint8_t =

bip_path

returns: 1n3_ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_ledger_get_public_key

in3_ret_t eth_ledger_get_public_key (uint8_t x+bip_path, uint8_t xpublic_key);

returns public key at the bip_path .

returns IN3_ENODEVICE error if ledger nano device is not connected

arguments:

uint8_t =

bip_path

uint8_t =

public_key

returns: 1n3_ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

9.10.3 signer.h

Ethereum Nano verification.

File: c/src/signer/pk-signer/signer.h

266

Chapter 9. API Reference C

https://github.com/slockit/in3-c/blob/master/c/src/signer/ledger-nano/signer/ledger_signer.h
https://github.com/slockit/in3-c/blob/master/c/src/signer/pk-signer/signer.h

Incubed Documentation, Release 2.3

hasher _t

The enum type contains the following values:

hasher_sha2
hasher_sha2d
hasher_sha2_ripemd
hasher_sha3
hasher_sha3k
hasher_blake
hasher_blaked
hasher_blake_ripemd
hasher_groestld_trunc
hasher_overwinter_prevouts 9
hasher_overwinter_sequence | 10

RN N BRI =IO

hasher_overwinter_outputs 11
hasher_overwinter_preimage | 12
hasher_sapling_preimage 13

eth_set_pk_signer

in3_ret_t eth_set_pk_signer (in3_t +in3, bytes32_t pk);

simply signer with one private key.

since the pk pointting to the 32 byte private key is not cloned, please make sure, you manage memory allocation
correctly!

simply signer with one private key.

arguments:

in3_t* in3
bytes32_t | pk

returns: 1n3_ ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_register_pk_signer

in3_ret_t eth_register_pk_signer (in3_t =*in3);

registers pk signer as plugin so you can use config or in3_addKeys as rpc

arguments:

returns: 1n3_ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

9.10. Module signer 267

Incubed Documentation, Release 2.3

eth_set_request_signer

in3_ret_t eth_set_request_signer (in3_t +in3, bytes32_t pk);

sets the signer and a pk to the client

arguments:

in3_t*

in3

bytes32_t

pk

returns: in3_ ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_set_pk_signer_hex

void eth_set_pk_signer_hex (in3_t %in3, char =xkey);

simply signer with one private key as hex.
simply signer with one private key as hex.

arguments:

in3_t*

in3

char «

key

ec_sign_pk_hash

in3_ret_t ec_sign_pk_hash(uint8_t smessage, size_t len,

—uint8_t *dst);

uint8_t +pk, hasher_t hasher, |

Signs message after hashing it with hasher function given in ‘hasher_t’, with the given private key.

Signs message after hashing it with hasher function given in ‘hasher_t’, with the given private key.

arguments:
uint8_t * | message
size_t len
uint8_t = | pk
hasher_t hasher
uint8_t «* | dst

returns: 1n3_ ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

ec_sign_pk_raw

in3_ret_t ec_sign_pk_raw(uint8_t smessage, uint8_t «pk,

uint8_t xdst);

268

Chapter 9. API Reference C

Incubed Documentation, Release 2.3

Signs message raw with the given private key.

Signs message raw with the given private key.

arguments:
uint8_t * | message
uint8_t x | pk
uint8_t x | dst

returns: in3 ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

9.11 Module transport

9.11.1 in3_curl.h

transport-handler using libcurl.

File: c/src/transport/curl/in3_curl.h

send_curl

in3_ret_t send_curl (void *plugin_data, in3_plugin_act_t action,

void xplugin_ctx);

a transport function using curl.

arguments:
void = plugin_data
in3_plugin_act_t | action
void = plugin_ctx

returns: 1n3_ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_register_curl

in3_ret_t in3_register_curl(in3_t =xc);

registers curl as a default transport.

arguments:

[<]

returns: in3 ret t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

9.11. Module transport

269

https://github.com/slockit/in3-c/blob/master/c/src/transport/curl/in3_curl.h

Incubed Documentation, Release 2.3

9.11.2 in3_http.h

transport-handler using simple http.

File: c/src/transport/http/in3_http.h

send_http

in3_ret_t send_http(void *plugin_data, in3_plugin_act_t action, void xplugin_ctx);

a very simple transport function, which allows to send http-requests without a dependency to curl.
Here each request will be transformed to http instead of https.

You can use it by setting the transport-function-pointer in the in3_t->transport to this function:

#include <in3/in3 http.h>

c—>transport = send_http;

arguments:
void = plugin_data
in3_plugin_act_t | action
void = plugin_ctx

returns: in3 ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_register_http

in3_ret_t in3_register_http(in3_t =xc);

registers http as a default transport.

arguments:

returns: in3 ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

9.11.3 in3_winhttp.h

transport-handler using simple http.

File: c/src/transport/winhttp/in3_winhttp.h

send_winhttp

270 Chapter 9. API Reference C

https://github.com/slockit/in3-c/blob/master/c/src/transport/http/in3_http.h
https://github.com/slockit/in3-c/blob/master/c/src/transport/winhttp/in3_winhttp.h

Incubed Documentation, Release 2.3

in3_ret_t send_winhttp(void *plugin_data, in3_plugin_act_t action, wvoid xplugin_ctx);

arguments:
void = plugin_data
in3_plugin_act_t | action
void = plugin_ctx

returns: in3 ret t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_register_winhttp

in3_ret_t in3_register_winhttp (in3_t =*c);

registers http as a default transport.

arguments:

[e

returns: in3 ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

9.12 Module verifier

9.12.1 btc.h

Bitcoin verification.

File: c/src/verifier/btc/btc.h

in3_register_btc

in3_ret_t in3_register_btc(in3_t =*c);

this function should only be called once and will register the bitcoin verifier.

arguments:

returns: in3_ ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

9.12. Module verifier 271

https://github.com/slockit/in3-c/blob/master/c/src/verifier/btc/btc.h

Incubed Documentation, Release 2.3

9.12.2 eth_basic.h

Ethereum Nanon verification.

File: c/src/verifier/eth1/basic/eth_basic.h

eth_verify_tx_values

in3_ret_t eth_verify_ tx_values (in3_vctx_t =vc, d_token_t *tx, bytes_t xraw);

verifies internal tx-values.

arguments:

in3_vctx_t* | ve
d_token_t * | tx
bytes_t * raw

returns: in3 ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_verify_eth_getTransaction

in3_ret_t eth_verify_eth getTransaction(in3_vctx_t =xvc, bytes_t »tx_hash);

verifies a transaction.

arguments:

in3_vetx_t* | ve
bytes_t * tx_hash

returns: 1n3_ ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_verify_eth_getTransactionByBlock

in3_ret_t eth_verify_eth_getTransactionByBlock (in3_vctx_t +*vc, d_token_t *blk, uint32_
—t tx_idx);

verifies a transaction by block hash/number and id.

arguments:

in3_vetx_t * | ve
d _token_t * | blk
uint32_t | tx_idx

returns: 1n3_ ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

272 Chapter 9. API Reference C

https://github.com/slockit/in3-c/blob/master/c/src/verifier/eth1/basic/eth_basic.h

Incubed Documentation, Release 2.3

eth_verify_account_proof

in3_ret_t eth_verify_account_proof (in3_vctx_t =*vc);

verify account-proofs

arguments:

| in3_ver_t * | ve |

returns: in3 ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_verify_eth_getBlock

in3_ret_t eth_verify_eth getBlock (in3_vctx_t =*vc, bytes_t +block_hash, uint64_t
—blockNumber) ;

verifies a block

arguments:

in3_vetx_t * | ve
bytes_t * block_hash
uint64_t | blockNumber

returns: 1n3_ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_verify_eth_getBlockTransactionCount

in3_ret_t eth_verify_eth_getBlockTransactionCount (in3_vctx_t =*vc, bytes_t xblock_hash,
— uint64_t blockNumber) ;

verifies block transaction count by number or hash

arguments:

in3_vetx_t* | ve
bytes_t * block_hash
uint64_t | blockNumber

returns: in3 ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_register_eth_basic

in3_ret_t in3_register_eth_basic(in3_t =*c);

9.12. Module verifier 273

Incubed Documentation, Release 2.3

this function should only be called once and will register the eth-nano verifier.

arguments:

returns: 1n3_ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_verify_eth_getLog

in3_ret_t eth_verify_eth_getlLog(in3_vctx_t xvc, int 1_logs);

verify logs

arguments:

in3_vctx_t* | ve
int 1_logs

returns: in3_ ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_prepare_unsigned_tx

in3_ret_t eth_prepare_unsigned_tx(d_token_t =tx, in3_ctx_t =*ctx, bytes_t =*dst);

prepares a transaction and writes the data to the dst-bytes.
In case of success, you MUST free only the data-pointer of the dst.

arguments:

d_token_t* | tx a json-token desribing the transaction
in3_ctx_t * | ctx | the current context
bytes_t * dst | the bytes to write the result to.

returns: in3 ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_sign_raw_tx

in3_ret_t eth_sign_raw_tx(bytes_t raw_tx, in3_ctx_t =ctx, address_t from, bytes_t
< >*dst) H

signs a unsigned raw transaction and writes the raw data to the dst-bytes.
In case of success, you MUST free only the data-pointer of the dst.

arguments:

274 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

bytes_t raw_tx | the unsigned raw transaction to sign
in3_ctx t* | ctx the current context

address_t from the address of the account to sign with
bytes_t * dst the bytes to write the result to.

returns: 1n3_ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

handle_eth_sendTransaction

in3_ret_t handle_eth_sendTransaction (in3_ctx_t =*ctx,

d_token_t xreq);

expects a req-object for a transaction and converts it into a sendRawTransaction after signing.

expects a req-object for a transaction and converts it into a sendRawTransaction after signing.

arguments:

in3_ctx_t *

ctx

the current context

d_token_t *

req

the request

returns: 1n3_ ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_wallet_sign

RETURNS_NONULL NONULL charx eth_wallet_sign (const char xkey,

const char +data);

minimum signer for the wallet, returns the signed message which needs to be freed

arguments:

returns: RETURNS_NONULL NONUL

9.12.3 trie.h

Patricia Merkle Tree Imnpl

File: c/src/verifier/eth1/basic/trie.h
trie_node_type t

Node types.

The enum type contains the following

const char = | key

const char =« | data

L char «

values:

9.12. Module verifier

275

https://github.com/slockit/in3-c/blob/master/c/src/verifier/eth1/basic/trie.h

Incubed Documentation, Release 2.3

NODE_EMPTY 0 | empty node
NODE_BRANCH | 1 | aBranch

NODE_LEAF 2 | aleaf containing the value.
NODE_EXT 3 | aextension

in3_hasher_t

hash-function

typedef void(x in3_hasher_t)

(bytes_t +src, uint8_t =xdst)

in3_codec_add_t

codec to organize the encoding of the nodes

’typedef void (* in3_codec_add_t) (bytes_builder_t +bb, bytes_t =xval)

in3_codec_finish_t

’typedef void(x in3_codec_finish_t) (bytes_builder_t +bb, bytes_t =*dst)

in3_codec_decode_size t

’typedef int (» in3_codec_decode_size_t) (bytes_t =xsrc)

returns: int (*

in3_codec_decode_index_t

typedef int (x in3_codec_decode_index_t)

(bytes_t xsrc, int index, bytes_t =xdst)

returns: int (*

trie_node t

single node in the merkle trie.

The stuct contains following fields:

uint8_t hash the hash of the node

bytes_t data the raw data

bytes_t items the data as list

uint8_t own_memory | if true this is a embedded node with own memory
trie_node_type_t type type of the node

trie_nodestruct, * | next used as linked list

276

Chapter 9. API Reference C

Incubed Documentation, Release 2.3

trie_codec_t

the codec used to encode nodes.

The stuct contains following fields:

in3_codec_add_t encode_add
in3_codec_finish_t encode_finish
in3_codec_decode_size_t decode_size
in3_codec_decode_index_t | decode_item

trie_t

a merkle trie implementation.
This is a Patricia Merkle Tree.

The stuct contains following fields:

in3_hasher_t hasher | hash-function.

trie_codec_t * | codec | encoding of the nocds.
bytes32_t root The root-hash.

trie_node_t * | nodes linked list of containes nodes

trie_new

trie_t+ trie_new();

creates a new Merkle Trie.

returns: trie t #*

trie_free

void trie_free(trie_t +val);

frees all resources of the trie.

arguments:

trie_set_value

void trie_set_value(trie_t *t, bytes_t +key, bytes_t xvalue);

sets a value in the trie.
The root-hash will be updated automaticly.

arguments:

9.12. Module verifier 277

Incubed Documentation, Release 2.3

trie_t * t
bytes_t * | key
bytes_t * | value

9.12.4 big.h

Ethereum Nanon verification.

File: c/src/verifier/eth1/evm/big.h

big_is_zero

uint8_t big_is_zero(uint8_t +data, wlen_t 1);

arguments:

uint8_t x | data
wlen_t 1

returns: uint8_t

big_shift_left

void big_shift_left (uint8_t *a, wlen_t len, int bits);

arguments:

uint8_t = | a
wlen_t len
int bits

big_shift_right

void big_shift_right (uint8_t +a, wlen_t len, int bits);

arguments:
uint8_t * | a
wlen_t len
int bits
big_cmp

int big_cmp(const uint8_t xa, const wlen_t len_a, const uint8_t xb, const wlen_t len_
:Hb) H

278 Chapter 9. API Reference C

https://github.com/slockit/in3-c/blob/master/c/src/verifier/eth1/evm/big.h

Incubed Documentation, Release 2.3

arguments:
const uint8_t * | a
wlen_tconst len_a
const uint8_t * | b
wlen_tconst len_b

returns: int

big_signed

int big_signed(uint8_t *val, wlen_t len, uint8_t xdst);

returns 0 if the value is positive or 1 if negavtive.
in this case the absolute value is copied to dst.

arguments:

uint8_t «* | val
wlen_t len
uint8_t * | dst

returns: int

big_int

int32_t big_int (uint8_t *val, wlen_t len);

arguments:

uint8_t =« | val
wlen_t len

returns: int32_t

big_add

int big_add(uint8_t +a, wlen_t len_a, uint8_t +b, wlen_t len_b, uint8_t +out, wlen_t
—max) ;

arguments:
uint8_t *+ | a
wlen_t len_a
uint8_t * | b
wlen_t len_b
uint8_t * | out
wlen_t max

returns: int

9.12. Module verifier 279

Incubed Documentation, Release 2.3

big_sub

int big_sub(uint8_t =xa, wlen_t len_a, uint8_t «b, wlen_t len_b, uint8_t xout);

arguments:

uint8_t * | a

wlen_t len_a
uint8_t = | b
wlen_t len_b

uint8_t * | out

returns: int

big_mul

int big_mul (uint8_t =+a, wlen_t la, uint8_t +b, wlen_t 1lb, uint8_t xres, wlen_t max);

arguments:
uint8_t x | a
wlen_t la
uint8_t * | b
wlen_t 1b
uint8_t =« | res
wlen_t max

returns: int

big_div

int big_div(uint8_t +a, wlen_t la, uint8_t «b, wlen_t 1lb, wlen_t sig, uint8_t x*res);

arguments:
uint8_t = | a
wlen_t la
uint8_t * | b
wlen_t Ib
wlen_t sig
uint8_t =« | res

returns: int

big_mod

int big_mod(uint8_t =xa, wlen_t la, uint8_t «+b, wlen_t 1lb, wlen_t sig, uint8_t xres);

280 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

arguments:

uint8_t x | a
wlen_t la
uint8_t * | b
wlen_t Ib
wlen_t sig
uint8_t * | res

returns: int

big_exp

int big_exp(uint8_t =xa, wlen_t la, uint8_t +b, wlen_t 1lb, uint8_t =xres);

arguments:

uint8_t x | a
wlen_t la
uint8_t = | b
wlen_t Ib
uint8_t * | res

returns: int

big_log256

int big_log256 (uint8_t *a, wlen_t len);

arguments:

uint8_t * | a
wlen_t len

returns: int

9.12.5 code.h

code cache.

File: c/src/verifier/ethl/evm/code.h

in3_get_code

in3_ret_t in3_get_code (in3_vctx_t +*vc, address_t address, cache_entry_t «=*target);

9.12. Module verifier 281

https://github.com/slockit/in3-c/blob/master/c/src/verifier/eth1/evm/code.h

Incubed Documentation, Release 2.3

fetches the code and adds it to the context-cache as cache_entry.

So calling this function a second time will take the result from cache.

arguments:

in3_vctx_t * ve
address_t address
cache_entry_t ** | target

returns: in3 ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

9.12.6 evm.h

main evm-file.

File: c/src/verifier/ethl/evm/evm.h
gas_options
EVM_ERROR_EMPTY_STACK

the no more elements on the stack

#define EVM_ERROR _EMPTY STACK -20

EVM_ERROR_INVALID_OPCODE

the opcode is not supported

#define EVM_ERROR_INVALID_OPCODE -21

EVM_ERROR_BUFFER_TOO_SMALL

reading data from a position, which is not initialized

#define EVM_ERROR _BUFFER_TOO_SMALL -22

EVM_ERROR_ILLEGAL_MEMORY_ACCESS

the memory-offset does not exist

#define EVM_ERROR_ILLEGAIL_MEMORY_ACCESS -23

282

Chapter 9. API Reference C

https://github.com/slockit/in3-c/blob/master/c/src/verifier/eth1/evm/evm.h

Incubed Documentation, Release 2.3

EVM_ERROR_INVALID_JUMPDEST

the jump destination is not marked as valid destination

#define EVM_ERROR_INVALID_ JUMPDEST -24

EVM_ERROR_INVALID_PUSH

the push data is empy

#define EVM_ERROR _INVALID PUSH -25

EVM_ERROR_UNSUPPORTED_CALL_OPCODE

error handling the call, usually because static-calls are not allowed to change state

#define EVM_ERROR_UNSUPPORTED_CALIL OPCODE -26

EVM_ERROR_TIMEOUT

the evm ran into a loop

#define EVM_ERROR _TIMEOUT -27

EVM_ERROR_INVALID_ENV

the enviroment could not deliver the data

#define EVM_ERROR_INVALID_ENV -28

EVM_ERROR_OUT_OF_GAS

not enough gas to exewcute the opcode

#define EVM_ERROR_OUT_OF_GAS -29

EVM_ERROR_BALANCE_TOO_LOW

not enough funds to transfer the requested value.

#define EVM_ERROR_BALANCE_TOO_LOW -30

EVM_ERROR_STACK_LIMIT

stack limit reached

#define EVM_ERROR_STACK_LIMIT -31

9.12. Module verifier

283

Incubed Documentation, Release 2.3

EVM_ERROR_SUCCESS_CONSUME_GAS

write success but consume all gas

#define EVM_ERROR_SUCCESS_CONSUME_GAS -32

EVM_PROP_FRONTIER

#define EVM_PROP_FRONTIER 1

EVM_PROP_EIP150

#define EVM_PROP_EIP150 2

EVM_PROP_EIP158

#define EVM_PROP_EIP158 4

EVM_PROP_CONSTANTINOPL

#define EVM_PROP_CONSTANTINOPL 16

EVM_PROP_ISTANBUL

#define EVM_PROP_ISTANBUL 32

EVM_PROP_NO_FINALIZE

#define EVM_PROP_NO_FINALIZE 32768

EVM_PROP_STATIC

#define EVM_PROP_STATIC 256

EVM_ENV_BALANCE

#define EVM_ENV_BALANCE 1

EVM_ENV_CODE_SIZE

284 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

#define EVM_ENV_CODE_SIZE 2

EVM_ENV_CODE_COPY

#define EVM_ENV_CODE_COPY 3

EVM_ENV_BLOCKHASH

#define EVM_ENV_BLOCKHASH 4

EVM_ENV_STORAGE

#define EVM_ENV_STORAGE 5

EVM_ENV_BLOCKHEADER

#define EVM_ENV_BLOCKHEADER 6

EVM_ENV_CODE_HASH

#define EVM_ENV_CODE_HASH 7

EVM_ENV_NONCE

#define EVM_ENV_NONCE 8

MATH_ADD

#define MATH ADD 1

MATH_SUB

#define MATH _SUB 2

MATH_MUL

#define MATH MUL 3

9.12. Module verifier

285

Incubed Documentation, Release 2.3

MATH_DIV

#define MATH DIV 4

MATH_SDIV

#define MATH _SDIV 5

MATH_MOD

#define MATH _MOD 6

MATH_SMOD

#define MATH_SMOD 7

MATH_EXP

#define MATH EXP 8

MATH_SIGNEXP

#define MATH SIGNEXP 9

CALL_CALL

#define CALL_CALL 0

CALL_CODE

#define CALI_CODE 1

CALL_DELEGATE

#define CALL_DELEGATE 2

CALL_STATIC

#define CALL_STATIC 3

286 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

OP_AND

#define OP_AND 0

OP_OR

#define OP_OR 1

OP_XOR

#define OP_XOR 2

EVM_DEBUG_BLOCK (...)

OP_LOG (...)

#define OP_LOG (...) EVM_ERROR _UNSUPPORTED CALI_OPCODE

OP_SLOAD_GAS(...)

OP_CREATE(...)

#define OP_CREATE (...) EVM_ERROR_UNSUPPORTED CALL_ OPCODE

OP_ACCOUNT_GAS(...)

#define OP_ACCOUNT_GAS (...) exit_zero()

OP_SELFDESTRUCT (...)

#define OP_SELFDESTRUCT (...) EVM_ERROR_UNSUPPORTED_CALL OPCODE

OP_EXTCODECOPY_GAS (evm)

OP_SSTORE (...)

#define OP_SSTORE (...) EVM_ERROR_UNSUPPORTED_ CALIL_ OPCODE

EVM_CALL_MODE_STATIC

#define EVM_CALIL MODE_STATIC 1

9.12. Module verifier 287

Incubed Documentation, Release 2.3

EVM_CALL_MODE_DELEGATE

’#define EVM_CALL_MODE_DELEGATE 2

EVM_CALL_MODE_CALLCODE

’#define EVM_CALL_MODE_CALLCODE 3

EVM_CALL_MODE_CALL

’#define EVM_CALL _MODE_CALL 4

evm_state

the current state of the evm

The enum type contains the following values:

EVM_STATE_INIT 0 | justinitialised, but not yet started
EVM_STATE_RUNNING 1 | started and still running
EVM_STATE_STOPPED 2 | successfully stopped
EVM_STATE_REVERTED | 3 | stopped, but results must be reverted

evm_state t

the current state of the evm

The enum type contains the following values:
EVM_STATE_INIT 0 | justinitialised, but not yet started
EVM_STATE_RUNNING 1 | started and still running
EVM_STATE_STOPPED 2 | successfully stopped
EVM_STATE_REVERTED | 3 | stopped, but results must be reverted

evm_get_env

This function provides data from the enviroment.

depending on the key the function will set the out_data-pointer to the result. This means the enviroment is responsible
for memory management and also to clean up resources afterwards.

typedef int (x evm_get_env) (void xevm, uintlé6_t evm_key, uint8_t +in_data, int in_len,
— uint8_t ++out_data, int offset, int len)

returns: int (*

288 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

storage_t

The stuct contains following fields:

bytes32_t key
bytes32_t value
account_storagestruct , * | next

logs_t

The stuct contains following fields:

bytes_t topics
bytes_t data
logsstruct, * | next

account_t

The stuct contains following fields:

address_t address
bytes32_t balance
bytes32_t nonce
bytes_t code
storage_t * storage
accountstruct , * | next

evm_t

The stuct contains following fields:

9.12. Module verifier 289

Incubed Documentation, Release 2.3

bytes_builder_t | stack

bytes_builder_t | memory

int stack_size

bytes_t code

uint32_t pos

evm_state_t state

bytes_t last_returned

bytes_t return_data

uint32_t * | invalid_jumpdest

uint32_t properties

evm_gel_en Vv enyv

void =* env_ptr

uinte6d_t chain_id the chain_id as returned by the opcode
uint8_t = address the address of the current storage
uint8_t =« account the address of the code
uint8_t = origin the address of original sender of the root-transaction
uint8_t = caller the address of the parent sender
bytes_t call_value value send

bytes_t call_data data send in the tx

bytes_t gas_price current gasprice

uint64_t gas

gas_options

exit_zero

int exit_

zero (void) ;

arguments:

void

returns: int

evm_stack_push

int evm_stack_push(evm_t xevm, uint8_t +data, uint8_t len);
arguments:
evm_t * evim
uint8_t «* | data
uint8_t len

returns: int

290

Chapter 9. API Reference C

Incubed Documentation, Release 2.3

evm_stack_push_ref

int evm_stack_push_ref (evm_t xevm, uint8_t x+dst, uint8_t len);

arguments:
evm_t * evin
uint8_t xx | dst
uint8_t len

returns: int

evm_stack_push_int

int evm_stack_push_int (evm_t xevm, uint32_t val);

arguments:

evm_t * evim
uint32_t | val

returns: int

evm_stack_push_long

int evm_stack_push_long(evm_t xevm, uinté64_t val);

arguments:

evm_t * evm
uint64_t | val

returns: int

evm_stack_get_ref

int evm_stack_get_ref (evm_t *evm, uint8_t pos, uint8_t xxdst);

arguments:

evm_t * evm
ulint8_t pos
uint8_t xx | dst

returns: int

9.12. Module verifier 291

Incubed Documentation, Release 2.3

evm_stack_pop

int evm_stack_pop(evm_t *evm, uint8_t =xdst, uint8_t len);

arguments:
evm_t * evin
uint8_t x | dst
uint8_t len

returns: int

evm_stack_pop_ref

int evm_stack_pop_ref (evm_t *evm, uint8_t xxdst);

arguments:

evm_t * evim
uint8_t *x | dst

returns: int

evm_stack_pop_byte

int evm_stack_pop_byte (evm_t *evm, uint8_t «dst);

arguments:

evm_t * evm
uint8_t x | dst

returns: int

evm_stack_pop_int

int32_t evm_stack_pop_int (evm_t *evm);

arguments:

evm_t * ‘ evin ‘

returns: int32_t

292 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

evm_run

int evm_run(evm_t *evm,

address_t code_address) ;

arguments:

returns: int

evm_sub_call

evm_t * evim

address_t

code_address

int evm_sub_call (evm_t =*parent,
wlen_t 1_value, uint8_t
uint64_t gas,

—*value,

—originf[20],

wlen_t mode,

uint8_t address[20],

uint8_t account[20], uint8_t |

xdata, uint32_t 1_data, uint8_t caller([20], uint8_t

uint32_t out_offset, uint32_t out_len);

handle internal calls.

arguments:

returns: int

evim_ensure_memory

evm_t * parent
uint8_t address
uint8_t account
uint8_t = | value
wlen_t 1_value
uint8_t «* | data
uint32_t 1_data
uint8_t caller
uint8_t origin
uinté64_t gas
wlen_t mode
uint32_t out_offset
uint32_t out_len

int evm_ensure_memory (evm_t xevm,

uint32_t max_pos);

arguments:

returns: int

evm_t *

evim

uint32_t

max_pos

9.12. Module verifier

293

Incubed Documentation, Release 2.3

in3_get_env

int in3_get_env(void xevm_ptr, uintl6_t evm_key, uint8_t +in_data, int in_len, uint8_
—t x+out_data, int offset, int len);

arguments:
void =* evm_ptr
uintle6_t evim_key
uint8_t =« in_data
int in_len
uint8_t xx | out_data
int offset
int len

returns: int

evm_call

int evm_call (void #xvc, uint8_t address[20], uint8_t *value, wlen_t 1_value, uint8_t
—=xdata, uint32_t 1_data, uint8_t caller[20], uint64_t gas, uint64_t chain_id, bytes_
—t x*result);

run a evm-call

arguments:
void ve
uint8_t address
uint8_t * | value
wlen_t 1_value

uint8_t * | data
uint32_t 1_data
uint8_t caller
uint64_t gas
uint64_t chain_id

bytes_t ** result

returns: int

evm_print_stack

void evm_print_stack (evm_t xevm, uint64_t last_gas, uint32_t pos);

arguments:

evm_t * evm
uinte64_t | last_gas
uint32_t | pos

294 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

evim_free

void evm_free (evim_t xevm);

arguments:

evim_execute

evm_t * ‘ evin ‘

int evm_execute (evm_t +xevm);

arguments:

returns: int

9.12.7 gas.h

evm gas defines.

File: c/src/verifier/ethl/evm/gas.h

op_exec (m,gas)

evm_t * ‘ evin ‘

#define op_exec (m,gas) return m;

subgas (g)

GAS_CC_NET_SSTORE_NOOP_GAS

Once per SSTORE operation if the value doesn’t change.

#define GAS_CC_NET_SSTORE_NOOP_GAS 200

GAS_CC_NET_SSTORE_INIT_GAS

Once per SSTORE operation from clean zero.

#define GAS_CC_NET_SSTORE_INIT _GAS 20000

GAS_CC_NET_SSTORE_CLEAN_GAS

Once per SSTORE operation from clean non-zero.

9.12. Module verifier

295

https://github.com/slockit/in3-c/blob/master/c/src/verifier/eth1/evm/gas.h

Incubed Documentation, Release 2.3

#define GAS_CC_NET_SSTORE_CLEAN_GAS 5000

GAS_CC_NET_SSTORE_DIRTY_GAS

Once per SSTORE operation from dirty.

#define GAS_CC_NET_SSTORE_DIRTY GAS 200

GAS_CC_NET_SSTORE_CLEAR_REFUND

Once per SSTORE operation for clearing an originally existing storage slot.

#define GAS_CC_NET_SSTORE_CLEAR REFUND 15000

GAS_CC_NET_SSTORE_RESET_REFUND

Once per SSTORE operation for resetting to the original non-zero value.

#define GAS_CC_NET_SSTORE_RESET REFUND 4800

GAS_CC_NET_SSTORE_RESET_CLEAR_REFUND

Once per SSTORE operation for resetting to the original zero valuev.

#define GAS_CC_NET SSTORE_RESET CLEAR REFUND 19800

G_ZERO

Nothing is paid for operations of the set Wzero.

#define G_ZERO 0

G_JUMPDEST

JUMP DEST.

#define G_JUMPDEST 1

G_BASE

This is the amount of gas to pay for operations of the set Wbase.

#define G_BASE 2

296 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

G_VERY_LOW

This is the amount of gas to pay for operations of the set Wverylow.

#define G_VERY LOW 3

G_LOwW

This is the amount of gas to pay for operations of the set Wlow.

#define G_LOW 5

G_MID

This is the amount of gas to pay for operations of the set Wmid.

#define G_MID 8

G_HIGH

This is the amount of gas to pay for operations of the set Whigh.

#define G_HIGH 10

G_EXTCODE

This is the amount of gas to pay for operations of the set Wextcode.

#define G_EXTCODE 700

G_BALANCE

This is the amount of gas to pay for a BALANCE operation.

#define G_BALANCE 400

G_SLOAD

This is paid for an SLOAD operation.

#define G_SLOAD 200

G_SSET

This is paid for an SSTORE operation when the storage value is set to non-zero from zero.

#define G_SSET 20000

9.12. Module verifier

297

Incubed Documentation, Release 2.3

G_SRESET

This is the amount for an SSTORE operation when the storage value’s zeroness remains unchanged or is set to zero.

#define G_SRESET 5000

R_SCLEAR

This is the refund given (added into the refund counter) when the storage value is set to zero from non-zero.

#define R_SCLEAR 15000

R_SELFDESTRUCT

This is the refund given (added into the refund counter) for self-destructing an account.

#define R_SELFDESTRUCT 24000

G_SELFDESTRUCT

This is the amount of gas to pay for a SELFDESTRUCT operation.

#define G_SELFDESTRUCT 5000

G_CREATE

This is paid for a CREATE operation.

#define G_CREATE 32000

G_CODEDEPOSIT

This is paid per byte for a CREATE operation to succeed in placing code into the state.

#define G_CODEDEPOSIT 200

G_CALL

This is paid for a CALL operation.

#define G_CALL 700

G_CALLVALUE

This is paid for a non-zero value transfer as part of the CALL operation.

#define G_CALLVALUE 9000

298 Chapter 9

. APl Reference C

Incubed Documentation, Release 2.3

G_CALLSTIPEND

This is a stipend for the called contract subtracted from Gcallvalue for a non-zero value transfer.

#define G_CALLSTIPEND 2300

G_NEWACCOUNT

This is paid for a CALL or for a SELFDESTRUCT operation which creates an account.

#define G_NEWACCOUNT 25000

G_EXP

This is a partial payment for an EXP operation.

#define G_EXP 10

G_EXPBYTE

This is a partial payment when multiplied by dlog256(exponent)e for the EXP operation.

#define G_EXPBYTE 50

G_MEMORY

This is paid for every additional word when expanding memory.

#define G_MEMORY 3

G_TXCREATE

This is paid by all contract-creating transactions after the Homestead transition.

#define G_TXCREATE 32000

G_TXDATA_ZERO

This is paid for every zero byte of data or code for a transaction.

#define G_TXDATA ZERO 4

G_TXDATA_NONZERO

This is paid for every non-zero byte of data or code for a transaction.

#define G_TXDATA NONZERO 68

9.12. Module verifier

299

Incubed Documentation, Release 2.3

G_TRANSACTION

This is paid for every transaction.

#define G_TRANSACTION 21000

G_LOG

This is a partial payment for a LOG operation.

#define G_LOG 375

G_LOGDATA

This is paid for each byte in a LOG operation’s data.

#define G_LOGDATA 8

G_LOGTOPIC

This is paid for each topic of a LOG operation.

#define G_LOGTOPIC 375

G_SHA3

This is paid for each SHA3 operation.

#define G_SHA3 30

G_SHA3WORD

This is paid for each word (rounded up) for input data to a SHA3 operation.

#define G_SHA3WORD 6

G_COPY

This is a partial payment for *COPY operations, multiplied by the number of words copied, rounded up.

#define G_COPY 3

G_BLOCKHASH

This is a payment for a BLOCKHASH operation.

#define G_BLOCKHASH 20

300 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

G_PRE_EC_RECOVER

Precompile EC RECOVER.

#define G_PRE_EC_RECOVER 3000

G_PRE_SHA256

Precompile SHA256.

#define G_PRE_SHA256 60

G_PRE_SHA256_WORD

Precompile SHA256 per word.

#define G_PRE_SHA256_WORD 12

G_PRE_RIPEMD160

Precompile RIPEMD160.

#define G_PRE_RIPEMD160 600

G_PRE_RIPEMD160_WORD

Precompile RIPEMD160 per word.

#define G_PRE_RIPEMD160_WORD 120

G_PRE_IDENTITY

Precompile IDENTIY (copyies data)

#define G_PRE_IDENTITY 15

G_PRE_IDENTITY_WORD

Precompile IDENTIY per word.

#define G_PRE_IDENTITY WORD 3

G_PRE_MODEXP_GQUAD_DIVISOR

Gquaddivisor from modexp precompile for gas calculation.

#define G_PRE_MODEXP_GQUAD_DIVISOR 20

9.12. Module verifier 301

Incubed Documentation, Release 2.3

G_PRE_ECADD

Gas costs for curve addition precompile.

#define G_PRE_ECADD 500

G_PRE_ECMUL

Gas costs for curve multiplication precompile.

#define G_PRE_ECMUL 40000

G_PRE_ECPAIRING

Base gas costs for curve pairing precompile.

#define G_PRE_ECPAIRING 100000

G_PRE_ECPAIRING_WORD

Gas costs regarding curve pairing precompile input length.

#define G_PRE_ECPAIRING_WORD 80000

EVM_STACK_LIMIT

max elements of the stack

#define EVM_STACK_LIMIT 1024

EVM_MAX_CODE_SIZE

max size of the code

#define EVM_MAX_CODE_SIZE 24576

FRONTIER_G_EXPBYTE

fork values

This is a partial payment when multiplied by dlog256(exponent)e for the EXP operation.

#define FRONTIER G_EXPBYTE 10

302

Chapter 9. API Reference C

Incubed Documentation, Release 2.3

FRONTIER_G_SLOAD

This is a partial payment when multiplied by dlog256(exponent)e for the EXP operation.

#define FRONTIER _G_SLOAD 50

FREE_EVM (...)

INIT_EVM (...)
INIT_GAS (...)
SUBGAS (...)

FINALIZE_SUBCALL_GAS (...)
UPDATE_SUBCALL_GAS (...)
FINALIZE_AND REFUND_GAS(...)

KEEP_TRACK_GAS (evm)

#define KEEP_TRACK_GAS (evm) 0

UPDATE_ACCOUNT_CODE (...)

9.12.8 eth_full.h

Ethereum Nanon verification.

File: c/src/verifier/eth1/full/eth_full.h

in3_register_eth_full

in3_ret_t in3_register_eth_full (in3_t =*c);

this function should only be called once and will register the eth-full verifier.

arguments:

[[c]
returns: in3 ret_t the result-status of the function.
Please make sure you check if it was successfull (==IN3_OK)
9.12.9 chainspec.h

Ethereum chain specification

File: c/src/verifier/eth1/nano/chainspec.h

9.12. Module verifier 303

https://github.com/slockit/in3-c/blob/master/c/src/verifier/eth1/full/eth_full.h
https://github.com/slockit/in3-c/blob/master/c/src/verifier/eth1/nano/chainspec.h

Incubed Documentation, Release 2.3

BLOCK_LATEST

#define BLOCK_LATEST OxFFFFFFFFFFFFFFFF

eth_consensus_type t

the consensus type.

The enum type contains the following values:

ETH_POW 0

Pro of Work (Ethash)

ETH_POA_AURA

—

Proof of Authority using Aura.

ETH_POA_CLIQUE | 2

Proof of Authority using clique.

eip_transition_t

The stuct contains following fields:

uint64_t | transition_block
eip_t eips
consensus_transition_t
The stuct contains following fields:
uint64_t transition_block
eth_consensus_type_t | type
bytes_t validators
uint8_t = contract
chainspec_t
The stuct contains following fields:
uint64_t network_id
uint64d_t account_start_nonce
uint32_t eip_transitions_len
eip_transition_t * eip_transitions
uint32_t consensus_transitions_len
consensus_transition_t * | consensus_transitions
attribute
struct __ attribute_ ((__packed_)) eip_;
304 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

defines the flags for the current activated EIPs.

Since it does not make sense to support a evm defined before Homestead, homestead EIP is always turned on!
< REVERT instruction

< Bitwise shifting instructions in EVM

< Gas cost changes for IO-heavy operations

< Simple replay attack protection

< EXP cost increase

< Contract code size limit

< Precompiled contracts for addition and scalar multiplication on the elliptic curve alt_bn128
< Precompiled contracts for optimal ate pairing check on the elliptic curve alt_bn128

< Big integer modular exponentiation

< New opcodes: RETURNDATASIZE and RETURNDATACOPY

< New opcode STATICCALL

< Embedding transaction status code in receipts

< Skinny CREATE2

< EXTCODEHASH opcode

< Net gas metering for SSTORE without dirty maps

arguments:

(__packed_)

returns: struct

chainspec_create_from_json

chainspec_t+* chainspec_create_from_ json(json_ctx_t =+data);

arguments:

json_ctx_t * ‘ data ‘

returns: chainspec_t *

chainspec_get_eip

eip_t chainspec_get_eip(chainspec_t *spec, uint64_t block_number);

arguments:

chainspec_t * | spec
uint64_t block_number

9.12. Module verifier 305

Incubed Documentation, Release 2.3

returns: eip_t

chainspec_get_consensus

consensus_transition_t+ chainspec_get_consensus (chainspec_t +*spec, uint64_t block_

—number) ;

arguments:

chainspec_t * | spec
uint64_t block_number

returns: consensus_transition_ t «*

chainspec_to_bin

in3_ret_t chainspec_to_bin(chainspec_t =*spec, bytes_builder_t +bb);

arguments:

chainspec_t * spec
bytes_builder_t * | bb

returns: in3 ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

chainspec_from_bin

chainspec_t+* chainspec_from bin(void xraw);

arguments:

void =« ‘ raw ‘

returns: chainspec_t *

chainspec_get

chainspec_t* chainspec_get (chain_id_t chain_id);

arguments:

chain_id_t | chain_id |

returns: chainspec_t «*

306 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

chainspec_put

void chainspec_put (chain_id_t chain_id, chainspec_t =spec);

arguments:

chain_id_t chain_id
chainspec_t * | spec

9.12.10 eth_nano.h

Ethereum Nanon verification.

File: c/src/verifier/eth1/nano/eth_nano.h

in3_verify_eth_nano

NONULL in3_ret_t in3_verify_eth_nano (void »p_data, in3_plugin_act_t action, wvoid
—*pctx);

entry-function to execute the verification context.

arguments:
void x p_data
in3_plugin_act_t | action
void =* pctx

returns: 1n3 ret tNONULL the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_verify_blockheader

in3_ret_t eth_verify_blockheader (in3_vctx_t =vc, bytes_t +header, bytes_t rexpected_
—blockhash) ;

verifies a blockheader.
verifies a blockheader.

arguments:

in3_vctx_t * | ve
bytes_t * header
bytes_t * expected_blockhash

returns: 1n3_ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

9.12. Module verifier 307

https://github.com/slockit/in3-c/blob/master/c/src/verifier/eth1/nano/eth_nano.h

Incubed Documentation, Release 2.3

eth_verify_signature

NONULL int eth_verify_signature (in3_vctx_t =»vc, bytes_t »*msg_hash, d_token_t +sigqg);

verifies a single signature blockheader.

This function will return a positive integer with a bitmask holding the bit set according to the address that signed it.
This is based on the signatiures in the request-config.

arguments:

in3_vctx_t * | ve
bytes_t * msg_hash
d_token_t * | sig

returns: NONULL int

ecrecover_signature

NONULL bytes_t«* ecrecover_signature (bytes_t »msg_hash, d_token_t =*sig);

returns the address of the signature if the msg_hash is correct

arguments:

bytes_t * msg_hash
d_token_t * | sig

returns: bytes tNONULL , *

eth_verify_eth_getTransactionReceipt

NONULL in3_ret_t eth_verify_eth_getTransactionReceipt (in3_vctx_t =*vc, bytes_t »tx_
—hash) ;

verifies a transaction receipt.

arguments:

in3_vetx_t* | ve
bytes_t * tx_hash

returns: in3_ ret_ t NONULL the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_verify_in3_nodelist

in3_ret_t eth_verify_in3_nodelist (in3_vctx_t »vc, uint32_t node_limit, bytes_t +seed,
—d_token_t *required_addresses);

308 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

verifies the nodelist.

arguments:

in3_vctx_t* | ve

uint32_t | node_limit

bytes_t * seed

d_token_t * | required_addresses

returns: 1n3_ ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_verify_in3_whitelist

NONULL in3_ret_t eth _verify_in3_whitelist (in3_vctx_t =*vc);

verifies the nodelist.

arguments:

[in3_ver_t * | ve |

returns: in3 ret tNONULL the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_register_eth_nano

NONULL in3_ret_t in3_register_eth_nano (in3_t =*c);

this function should only be called once and will register the eth-nano verifier.

arguments:

[<]

returns: in3 ret tNONULL the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

create_tx_path

bytes_t* create_tx_path(uint32_t index);

helper function to rlp-encode the transaction_index.
The result must be freed after use!

arguments:

uint32_t | index |

returns: bytes_t x

9.12. Module verifier

309

Incubed Documentation, Release 2.3

9.12.11 merkle.h

Merkle Proof Verification.

File: c/src/verifier/eth1/nano/merkle.h

MERKLE_DEPTH_MAX

#define MERKLE_DEPTH MAX 64

trie_verify_proof

int trie_verify_proof (bytes_t xrootHash, bytes_t =path, bytes_t *xproof, bytes_t
—*xexpectedValue) ;

verifies a merkle proof.

expectedValue == NULL : value must not exist expected Value.data ==NULL : please copy the data I want to evaluate
it afterwards. expectedValue.data !=NULL : the value must match the data.

arguments:

bytes_t * rootHash
bytes_t * path

bytes_t ** | proof

bytes_t * expected Value

returns: int

trie_path_to_nibbles

NONULL uint8_t~* trie_path_to_nibbles (bytes_t path, int use_prefix);

helper function split a path into 4-bit nibbles.
The result must be freed after use!

arguments:

bytes_t | path
int use_prefix

returns: NONULL uint8_t « : the resulting bytes represent a 4bit-number each and are terminated with a OxFF.

trie_matching_nibbles

NONULL int trie_matching nibbles (uint8_t xa, uint8_t +Db);

310 Chapter 9. API Reference C

https://github.com/slockit/in3-c/blob/master/c/src/verifier/eth1/nano/merkle.h

Incubed Documentation, Release 2.3

helper function to find the number of nibbles matching both paths.

arguments:

uint8_t =+ | a
uint8_t x | b

returns: NONULL int

9.12.12 rlp.h

RLP-En/Decoding as described in the Ethereum RLP-Spec.
This decoding works without allocating new memory.

File: c/src/verifier/eth1/nano/rlp.h

rip_decode

int rlp_decode (bytes_t xb, int index, bytes_t =xdst);

this function decodes the given bytes and returns the element with the given index by updating the reference of dst.

the bytes will only hold references and do not need to be freed!

bytes_t* tx_raw = serialize_tx(tx);

bytes_t item;

// decodes the tx _raw by letting the item point to range of the first element, which_,
—should be the body of a list.

if (rlp_decode(tx_raw, 0, &item) !=2) return -1 ;

// now decode the 4th element (which is the value) and let item point to that range.

if (rlp_decode(&item, 4, &item) !=1) return -1 ;
arguments:
bytes t* | b
int index

bytes_t * | dst

returns: int : - 0 : means item out of range
e 1: item found

e 2: list found (you can then decode the same bytes again)

rip_decode_in_list

int rlp_decode_in_list (bytes_t +b, int index, bytes_t «*dst);

this function expects a list item (like the blockheader as first item and will then find the item within this list).

It is a shortcut for

9.12. Module verifier 311

https://github.com/ethereum/wiki/wiki/RLP
https://github.com/slockit/in3-c/blob/master/c/src/verifier/eth1/nano/rlp.h

Incubed Documentation, Release 2.3

// decode the list

if (rlp_decode (b, 0,dst) !=2) return 0;
// and the decode the item

return rlp_decode (dst, index,dst);

arguments:

bytes_t* | b
int index
bytes_t * | dst

returns: int : - 0 : means item out of range
* 1: item found

* 2: list found (you can then decode the same bytes again)

rip_decode_len

int rlp_decode_len (bytes_t «b);

returns the number of elements found in the data.

arguments:

(e * b

returns: int

rip_encode_item

void rlp_encode_item(bytes_builder_t +bb, bytes_t =*val);

encode a item as single string and add it to the bytes_builder.

arguments:

bytes_builder_t * | bb
bytes_t * val

rip_encode_list

void rlp_encode_list (bytes_builder_t +bb, bytes_t =*val);

encode a the value as list of already encoded items.

arguments:

bytes_builder_t * | bb
bytes_t * val

312 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

rip_encode_to_list

bytes_builder_t* rlp_encode_to_list (bytes_builder_t =bb);

converts the data in the builder to a list.

This function is optimized to not increase the memory more than needed and is fastet than creating a second builder
to encode the data.

arguments:

] bytes_builder_t * \ bb \

returns: bytes_builder t *:the same builder.

rip_encode_to_item

bytes_builder_t* rlp_encode_to_item(bytes_builder_t +*bb);

converts the data in the builder to a rlp-encoded item.

This function is optimized to not increase the memory more than needed and is fastet than creating a second builder
to encode the data.

arguments:

] bytes_builder_t * \ bb ‘

returns: bytes_builder_t = :the same builder.

rip_add_length

void rlp_add_length (bytes_builder_t +bb, uint32_t len, uint8_t offset);

helper to encode the prefix for a value

arguments:

bytes_builder_t * | bb
uint32_t len
uint8_t offset

9.12.13 serialize.h

serialization of ETH-Objects.
This incoming tokens will represent their values as properties based on JSON-RPC.

File: c/src/verifier/eth1/nano/serialize.h

9.12. Module verifier 313

https://github.com/ethereum/wiki/wiki/JSON-RPC
https://github.com/slockit/in3-c/blob/master/c/src/verifier/eth1/nano/serialize.h

Incubed Documentation, Release 2.3

BLOCKHEADER_PARENT_HASH

#define BLOCKHEADER_PARENT HASH 0

BLOCKHEADER_SHA3_UNCLES

#define BLOCKHEADER _SHA3 UNCLES 1

BLOCKHEADER_MINER

#define BLOCKHEADER_MINER 2

BLOCKHEADER_STATE_ROOT

#define BLOCKHEADER_STATE_ROOT 3

BLOCKHEADER_TRANSACTIONS_ROOT

#define BLOCKHEADER_TRANSACTIONS_ROOT 4

BLOCKHEADER_RECEIPT_ROOT

#define BLOCKHEADER_RECEIPT ROOT 5

BLOCKHEADER_LOGS_BLOOM

#define BLOCKHEADER LOGS_BLOOM 6

BLOCKHEADER_DIFFICULTY

#define BLOCKHEADER _DIFFICULTY 7

BLOCKHEADER_NUMBER

#define BLOCKHEADER NUMBER 8

BLOCKHEADER_GAS_LIMIT

#define BLOCKHEADER_GAS_LIMIT 9

314 Chapter 9. API Reference C

Incubed Documentation, Release 2.3

BLOCKHEADER_GAS_USED

#define BLOCKHEADER_GAS_USED 10

BLOCKHEADER_TIMESTAMP

#define BLOCKHEADER TIMESTAMP 11

BLOCKHEADER_EXTRA_DATA

#define BLOCKHEADER_EXTRA DATA 12

BLOCKHEADER_SEALED_FIELD1

#define BLOCKHEADER_SEALED_FIELD1 13

BLOCKHEADER_SEALED_FIELD2

#define BLOCKHEADER_SEALED_FIELDZ2 14

BLOCKHEADER_SEALED_FIELD3

#define BLOCKHEADER _SEALED_FIELD3 15

serialize_tx_receipt

bytes_t* serialize_tx_receipt (d_token_t xreceipt);

creates rlp-encoded raw bytes for a receipt.
The bytes must be freed with b_free after use!

arguments:

| d_token_t * | receipt |

returns: bytes_t *

serialize_tx

bytes_t«* serialize_tx(d_token_t »tx);

9.12. Module verifier 315

Incubed Documentation, Release 2.3

creates rlp-encoded raw bytes for a transaction.

The bytes must be freed with b_free after use!

arguments:

returns: bytes_t *

serialize_tx_raw

d_token_t * \ tx ‘

bytes_tx serialize_tx_raw(bytes_t nonce,
—t to, bytes_t wvalue, bytes_t data,

bytes_t gas_price,
uint64_t v, bytes_t r,

bytes_t gas_limit, bytes_
bytes_t s);

creates rlp-encoded raw bytes for a transaction from direct values.

The bytes must be freed with b_free after use!

arguments:

bytes_t nonce
bytes_t gas_price
bytes_t gas_limit
bytes_t to

bytes_t value
bytes_t data
uint64_t | v

bytes_t r

bytes_t S

returns: bytes_t *

serialize_account

bytes_tx serialize_account (d_token_t =a);

creates rlp-encoded raw bytes for a account.
The bytes must be freed with b_free after use!

arguments:

returns: bytes_t *

serialize_block header

d_token_t * ‘ a ‘

bytes_t* serialize_block_header (d_token_t =+block);

316

Chapter 9. API Reference C

Incubed Documentation, Release 2.3

creates rlp-encoded raw bytes for a blockheader.
The bytes must be freed with b_free after use!

arguments:

d_token_t * | block |

returns: bytes_t *

rip_add

int rlp_add(bytes_builder_t *rlp, d_token_t =t, int ml);

adds the value represented by the token rlp-encoded to the byte_builder.

arguments:

bytes_builder_t * | rlp
d_token_t * t
int ml

returns: int : 0 if added -1 if the value could not be handled.

9.12.14 in3_init.h

IN3 init module for auto initializing verifiers and transport based on build config.

File: c/src/verifier/in3_init.h

in3_for_chain (chain_id)

’#define in3 for _chain (chain_id) in3 for chain _auto_init (chain_id)

in3_init

’void in3_init ();

Global initialization for the in3 lib.

Note: This function is not MT-safe and is expected to be called early during during program startup (i.e. in main())
before other threads are spawned.

in3_for_chain_auto_init

in3_t* in3_for_chain_auto_init (chain_id_t chain_id);

9.12. Module verifier 317

https://github.com/slockit/in3-c/blob/master/c/src/verifier/in3_init.h

Incubed Documentation, Release 2.3

Auto-init fallback for easy client initialization meant for single-threaded apps.

This function automatically calls in3_init () before calling in3_for_chain_default (). To enable this
feature, make sure you include this header file (i.e. in3_init.h) before client .h. Doing so will replace the call

to in3_for_chain () with this function.

arguments:

chain_id t

chain_id |

returns: in3 t *

9.12.15 ipfs.h

IPES verification.

File: c/src/verifier/ipfs/ipfs.h

ipfs_verify_hash

in3_ret_t ipfs_verify_ hash(const char xcontent,

—xrequsted_hash) ;

const char xencoding, const char

verifies an IPFS hash.
Supported encoding schemes - hex, utf§ and base64

arguments:

const char «

content

const char =

encoding

const char «*

requsted_hash

returns: 1n3_ret_ t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_register_ipfs

in3_ret_t in3_register_ipfs(in3_t =xc);

this function should only be called once and will register the IPFS verifier.

arguments:

[<]

returns: in3 ret t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

318

Chapter 9. API Reference C

https://github.com/slockit/in3-c/blob/master/c/src/verifier/ipfs/ipfs.h

cHAaPTER 10

APl Reference TS

This page contains a list of all Datastructures and Classes used within the TypeScript IN3 Client.

10.1 Examples

This is a collection of different incubed-examples.

10.1.1 using Web3

Since incubed works with on a JSON-RPC-Level it can easily be used as Provider for Web3:

// import in3-Module
import In3Client from 'in3'
import * as web3 from 'web3'

// use the In3Client as Http-Provider
const web3 = new Web3 (new In3Client ({

proof : 'standard',
signatureCount: 1,
requestCount : 2,

chainId : 'mainnet'

}) .createWeb3Provider ())

// use the web3
const block = await web.eth.getBlockByNumber ('latest')

10.1.2 using Incubed API

Incubed includes a light API, allowinng not only to use all RPC-Methods in a typesafe way, but also to sign transactions
and call funnctions of a contract without the web3-library.

319

Incubed Documentation, Release 2.3

For more details see the API-Doc

// import in3-Module
import In3Client from 'in3'

// use the In3Client
const in3 = new In3Client ({

proof : 'standard',
signatureCount: 1,
requestCount : 2,

chainId : 'mainnet'

1)
// use the api to call a funnction..
const myBalance = await in3.eth.callFn (myTokenContract, 'balanceOf (address):uint', |

—myAccount)

// ot to send a transaction..

const receipt = await in3.eth.sendTransaction ({
to : myTokenContract,
method : 'transfer (address,uint256) ',
args : [target,amount],
confirmations: 2,
pk : myKey

10.1.3 Reading event with incubed

// import in3-Module
import In3Client from 'in3'

// use the In3Client
const in3 = new In3Client ({

proof : 'standard',
signatureCount: 1,
requestCount : 2,

chainId : 'mainnet'

b

// use the ABI-String of the smart contract

abi = [{"anonymous":false, "inputs":[{"indexed":false, "name":"name", "type":"string"}, {
—"indexed":true, "name":"label", "type":"bytes32"}, {"indexed" :true, "name" : "owner", "type
—":"address"}, {"indexed" : false, "name":"cost", "type":"uint256"}, {"indexed" : false, "name
—":"expires", "type":"uint256"}], "name" : "NameRegistered", "type":"event"}]

// create a contract-object for a given address
const contract = in3.eth.contractAt (abi, 'OxFOAD5cAd05el0572EfcEB849f6Ff0c68£9700455
—"') // ENS contract.

// read all events starting from a specified block until the latest
const logs = await c.events.NameRegistered.getLogs ({fromBlock:8022948}))

// print out the properties of the event.
for (const ev of logs)

(continues on next page)

320 Chapter 10. API Reference TS

api-ts.html#type-client

Incubed Documentation, Release 2.3

(continued from previous page)

console.log(${ev.owner registered ev.name for ev.cost) weil until new
—Date (ev.expires.toNumber () *1000) .toString () /)

[

10.2 Main Module

Importing incubed is as easy as

’import Client, {util} from "in3"

While the In3Client-class is the default import, the following imports can be used:

Type ABI the ABI

Interface AccountProof the AccountProof
Interface AuraValidatoryProof the AuraValidatoryProof
Type BlockData the BlockData

Type BlockType the BlockType

Interface ChainSpec the ChainSpec

Class IN3Client the IN3Client

Interface IN3Config the IN3Config

Interface IN3NodeConfig the IN3NodeConfig
Interface IN3NodeWeight the IN3NodeWeight
Interface IN3RPCConfig the IN3RPCConfig
Interface IN3RPCHandlerConfig the IN3RPCHandlerConfig

Continued on next page

10.2. Main Module 321

Incubed Documentation, Release 2.3

Table 1 — continued from previous page

Interface IN3RPCRequestConfig the IN3RPCRequestConfig

Interface IN3ResponseConfig the IN3ResponseConfig

Type Log the Log

Type LogData the LogData

Interface LogProof the LogProof

Interface Proof the Proof

Interface RPCRequest the RPCRequest

Interface RPCResponse the RPCResponse

Type ReceiptData the ReceiptData

Interface ServerList the ServerList

Interface Signature the Signature

Type Transaction the Transaction

Type TransactionData the TransactionData

Type TransactionReceipt the TransactionReceipt

Type Transport the Transport

any AxiosTransport the AxiosTransport
value= transport.
AxiosTransport

Continued on next page

322

Chapter 10. API Reference TS

https://github.com/slockit/in3/blob/master/src/index.ts#L102

Incubed Documentation, Release 2.3

Table 1 — continued from previous page

EthAPI EthAPI the EthAPI
value=
_ethapi.default
any cbor the cbor
value=_cbor
chainAliases the chainAliases
value= aliases
chainData chainData the chainData
value=_chainData
number [] createRandomIndexes (helper function creating
len:number, deterministic random indexes
limit:numbe r used for limited nodelists
seed:Buffer ,
result:number [])
header header the header
value= _header
serialize serialize the serialize
value= _serialize
any storage the storage
value= _storage
any transport the transport
value= _transport
typeDefs the typeDefs
value= types.
validationDef
any util the util
value=_util

Continued on next page

10.2. Main Module

323

https://github.com/slockit/in3/blob/master/src/index.ts#L43
https://github.com/slockit/in3/blob/master/src/index.ts#L48
https://github.com/slockit/in3/blob/master/src/index.ts#L105
https://github.com/slockit/in3/blob/master/src/index.ts#L64
https://github.com/slockit/in3/blob/master/src/client/serverList.ts#L71
https://github.com/slockit/in3/blob/master/src/index.ts#L54
https://github.com/slockit/in3/blob/master/src/index.ts#L51
https://github.com/slockit/in3/blob/master/src/index.ts#L57
https://github.com/slockit/in3/blob/master/src/index.ts#L61
https://github.com/slockit/in3/blob/master/src/index.ts#L103
https://github.com/slockit/in3/blob/master/src/index.ts#L36

Incubed Documentation, Release 2.3

Table 1 — continued from previous page

any

validate

the validate

value= validateOb.
validate

10.3 Package client

10.3.1 Type Client

Source: client/Client.ts

Client for N3.
number defaultMaxListeners the defaultMaxListeners
number listenerCount (listener count
emitter: EventEmitter
event:string
| symbol)
Client constructor (creates a new Client.
config: Partial<IN3Config>
transport: Transport)
IN3Config defConfig the defConfig
EthAPI eth the eth
IpfsAPI ipfs the ipfs
IN3Config config config
this addListener (add listener
event:string
| symbol,
listener:)
Continued on next page
324 Chapter 10. API Reference TS

https://github.com/slockit/in3/blob/master/src/index.ts#L104
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L69
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L9
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L8
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L80
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L76
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L72
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L73
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L146
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L11

Incubed Documentation, Release 2.3

Table 2 — continued from previous page

Promise<any> call (sends a simply RPC-Request
method:string,
params:any,
chain:string,
config: Partial<IN3Config>
)
void clearStats () clears all stats and weights, like
blocklisted nodes
any createWeb3Provider () create web3 provider
boolean emit (emit
event:string
| symbol,
args:any [1)
Array<> eventNames () event names
ChainContext getChainContext (Context for a specific chain
chainld:string) including cache and
chainSpecs.
number getMaxListeners () get max listeners
number listenerCount (listener count
type:string
| symbol)
Function [] listeners (listeners
event:string
| symbol)
this off (off
event:string
| symbol,
listener:)

Continued on next page

10.3. Package client

325

https://github.com/slockit/in3/blob/master/src/client/Client.ts#L259
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L311
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L127
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L23
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L24
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L134
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L20
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L25
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L21
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L17

Incubed Documentation, Release 2.3

Table 2 — continued from previous page

this

on (

event:string
| symbol,

listener:)

on

this

once (
event:string
| symbol,
listener:)

once

this

prependListener (
event:string
| symbol,
listener:)

prepend listener

this

prependOnceListener (
event:string

| symbol,
listener:)

prepend once listener

Function []

rawListeners (
event:string
| symbol)

raw listeners

this removeAllListeners (remove all listeners
event:string
| symbol)
this removeListener (remove listener

event:string
| symbol,
listener:)

Continued on next page

326

Chapter 10. API Reference TS

https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L12
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L13
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L14
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L15
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L22
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L18
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L16

Incubed Documentation, Release 2.3

Table 2 — continued from previous page

Promise<>

send (

request:RPCRequest []
| RPCRequest ,

callback:,

config: Partial<IN3Config>
)

sends one or a multiple
requests.

if the request is a array the
response will be a array as well.
If the callback is given it will
be called with the response, if
not a Promise will be returned.
This function supports callback

so it can be used as a Provider
for the web3.

Promise<RPCResponse>

sendRPC (
method:string,
params:any [],
chain:string,

config: Partial<IN3Config>
)

sends a simply RPC-Request

config:IN3Config)

this setMaxListeners (set max listeners
n:number)

Promise<void> updateNodeList (fetches the nodeList from the
chainld:string, SETVers.
conf:Partial<IN3Config>
retryCount:number)

Promise<void> updateWhiteListNodes (update white list nodes

Continued on next page

10.3. Package client

327

https://github.com/slockit/in3/blob/master/src/client/Client.ts#L271
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L248
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L19
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L182
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L155

Incubed Documentation, Release 2.3

Table 2 — continued from previous page

Promise<boolean> verifyResponse (Verify the response of a request
request:RPCRequest , without any effect on the state
of the client.

Note: The node-list will not be

response:RPCResponse ,
chain:string,

updated.
config: Partial<IN3Config3 The r.ne.:th(')d will either return
) true if its inputs could be
verified.

Or else, it will throw an
exception with a helpful
message.

10.3.2 Type ChainContext

Source: client/ChainContext.ts

Context for a specific chain including cache and chainSpecs.

328 Chapter 10. API Reference TS

https://github.com/slockit/in3/blob/master/src/client/Client.ts#L298
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L42

Incubed Documentation, Release 2.3

ChainContext constructor (Context for a specific chain
client:Client , including cache and
chainld:string, chainSpecs.
chainSpec:ChainSpec [])

string chainld the chainld

ChainSpec [] chainSpec the chainSpec

Client client the client

genericCache the genericCache

number lastValidatorChange the lastValidatorChange

Module module the module

string registryld the registryld (optional)

void clearCache (clear cache
prefix:string)

ChainSpec getChainSpec (returns the chainspec for th
block:number) given block number

string getFromCache (get from cache

key:string)

Promise<RPCResponse>

handlelntern (
request:RPCRequest)

this function is calleds before
the server is asked.

If it returns a promise than the
request is handled internally
otherwise the server will handle
the response.
thisfunctionshouldbe

10.3.

Package client

overriden by modules that want
to handle calls internally

329

https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L49
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L46
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L44
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L43
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L48
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L47
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L45
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L49
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L156
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L85
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L146
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L78
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L90
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L150
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L137

Incubed Documentation, Release 2.3

10.3.3 Type Module

Source: client/modules.ts

string name the name
ChainContext createChainContext (Context for a specific chain
client:Client , including cache and
chainSpecs.

chainld:string,
spec:ChainSpec [])

Promise<boolean> verifyProof (general verification-function
request: RPCRequest , which handles it according to

response:RPCResponse , | 1S given type.

allowWithoutProof:booldan,
ctx:ChainContext)

10.4 Package index.ts

10.4.1 Type AccountProof

Source: index.ts

the Proof-for a single Account the Proof-for a single Account

330 Chapter 10. API Reference TS

https://github.com/slockit/in3/blob/master/src/client/modules.ts#L41
https://github.com/slockit/in3/blob/master/src/client/modules.ts#L42
https://github.com/slockit/in3/blob/master/src/client/modules.ts#L44
https://github.com/slockit/in3/blob/master/src/client/modules.ts#L46
https://github.com/slockit/in3/blob/master/src/index.ts#L73

Incubed Documentation, Release 2.3

string[] accountProof the serialized merle-noodes
beginning with the root-node

string address the address of this account

string balance the balance of this account as
hex

string code the code of this account as hex

(if required) (optional)

string codeHash the codeHash of this account as
hex

string nonce the nonce of this account as hex

string storageHash the storageHash of this account
as hex

(1 storageProof proof for requested storage-data

10.4.2 Type AuraValidatoryProof

Source: index.ts

a Object holding proofs for validator logs. The key is the blockNumber as hex a Object holding proofs for validator
logs. The key is the blockNumber as hex

10.4. Package index.ts 331

https://github.com/slockit/in3/blob/master/src/types/types.ts#L42
https://github.com/slockit/in3/blob/master/src/types/types.ts#L46
https://github.com/slockit/in3/blob/master/src/types/types.ts#L50
https://github.com/slockit/in3/blob/master/src/types/types.ts#L58
https://github.com/slockit/in3/blob/master/src/types/types.ts#L54
https://github.com/slockit/in3/blob/master/src/types/types.ts#L62
https://github.com/slockit/in3/blob/master/src/types/types.ts#L66
https://github.com/slockit/in3/blob/master/src/types/types.ts#L70
https://github.com/slockit/in3/blob/master/src/index.ts#L81

Incubed Documentation, Release 2.3

10.4.3 Type ChainSpec

string

block

the serialized blockheader

example:
0x72804cfa0179d648ccbe6a65b01a6463a8f1ebb14f3aft6

any []

finalityBlocks

the serialized blockheader as
hex, required in case of finality
asked

example:
0x72804cfa0179d648ccbe6a65b()1a6463a8f1ebb14f3aff6
(optional)

number

logIndex

the transaction log index

string|]

proof

the merkleProof

number

txIndex

the transactionIndex within the
block

Source: index.ts

describes the chainspecific consensus params describes the chainspecific consensus params

332

Chapter 10. API Reference TS

https://github.com/slockit/in3/blob/master/src/types/types.ts#L97
https://github.com/slockit/in3/blob/master/src/types/types.ts#L110
https://github.com/slockit/in3/blob/master/src/types/types.ts#L92
https://github.com/slockit/in3/blob/master/src/types/types.ts#L105
https://github.com/slockit/in3/blob/master/src/types/types.ts#L101
https://github.com/slockit/in3/blob/master/src/index.ts#L92

Incubed Documentation, Release 2.3

number block the blocknumnber when this
configuration should apply
(optional)
number bypassFinality Bypass finality check for
transition to contract based
Aura Engines
example: bypassFinality =
10960502 -> will skip the
finality check and add the list at
block 10960502 (optional)
string contract The validator contract at the
block (optional)
'ethHash' engine the engine type (like Ethhash,
| "authorityRound' authorityRound, ...)
| "clique" (optional)
string] list The list of validators at the
particular block (optional)
boolean requiresFinality indicates whether the transition
requires a finality check
example: true (optional)
10.4.4 Type IN3Client
Source: index.ts
Client for N3. Client for N3.
number defaultMaxListeners the defaultMaxListeners

Continued on next page

10.4. Package index.ts

333

https://github.com/slockit/in3/blob/master/src/types/types.ts#L119
https://github.com/slockit/in3/blob/master/src/types/types.ts#L141
https://github.com/slockit/in3/blob/master/src/types/types.ts#L131
https://github.com/slockit/in3/blob/master/src/types/types.ts#L123
https://github.com/slockit/in3/blob/master/src/types/types.ts#L127
https://github.com/slockit/in3/blob/master/src/types/types.ts#L136
https://github.com/slockit/in3/blob/master/src/index.ts#L45
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L9

Incubed Documentation, Release 2.3

Table 3 — continued from previous page

number listenerCount (listener count
emitter: EventEmitter ,
event:string

| symbol)

Client constructor (creates a new Client.

config:Partial<IN3Config>

transport: Transport)

IN3Config defConfig the defConfig
EthAPI eth the eth
IpfsAPI ipfs the ipfs
IN3Config config config
this addListener (add listener

event:string

| symbol,

listener:)

Promise<any> call (sends a simply RPC-Request

method:string,
params:any,
chain:string,

config: Partial<IN3Config>

)
void clearStats () clears all stats and weights, like
blocklisted nodes
any createWeb3Provider () create web3 provider

Continued on next page

334 Chapter 10. API Reference TS

https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L8
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L80
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L76
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L72
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L73
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L146
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L11
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L259
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L311
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L127

Incubed Documentation, Release 2.3

Table 3 — continued from previous page

boolean emit (emit
event:string
| symbol,
args:any [])
Array<> eventNames () event names
ChainContext getChainContext (Context for a specific chain
chainld:string) including cache and
chainSpecs.
number getMaxListeners () get max listeners
number listenerCount (listener count

type:string
| symbol)

Function []

listeners (
event:string
| symbol)

listeners

this

off (

event:string
| symbol,

listener:)

off

this

on (

event:string
| symbol,

listener:)

on

this

once (
event:string
| symbol,
listener:)

once

Continued on next page

10.4. Package index.ts

335

https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L23
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L24
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L134
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L20
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L25
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L21
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L17
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L12
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L13

Incubed Documentation, Release 2.3

Table 3 — continued from previous page

this prependListener (prepend listener
event:string
| symbol,
listener:)

this prependOnceListener (prepend once listener
event:string
| symbol,
listener:)

Function [] rawListeners (raw listeners
event:string
| symbol)

this removeAllListeners (remove all listeners
event:string
| symbol)

this removeListener (remove listener

event:string

| symbol,
listener:)
Promise<> send (sends one or a multiple
request:RPCRequest [] requests.
| RPCRequest , if the request is a array the
callback:, response will be a array as well.

If the callback is given it will

config: Partial<IN3Config> be called with the response, if
) not a Promise will be returned.

This function supports callback
so it can be used as a Provider
for the web3.

Promise<RPCResponse> sendRPC (sends a simply RPC-Request
method:string,
params:any [],
chain:string,

config: Partial<IN3Config>
)

Continued on next page

336 Chapter 10. API Reference TS

https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L14
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L15
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L22
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L18
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L16
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L271
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L248

Incubed Documentation, Release 2.3

Table 3 — continued from previous page

config:IN3Config)

this setMaxListeners (set max listeners
n:number)

Promise<void> updateNodeList (fetches the nodeList from the
chainld:string, servers.
conf:Partial<IN3Config>
retryCount:number)

Promise<void> updateWhiteListNodes (update white list nodes

Promise<boolean>

verifyResponse (
request:RPCRequest ,
response:RPCResponse ,
chain:string,

config: Partial<IN3Config>
)

Verify the response of a request
without any effect on the state
of the client.
Note: The node-list will not be
updated.
The method will either return
true if its inputs could be
verified.
Or else, it will throw an
exception with a helpful
message.

10.4.5 Type IN3Config

Source: index.ts

the iguration of the IN3-Client. This can be paritally overriden for every request. the iguration of the IN3-Client. This
can be paritally overriden for every request.

boolean archiveNodes if true the in3 client will filter
out non archive supporting
nodes
example: true (optional)
boolean autoConfig if true the config will be

adjusted depending on the
request (optional)

Continued on next page

10.4. Package index.ts

337

https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L19
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L182
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L155
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L298
https://github.com/slockit/in3/blob/master/src/index.ts#L74
https://github.com/slockit/in3/blob/master/src/types/types.ts#L287
https://github.com/slockit/in3/blob/master/src/types/types.ts#L173

Incubed Documentation, Release 2.3

Table 4 — continued from previous page

boolean

autoUpdateList

if true the nodelist will be
automaticly updated if the
lastBlock is newer

example: true (optional)

boolean

binaryNodes

if true the in3 client will only
include nodes that support
binary encording

example: true (optional)

any

cacheStorage

a cache handler offering 2
functions (
setltem(string,string),
getltem(string)) (optional)

number

cacheTimeout

number of seconds requests can
be cached. (optional)

string

chainld

servers to filter for the given
chain. The chain-id based on
EIP-155.

example: Ox1

string

chainRegistry

main chain-registry contract

example:
0xe36179e2286ef405¢929C90ad
(optional)

BE70E649B22a945

number

depositTimeout

timeout after which the owner
is allowed to receive its stored
deposit. This information is
also important for the client

example: 3000 (optional)

number

finality

the number in percent needed
in order reach finality (% of
signature of the validators)

example: 50 (optional)

Continued on next page

338

Chapter 10. API Reference TS

https://github.com/slockit/in3/blob/master/src/types/types.ts#L255
https://github.com/slockit/in3/blob/master/src/types/types.ts#L297
https://github.com/slockit/in3/blob/master/src/types/types.ts#L259
https://github.com/slockit/in3/blob/master/src/types/types.ts#L150
https://github.com/slockit/in3/blob/master/src/types/types.ts#L240
https://github.com/slockit/in3/blob/master/src/types/types.ts#L245
https://github.com/slockit/in3/blob/master/src/types/types.ts#L307
https://github.com/slockit/in3/blob/master/src/types/types.ts#L230

Incubed Documentation, Release 2.3

Table 4 — continued from previous page

'json' | "jsonRef " |
'cbor'

format

the format for sending the data
to the client. Default is json,
but using cbor means using
only 30-40% of the payload
since it is using binary
encoding

example: json (optional)

boolean

httpNodes

if true the in3 client will
include http nodes

example: true (optional)

boolean

includeCode

if true, the request should
include the codes of all
accounts. otherwise only the
the codeHash is returned. In
this case the client may ask by
calling eth_getCode()
afterwards

example: true (optional)

boolean

keepIn3

if true, the in3-section of thr
response will be kept.
Otherwise it will be removed
after validating the data. This is
useful for debugging or if the
proof should be used
afterwards. (optional)

any

key

the client key to sign requests

example:
0x387a8233c96e1fcOad5e284353
(optional)

string

loggerUrl

a url of RES-Endpoint, the
client will log all errors to. The
client will post to this endpoint
JSON like { id?, level,
message, meta? } (optional)

string

mainChain

main chain-id, where the chain
registry is running.
example: 0x1 (optional)

Continued on next page

276177af2186e7afa852

10.4.

Package index.ts

339

https://github.com/slockit/in3/blob/master/src/types/types.ts#L164
https://github.com/slockit/in3/blob/master/src/types/types.ts#L292
https://github.com/slockit/in3/blob/master/src/types/types.ts#L187
https://github.com/slockit/in3/blob/master/src/types/types.ts#L159
https://github.com/slockit/in3/blob/master/src/types/types.ts#L169
https://github.com/slockit/in3/blob/master/src/types/types.ts#L263
https://github.com/slockit/in3/blob/master/src/types/types.ts#L250

Incubed Documentation, Release 2.3

Table 4 — continued from previous page

number maxAttempts max number of attempts in case
a response is rejected

example: 10 (optional)

number maxBlockCache number of number of blocks
cached in memory

example: 100 (optional)

number maxCodeCache number of max bytes used to
cache the code in memory

example: 100000 (optional)

number minDeposit min stake of the server. Only
nodes owning at least this
amount will be chosen.

boolean multichainNodes if true the in3 client will filter
out nodes other then which
have capability of the same
RPC endpoint may also accept
requests for different chains

example: true (optional)

number nodeLimit the limit of nodes to store in the
client.

example: 150 (optional)

'none' | 'standard' | proof if true the nodes should send a
'full! proof of the response

example: true (optional)

boolean proofNodes if true the in3 client will filter
out nodes which are providing
no proof

example: true (optional)

number replaceLatestBlock if specified, the blocknumber
latest will be replaced by
blockNumber- specified value

example: 6 (optional)

Continued on next page

340 Chapter 10. API Reference TS

https://github.com/slockit/in3/blob/master/src/types/types.ts#L182
https://github.com/slockit/in3/blob/master/src/types/types.ts#L197
https://github.com/slockit/in3/blob/master/src/types/types.ts#L192
https://github.com/slockit/in3/blob/master/src/types/types.ts#L215
https://github.com/slockit/in3/blob/master/src/types/types.ts#L282
https://github.com/slockit/in3/blob/master/src/types/types.ts#L155
https://github.com/slockit/in3/blob/master/src/types/types.ts#L206
https://github.com/slockit/in3/blob/master/src/types/types.ts#L277
https://github.com/slockit/in3/blob/master/src/types/types.ts#L220

Incubed Documentation, Release 2.3

Table 4 — continued from previous page

number requestCount the number of request send
when getting a first answer
example: 3

boolean retry WithoutProof if true the the request may be

handled without proof in case
of an error. (use with care!)
(optional)

string rpc url of one or more
rpc-endpoints to use. (list can
be comma seperated) (optional)

servers the nodelist per chain
(optional)
number signatureCount number of signatures requested

example: 2 (optional)

number timeout specifies the number of
milliseconds before the request
times out. increasing may be
helpful if the device uses a slow
connection.

example: 3000 (optional)

boolean torNodes if true the in3 client will filter
out non tor nodes

example: true (optional)

string/(] verifiedHashes if the client sends a array of
blockhashes the server will not
deliver any signatures or
blockheaders for these blocks,
but only return a string with a
number. This is automaticly
updated by the cache, but can
be overriden per request.
(optional)

Continued on next page

10.4. Package index.ts 341

https://github.com/slockit/in3/blob/master/src/types/types.ts#L225
https://github.com/slockit/in3/blob/master/src/types/types.ts#L177
https://github.com/slockit/in3/blob/master/src/types/types.ts#L267
https://github.com/slockit/in3/blob/master/src/types/types.ts#L315
https://github.com/slockit/in3/blob/master/src/types/types.ts#L211
https://github.com/slockit/in3/blob/master/src/types/types.ts#L235
https://github.com/slockit/in3/blob/master/src/types/types.ts#L302
https://github.com/slockit/in3/blob/master/src/types/types.ts#L201

Incubed Documentation, Release 2.3

Table 4 — continued from previous page

string[] whiteList a list of in3 server addresses
which are whitelisted manually
by client

example:
0xe36179e2286ef405¢929C90adBE70E649B22a945,0x6¢
(optional)

string whiteListContract White list contract address
(optional)

10.4.6 Type IN3NodeConfig

Source: index.ts

a configuration of a in3-server. a configuration of a in3-server.

342 Chapter 10. API Reference TS

https://github.com/slockit/in3/blob/master/src/types/types.ts#L272
https://github.com/slockit/in3/blob/master/src/types/types.ts#L311
https://github.com/slockit/in3/blob/master/src/index.ts#L75

Incubed Documentation, Release 2.3

string

address

the address of the node, which

is the public address it iis
signing with.

example:
0x6C1a01C2aB554930A937B0a!

PE8105fB47946c679

number

capacity

the capacity of the node.
example: 100 (optional)

string|]

chainlds

the list of supported chains
example: Ox1

number

deposit

the deposit of the node in wei
example: 12350000

number

index

the index within the contract
example: 13 (optional)

number

props

the properties of the node.
example: 3 (optional)

number

registerTime

the UNIX-timestamp when the
node was registered

example: 1563279168
(optional)

number

timeout

the time (in seconds) until an
owner is able to receive his
deposit back after he
unregisters himself

example: 3600 (optional)

number

unregisterTime

the UNIX-timestamp when the
node is allowed to be deregister
example: 1563279168
(optional)

tring
ng

=

10.4.

Package index.ts

q

example: https://in3.slock.it

343

https://github.com/slockit/in3/blob/master/src/types/types.ts#L389
https://github.com/slockit/in3/blob/master/src/types/types.ts#L414
https://github.com/slockit/in3/blob/master/src/types/types.ts#L404
https://github.com/slockit/in3/blob/master/src/types/types.ts#L409
https://github.com/slockit/in3/blob/master/src/types/types.ts#L384
https://github.com/slockit/in3/blob/master/src/types/types.ts#L419
https://github.com/slockit/in3/blob/master/src/types/types.ts#L424
https://github.com/slockit/in3/blob/master/src/types/types.ts#L394
https://github.com/slockit/in3/blob/master/src/types/types.ts#L429
https://github.com/slockit/in3/blob/master/src/types/types.ts#L399
https://in3.slock.it

Incubed Documentation, Release 2.3

10.4.7 Type IN3NodeWeight

Source: index.ts

a local weight of a n3-node. (This is used internally to weight the requests) a local weight of a n3-node. (This is used
internally to weight the requests)

number avgResponseTime average time of a response in
ms

example: 240 (optional)

number blacklistedUntil blacklisted because of failed
requests until the timestamp

example: 1529074639623
(optional)

number lastRequest timestamp of the last request in
ms

example: 1529074632623
(optional)

number pricePerRequest last price (optional)

number responseCount number of uses.
example: 147 (optional)

number weight factor the weight this noe
(default 1.0)

example: 0.5 (optional)

10.4.8 Type IN3SRPCConfig

Source: index.ts

the configuration for the rpc-handler the configuration for the rpc-handler

344 Chapter 10. API Reference TS

https://github.com/slockit/in3/blob/master/src/index.ts#L76
https://github.com/slockit/in3/blob/master/src/types/types.ts#L449
https://github.com/slockit/in3/blob/master/src/types/types.ts#L463
https://github.com/slockit/in3/blob/master/src/types/types.ts#L458
https://github.com/slockit/in3/blob/master/src/types/types.ts#L453
https://github.com/slockit/in3/blob/master/src/types/types.ts#L444
https://github.com/slockit/in3/blob/master/src/types/types.ts#L439
https://github.com/slockit/in3/blob/master/src/index.ts#L90

Incubed Documentation, Release 2.3

chains a definition of the Handler per
chain (optional)
db the db (optional)
string defaultChain the default chainld in case the
request does not contain one.
(optional)
string id a identifier used in logfiles as
also for reading the config from
the database (optional)
logging logger config (optional)
number port the listeneing port for the server
(optional)
profile the profile (optional)

10.4.9 Type INSBRPCHandlerConfig

Source: index.ts

the configuration for the rpc-handler the configuration for the rpc-handler

10.4. Package index.ts

345

https://github.com/slockit/in3/blob/master/src/types/types.ts#L561
https://github.com/slockit/in3/blob/master/src/types/types.ts#L481
https://github.com/slockit/in3/blob/master/src/types/types.ts#L476
https://github.com/slockit/in3/blob/master/src/types/types.ts#L472
https://github.com/slockit/in3/blob/master/src/types/types.ts#L528
https://github.com/slockit/in3/blob/master/src/types/types.ts#L480
https://github.com/slockit/in3/blob/master/src/types/types.ts#L503
https://github.com/slockit/in3/blob/master/src/index.ts#L91

Incubed Documentation, Release 2.3

autoRegistry

the autoRegistry (optional)

string

clientKeys

a comma sepearted list of client
keys to use for simulating
clients for the watchdog
(optional)

number

freeScore

the score for requests without a
valid signature (optional)

'eth!'|

'"ipfs'l 'btce!

handler

the impl used to handle the
calls (optional)

string

ipfsUrl

the url of the ipfs-client
(optional)

number

maxThreads

the maximal number of threads
ofr running parallel processes
(optional)

number

minBlockHeight

the minimal blockheight in
order to sign (optional)

string

persistentFile

the filename of the file keeping
track of the last handled
blocknumber (optional)

string

privateKey

the private key used to sign
blockhashes. this can be either
a Ox-prefixed string with the
raw private key or the path to a
key-file.

string

privateKeyPassphrase

the password used to decrpyt
the private key (optional)

string

registry

the address of the server

346

e Cliapier 10. API'Réferen

the

ce TS

https://github.com/slockit/in3/blob/master/src/types/types.ts#L633
https://github.com/slockit/in3/blob/master/src/types/types.ts#L588
https://github.com/slockit/in3/blob/master/src/types/types.ts#L596
https://github.com/slockit/in3/blob/master/src/types/types.ts#L572
https://github.com/slockit/in3/blob/master/src/types/types.ts#L576
https://github.com/slockit/in3/blob/master/src/types/types.ts#L604
https://github.com/slockit/in3/blob/master/src/types/types.ts#L600
https://github.com/slockit/in3/blob/master/src/types/types.ts#L608
https://github.com/slockit/in3/blob/master/src/types/types.ts#L620
https://github.com/slockit/in3/blob/master/src/types/types.ts#L624
https://github.com/slockit/in3/blob/master/src/types/types.ts#L628
https://github.com/slockit/in3/blob/master/src/types/types.ts#L632
https://github.com/slockit/in3/blob/master/src/types/types.ts#L584
https://github.com/slockit/in3/blob/master/src/types/types.ts#L612
https://github.com/slockit/in3/blob/master/src/types/types.ts#L580
https://github.com/slockit/in3/blob/master/src/types/types.ts#L616
https://github.com/slockit/in3/blob/master/src/types/types.ts#L592

Incubed Documentation, Release 2.3

10.4.10 Type INSRPCRequestConfig

Source: index.ts

additional config for a IN3 RPC-Request additional config for a IN3 RPC-Request

10.4. Package index.ts 347

https://github.com/slockit/in3/blob/master/src/index.ts#L77

Incubed Documentation, Release 2.3

string

chainld

the requested chainld
example: Ox1

any

clientSignature

the signature of the client
(optional)

number

finality

if given the server will deliver
the blockheaders of the
following blocks until at least
the number in percent of the
validators is reached. (optional)

boolean

includeCode

if true, the request should
include the codes of all
accounts. otherwise only the
the codeHash is returned. In
this case the client may ask by
calling eth_getCode()
afterwards

example: true (optional)

number

latestBlock

if specified, the blocknumber
latest will be replaced by
blockNumber- specified value

example: 6 (optional)

string]

signatures

a list of addresses requested to
sign the blockhash

example:
0x6C1a01C2aB554930A937B0a
(optional)

PE8105fB47946c679

boolean

useBinary

if true binary-data will be used.
(optional)

boolean

useFullProof

if true all data in the response
will be proven, which leads to a
higher payload. (optional)

boolean

useRef

if true binary-data (starting

348

witiohgpteili be rafPreRéferen

occuring again. (optional)

ce TS

https://github.com/slockit/in3/blob/master/src/types/types.ts#L670
https://github.com/slockit/in3/blob/master/src/types/types.ts#L709
https://github.com/slockit/in3/blob/master/src/types/types.ts#L700
https://github.com/slockit/in3/blob/master/src/types/types.ts#L675
https://github.com/slockit/in3/blob/master/src/types/types.ts#L684
https://github.com/slockit/in3/blob/master/src/types/types.ts#L714
https://github.com/slockit/in3/blob/master/src/types/types.ts#L692
https://github.com/slockit/in3/blob/master/src/types/types.ts#L696
https://github.com/slockit/in3/blob/master/src/types/types.ts#L688
https://github.com/slockit/in3/blob/master/src/types/types.ts#L705
https://github.com/slockit/in3/blob/master/src/types/types.ts#L679
https://github.com/slockit/in3/blob/master/src/types/types.ts#L719
https://github.com/slockit/in3/blob/master/src/types/types.ts#L724

Incubed Documentation, Release 2.3

10.4.11 Type IN3ResponseConfig

Source: index.ts

additional data returned from a IN3 Server additional data returned from a IN3 Server

number currentBlock the current blocknumber.
example: 320126478 (optional)

number lastNodeList the blocknumber for the last
block updating the nodelist. If
the client has a smaller
blocknumber he should update
the nodeList.

example: 326478 (optional)

number lastValidatorChange the blocknumber of the last
change of the validatorList
(optional)

number lastWhiteList The blocknumber of the last

white list event (optional)

Proof proof the Proof-data (optional)

string version IN3 protocol version
example: 1.0.0 (optional)

10.4.12 Type LogProof

Source: index.ts

a Object holding proofs for event logs. The key is the blockNumber as hex a Object holding proofs for event logs. The
key is the blockNumber as hex

10.4.13 Type Proof

Source: index.ts

the Proof-data as part of the in3-section the Proof-data as part of the in3-section

10.4. Package index.ts 349

https://github.com/slockit/in3/blob/master/src/index.ts#L78
https://github.com/slockit/in3/blob/master/src/types/types.ts#L747
https://github.com/slockit/in3/blob/master/src/types/types.ts#L738
https://github.com/slockit/in3/blob/master/src/types/types.ts#L742
https://github.com/slockit/in3/blob/master/src/types/types.ts#L756
https://github.com/slockit/in3/blob/master/src/types/types.ts#L733
https://github.com/slockit/in3/blob/master/src/types/types.ts#L752
https://github.com/slockit/in3/blob/master/src/index.ts#L79
https://github.com/slockit/in3/blob/master/src/index.ts#L80

Incubed Documentation, Release 2.3

accounts

a map of addresses and their
AccountProof (optional)

string

block

the serialized blockheader as
hex, required in most proofs
example:
0x72804cfa0179d648ccbe6a6b5b
(optional)

1a6463a8f1ebb14f3aff6

any []

finalityBlocks

the serialized blockheader as
hex, required in case of finality
asked

example:
0x72804cfa0179d648ccbe6ab5b()
(optional)

1a6463a8f1ebb14{3aff6

LogProof

logProof

the Log Proof in case of a
Log-Request (optional)

string[]

merkleProof

the serialized merle-noodes
beginning with the root-node
(optional)

string[]

merkleProofPrev

the serialized merkle-noodes
beginning with the root-node of
the previous entry (only for full
proof of receipts) (optional)

Signature []

signatures

requested signatures (optional)

any [l

transactions

the list of transactions of the
block

example: (optional)

number

txIndex

the transactionIndex within the
block

example: 4 (optional)

350

stringt]

tXProof

the serialized merkie-nodes

beg AR Une AR\ HEIE"RN
order to prrof the
transactionIndex (optional)

ce TS

https://github.com/slockit/in3/blob/master/src/types/types.ts#L849
https://github.com/slockit/in3/blob/master/src/types/types.ts#L814
https://github.com/slockit/in3/blob/master/src/types/types.ts#L819
https://github.com/slockit/in3/blob/master/src/types/types.ts#L845
https://github.com/slockit/in3/blob/master/src/types/types.ts#L833
https://github.com/slockit/in3/blob/master/src/types/types.ts#L837
https://github.com/slockit/in3/blob/master/src/types/types.ts#L860
https://github.com/slockit/in3/blob/master/src/types/types.ts#L824
https://github.com/slockit/in3/blob/master/src/types/types.ts#L856
https://github.com/slockit/in3/blob/master/src/types/types.ts#L841
https://github.com/slockit/in3/blob/master/src/types/types.ts#L809
https://github.com/slockit/in3/blob/master/src/types/types.ts#L829

Incubed Documentation, Release 2.3

10.4.14 Type RPCRequest

Source: index.ts

a JSONRPC-Request with N3-Extension a JSONRPC-Request with N3-Extension

number | string id the identifier of the request
example: 2 (optional)
IN3RPCRequestConfig in3 the IN3-Config (optional)
'2.0" jsonrpc the version
string method the method to call
example: eth_getBalance
any [] params the params
example:

0xe36179e2286ef405¢929C90ad
(optional)

BE70E649B22a945 lates

10.4.15 Type RPCResponse

Source: index.ts

a JSONRPC-Responset with N3-Extension a JSONRPC-Responset with N3-Extension

10.4. Package index.ts

351

https://github.com/slockit/in3/blob/master/src/index.ts#L72
https://github.com/slockit/in3/blob/master/src/types/types.ts#L879
https://github.com/slockit/in3/blob/master/src/types/types.ts#L888
https://github.com/slockit/in3/blob/master/src/types/types.ts#L869
https://github.com/slockit/in3/blob/master/src/types/types.ts#L874
https://github.com/slockit/in3/blob/master/src/types/types.ts#L884
https://github.com/slockit/in3/blob/master/src/index.ts#L82

Incubed Documentation, Release 2.3

string

error

in case of an error this needs to
be set (optional)

string | number id the id matching the request
example: 2

IN3ResponseConfig in3 the IN3-Result (optional)

IN3NodeConfig in3Node the node handling this response
(internal only) (optional)

'2.0" jsonrpc the version

any result the params

example: Oxa35bc (optional)

10.4.16 Type ServerList

Source: index.ts

a List of nodes a List of nodes

352

Chapter 10. API Reference TS

https://github.com/slockit/in3/blob/master/src/types/types.ts#L906
https://github.com/slockit/in3/blob/master/src/types/types.ts#L902
https://github.com/slockit/in3/blob/master/src/types/types.ts#L915
https://github.com/slockit/in3/blob/master/src/types/types.ts#L919
https://github.com/slockit/in3/blob/master/src/types/types.ts#L897
https://github.com/slockit/in3/blob/master/src/types/types.ts#L911
https://github.com/slockit/in3/blob/master/src/index.ts#L85

Incubed Documentation, Release 2.3

string contract IN3 Registry (optional)

number lastBlockNumber last Block number (optional)

IN3NodeConfig [] nodes the list of nodes

Proof proof the proof (optional)

string registryld registry id of the contract
(optional)

number totalServers number of servers (optional)

10.4.17 Type Signature

Source: index.ts

Verified ECDSA Signature. Signatures are a pair (r, s). Where r is computed as the X coordinate of a point R, modulo
the curve order n. Verified ECDSA Signature. Signatures are a pair (r, s). Where r is computed as the X coordinate of
a point R, modulo the curve order n.

10.4. Package index.ts 353

https://github.com/slockit/in3/blob/master/src/types/types.ts#L936
https://github.com/slockit/in3/blob/master/src/types/types.ts#L928
https://github.com/slockit/in3/blob/master/src/types/types.ts#L932
https://github.com/slockit/in3/blob/master/src/types/types.ts#L945
https://github.com/slockit/in3/blob/master/src/types/types.ts#L940
https://github.com/slockit/in3/blob/master/src/types/types.ts#L944
https://github.com/slockit/in3/blob/master/src/index.ts#L83

Incubed Documentation, Release 2.3

string

address

the address of the signing node
example:

0x6C1a01C2aB554930A937B0aRE8105fB47946c679

(optional)

number

block

the blocknumber
example: 3123874

string

blockHash

the hash of the block
example:

0x6C1a01C2aB554930A937B0a212346037E8105fB479-

string

msgHash

hash of the message
example:

0x9C1a01C2aB554930A937B0a212346037E8105fB479-

string

Positive non-zero Integer
signature.r

example:
0x72804cfa0179d648ccbe6a65b(]

string

Positive non-zero Integer
signature.s

example:

1a6463a8f1ebb14f3aff6

0x6d17b34acaf95fee98c0437b4ac839d8a2ecelbl8166da’

number

Calculated curve point, or
identity element O.

example: 28

10.4.18 Type Transport

Source: index.ts

= _transporttype

354

Chapter 10. API Reference TS

https://github.com/slockit/in3/blob/master/src/types/types.ts#L955
https://github.com/slockit/in3/blob/master/src/types/types.ts#L960
https://github.com/slockit/in3/blob/master/src/types/types.ts#L965
https://github.com/slockit/in3/blob/master/src/types/types.ts#L970
https://github.com/slockit/in3/blob/master/src/types/types.ts#L975
https://github.com/slockit/in3/blob/master/src/types/types.ts#L980
https://github.com/slockit/in3/blob/master/src/types/types.ts#L985
https://github.com/slockit/in3/blob/master/src/index.ts#L84

Incubed Documentation, Release 2.3

10.5 Package modules/eth

10.5.1 Type EthAPI

Source: modules/eth/api.ts

EthAPI constructor (constructor
client:Client)
Client client the client
Signer signer the signer (optional)
Promise<number> blockNumber () Returns the number of most
recent block. (as number)
Promise<string> call (Executes a new message call
tx:Transaction , immediately without creating a
block:BlockType) transaction on the block chain.
Promise<any> callFn (Executes a function of a
to:Address , contract, by passing a [method-
method:st ring signature](https://github.com/
args:any [1) ethereumjs/ethereumjs-abi/
ghany blob/master/README.md#
simple-encoding-and-decoding)
and the arguments, which will
then be ABI-encoded and send
as eth_call.
Promise<string> chainld () Returns the EIP155 chain ID
used for transaction signing at
the current best block. Null is
returned if not available.
contractAt (contract at
abi:ABI [],
address:Address)

Continued on next page

10.5. Package modules/eth

355

https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L290
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L292
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L291
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L292
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L307
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L320
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L327
https://github.com/ethereumjs/ethereumjs-abi/blob/master/README.md#simple-encoding-and-decoding
https://github.com/ethereumjs/ethereumjs-abi/blob/master/README.md#simple-encoding-and-decoding
https://github.com/ethereumjs/ethereumjs-abi/blob/master/README.md#simple-encoding-and-decoding
https://github.com/ethereumjs/ethereumjs-abi/blob/master/README.md#simple-encoding-and-decoding
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L335
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L627

Incubed Documentation, Release 2.3

Table 5 — continued from previous page

any decodeEventData (decode event data
log:Log ,
d:ABI')

Promise<number> estimateGas (Makes a call or transaction,
tx: Transaction) which won’t be added to the

blockchain and returns the used
gas, which can be used for
estimating the used gas.

Promise<number> gasPrice () Returns the current price per

gas in wei. (as number)

Promise<BN> getBalance (Returns the balance of the
address:Address , account of given address in wei
block:BlockType) (as hex).

Promise<Block> getBlockByHash (Returns information about a
hash:Hash , block by hash.
includeTransactions:boolean)

Promise<Block> getBlockByNumber (Returns information about a
block:BlockType , block by block number.
includeTransactions:boolgan)

Promise<number> Returns the number of

getBlockTransactionCountByHaghtransactions in a block from a
(block matching the given block
block:Hash) hash.

Promise<number> Returns the number of

getBlockTransactionCountByNuimbemnsactions in a block from a
(block matching the given block
block:Hash) number.

Promise<string> getCode (Returns code at a given
address:Address , address.
block:BlockType)

Continued on next page

356

Chapter 10. API Reference TS

https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L708
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L342
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L313
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L349
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L372
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L379
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L387
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L395
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L356

Incubed Documentation, Release 2.3

Table 5 — continued from previous page

Promise<> getFilterChanges (Polling method for a filter,
id:Quantity) which returns an array of logs
which occurred since last poll.
Promise<> getFilterLogs (Returns an array of all logs
id:Quantity) matching filter with given id.
Promise<> getLogs (Returns an array of all logs
filter:LogFilter) matching a given filter object.
Promise<string> getStorageAt (Returns the value from a
address:Address , storage position at a given
pos:Quantity , address.
block:BlockType)

Promise<TransactionDetail>

getTransactionByBlockHashAnd
(
hash:Hash ,

pos:Quantity)

Returns information about a
Inttansaction by block hash and
transaction index position.

Promise<TransactionDetail>

getTransactionByBlockNumberA

(
block:BlockType ,

pos:Quantity)

Returns information about a
ntim$action by block number
and transaction index position.

Promise<TransactionDetail>

getTransactionByHash (
hash:Hash)

Returns the information about a
transaction requested by
transaction hash.

Promise<number>

getTransactionCount (
address:Address ,
block:BlockType)

Returns the number of
transactions sent from an
address. (as number)

Promise<TransactionReceipt>

getTransactionReceipt (
hash:Hash)

Returns the receipt of a
transaction by transaction hash.
Note That the receipt is
available even for pending
transactions.

Continued on next page

10.5. Package modules/eth

357

https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L402
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L409
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L416
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L364
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L429
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L437
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L444
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L451
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L459

Incubed Documentation, Release 2.3

Table 5 — continued from previous page

Promise<Block> Returns information about a
getUncleByBlockHashAndIndex| uncle of a block by hash and
(uncle index position.
hash:Hash , Note: An uncle doesn’t contain
pos:Quantity) individual transactions.

Promise<Block> Returns information about a

getUncleByBlockNumberAndIndeuncle of a block number and

(uncle index position.
block:BlockType , Note: An uncle doesn’t contain
pos:Quantity) individual transactions.

Promise<number> getUncleCountByBlockHash (| Returns the number of uncles

hash:Hash) in a block from a block
matching the given block hash.

Promise<number> Returns the number of uncles

getUncleCountByBlockNumber | in a block from a block
(matching the given block hash.
block:BlockType)

Buffer hashMessage (hash message

data:Data
| Buffer)

Promise<string> newBlockFilter () Creates a filter in the node, to
notify when a new block
arrives. To check if the state
has changed, call
eth_getFilterChanges.

Promise<string> newFilter (Creates a filter object, based on

filter:LogFilter) filter options, to notify when
the state changes (logs). To
check if the state has changed,
call eth_getFilterChanges.

Promise<string> newPendingTransactionFilter () | Creates a filter in the node, to
notify when new pending
transactions arrive.

Continued on next page

358

Chapter 10. API Reference TS

https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L471
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L480
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L487
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L494
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L711
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L502
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L519
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L528

Incubed Documentation, Release 2.3

Table 5 — continued from previous page

args:TxRequest)

Promise<string> protocol Version () Returns the current ethereum
protocol version.
Promise<string> sendRawTransaction (Creates new message call
data:Data) transaction or a contract
creation for signed transactions.
Promise<> sendTransaction (sends a Transaction

Promise<Signature> sign (signs any kind of message
account:Address , using the x/9Ethereum Signed
data:Data) Message:n-prefix

Promise<> syncing () Returns the current ethereum

protocol version.

Promise<Quantity>

uninstallFilter (
id:Quantity)

Uninstalls a filter with given id.
Should always be called when
watch is no longer needed.
Additonally Filters timeout
when they aren’t requested
with eth_getFilterChanges for a
period of time.

10.5.2 Type chainData

Source: modules/eth/chainData.ts

10.5. Package modules/eth

359

https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L543
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L572
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L599
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L581
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L550
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L536
https://github.com/slockit/in3/blob/master/src/modules/eth/chainData.ts#L1

Incubed Documentation, Release 2.3

10.5.3 Type header

Source: modules/eth/header.ts

Promise<any>

callContract (
client:Client ,
contract:string,
chainld:string,
signature:string,
args:any [],
config:IN3Config)

call contract

Promise<>

getChainData (
client:Client ,
chainld:string,
config:IN3Config)

get chain data

360

Chapter 10. API Reference TS

https://github.com/slockit/in3/blob/master/src/modules/eth/chainData.ts#L42
https://github.com/slockit/in3/blob/master/src/modules/eth/chainData.ts#L51
https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L1

Incubed Documentation, Release 2.3

Interface AuthSpec Authority specification for

proof of authority chains

Interface HistoryEntry the HistoryEntry

Promise<void> addAuraValidators (add aura validators
history:DeltaHistory<string>
ctx:ChainContext ,
states:HistoryEntry [],
contract:string)

void addCliqueValidators (add clique validators
history:DeltaHistory<string>
ctx:ChainContext
states: HistoryEntry [])

Promise<number> checkBlockSignatures (verify a Blockheader and
blockHeaders:any [], returns the percentage of
getChainSpec:) finality

void checkForFinality (check for finality
stateBlockNumber:number,
proof:AuraValidatoryProof|
current:Buffer [],

_finality:number)
Promise<void> checkForValidators (check for validators

ctx:ChainContext ,

validators:DeltaHistory<st,

)

ing>

Promise<AuthSpec>

getChainSpec (

get chain spec

10.5.

Package modules/eth

b:Block ,
ctx:ChainContext)

361

https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L168
https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L128
https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L60
https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L233
https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L213
https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L263
https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L120
https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L109

Incubed Documentation, Release 2.3

10.5.4 Type Signer

Source: modules/eth/api.ts

Promise<Transaction>

prepareTransaction (
client:Client ,

tx:Transaction)

optiional method which allows
to change the transaction-data
before sending it. This can be
used for redirecting it through a
multisig.

Promise<Signature> sign (signing of any data.
data:Buffer ,
account:Address)

Promise<boolean> hasAccount (returns true if the account is

account:Address)

supported (or unlocked)

10.5.5 Type Transaction

Source: modules/eth/api.ts

362

Chapter 10. API Reference TS

https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L278
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L280
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L286
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L283
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L76

Incubed Documentation, Release 2.3

any chainld optional chain id (optional)

string data 4 byte hash of the method
signature followed by encoded
parameters. For details see
Ethereum Contract ABI.

Address from 20 Bytes - The address the
transaction is send from.

Quantity gas Integer of the gas provided for
the transaction execution.
eth_call consumes zero gas, but
this parameter may be needed
by some executions.

Quantity gasPrice Integer of the gas price used for
each paid gas.

Quantity nonce nonce

Address to (optional when creating new

contract) 20 Bytes - The
address the transaction is
directed to.

Quantity value Integer of the value sent with
this transaction.

10.5.6 Type BlockType

Source: modules/eth/api.ts

=number | 'latest'| 'earliest'| '"pending'

10.5.7 Type Address

Source: modules/eth/api.ts

10.5. Package modules/eth 363

https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L92
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L88
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L78
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L82
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L84
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L90
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L80
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L86
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L44
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L48

Incubed Documentation, Release 2.3

=string

10.5.8 Type ABI

Source: modules/eth/api.ts

boolean anonymous the anonymous (optional)
boolean constant the constant (optional)
ABIField [] inputs the inputs (optional)
string name the name (optional)
ABIField [] outputs the outputs (optional)
boolean payable the payable (optional)
'nonpayable’ stateMutability the stateMutability (optional)
| "payable'

| "view'

| 'pure’

'event' type the type

| "function'

| "constructor'

| 'fallback'

10.5.9 Type Log

Source: modules/eth/api.ts

364

Chapter 10. API Reference TS

https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L65
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L66
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L67
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L71
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L73
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L72
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L68
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L69
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L74
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L209

Incubed Documentation, Release 2.3

Address

address

20 Bytes - address from which
this log originated.

Hash

blockHash

Hash, 32 Bytes - hash of the
block where this log was in.
null when its pending. null
when its pending log.

Quantity

blockNumber

the block number where this
log was in. null when its
pending. null when its pending
log.

Data

data

contains the non-indexed
arguments of the log.

Quantity

logIndex

integer of the log index position
in the block. null when its
pending log.

boolean

removed

true when the log was removed,
due to a chain reorganization.
false if its a valid log.

Data []

topics

- Array of 0 to 4 32 Bytes
DATA of indexed log
arguments. (In solidity: The
first topic is the hash of the
signature of the event (e.g. De-
posit(address,bytes32,uint256)),
except you declared the event
with the anonymous specifier.)

Hash

transactionHash

Hash, 32 Bytes - hash of the
transactions this log was
created from. null when its
pending log.

Quantity

transactionIndex

integer of the transactions index
position log was created from.

an ite nendinelos

10.5.

Package modules/eth

nllwh
- wWhReh 1S PeRnaing108:

365

https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L223
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L219
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L221
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L225
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L213
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L211
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L227
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L217
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L215

Incubed Documentation, Release 2.3

10.5.10 Type Block

Source: modules/eth/api.ts

366 Chapter 10. API Reference TS

https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L165

Incubed Documentation, Release 2.3

Address author 20 Bytes - the address of the
author of the block (the
beneficiary to whom the mining
rewards were given)

Quantity difficulty integer of the difficulty for this
block

Data extraData the ‘extra data’ field of this
block

Quantity gasLimit the maximum gas allowed in
this block

Quantity gasUsed the total used gas by all
transactions in this block

Hash hash hash of the block. null when its
pending block

Data logsBloom 256 Bytes - the bloom filter for
the logs of the block. null when
its pending block

Address miner 20 Bytes - alias of ‘author’

Data nonce 8 bytes hash of the generated
proof-of-work. null when its
pending block. Missing in case
of PoA.

Quantity number The block number. null when
its pending block

Hash parentHash hash of the parent block

10.5. | Package modules/eth receiptsRoot 32 Bytes - the root of the 367

receipts trie of the block

https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L185
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L189
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L193
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L197
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L199
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L169
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L177
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L187
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L173
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L167
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L171
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L183
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L207
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L175
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L195
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L181
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L201
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L191
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L203
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L179
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L205

Incubed Documentation, Release 2.3

10.5.11 Type Hash

Source: modules/eth/api.ts

=string

10.5.12 Type Quantity

Source: modules/eth/api.ts

= number | Hex

10.5.13 Type LogFilter

Source: modules/eth/api.ts

368 Chapter 10. API Reference TS

https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L47
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L46
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L230

Incubed Documentation, Release 2.3

Address

address

(optional) 20 Bytes - Contract
address or a list of addresses
from which logs should
originate.

BlockType

fromBlock

Quantity or Tag - (optional)
(default: latest) Integer block
number, or ‘latest’ for the last
mined block or ‘pending’,
‘earliest’ for not yet mined
transactions.

Quantity

limit

a(optional) The maximum
number of entries to retrieve
(latest first).

BlockType

toBlock

Quantity or Tag - (optional)
(default: latest) Integer block
number, or ‘latest’ for the last
mined block or ‘pending’,
‘earliest’ for not yet mined
transactions.

stringlstring[][]

topics

(optional) Array of 32 Bytes
Data topics. Topics are
order-dependent. It’s possible
to pass in null to match any
topic, or a subarray of multiple
topics of which one should be
matching.

10.5.14 Type TransactionDetail

Source: modules/eth/api.ts

10.5. Package modules/eth

369

https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L236
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L232
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L240
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L234
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L238
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L122

Incubed Documentation, Release 2.3

Hash blockHash 32 Bytes - hash of the block
where this transaction was in.
null when its pending.

BlockType blockNumber block number where this
transaction was in. null when
its pending.

Quantity chainld the chain id of the transaction,
if any.

any condition (optional) conditional
submission, Block number in
block or timestamp in time or
null. (parity-feature)

Address creates creates contract address

Address from 20 Bytes - address of the
sender.

Quantity gas gas provided by the sender.

Quantity gasPrice gas price provided by the
sender in Wei.

Hash hash 32 Bytes - hash of the
transaction.

Data input the data send along with the
transaction.

Quantity nonce the number of transactions
made by the sender prior to this
one.

370 | any pk optiGhapter pkdatAR:Reference TS

for signing (optional)

https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L128
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L130
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L156
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L160
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L158
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L134
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L142
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L140
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L124
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L144
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L126
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L162
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L154
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L150
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L152
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L148
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L136
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L132
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L146
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L138

Incubed Documentation, Release 2.3

10.5.15 Type TransactionReceipt

Source: modules/eth/api.ts

10.5. Package modules/eth 371

https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L94

Incubed Documentation, Release 2.3

Hash

blockHash

32 Bytes - hash of the block
where this transaction was in.

BlockType

blockNumber

block number where this
transaction was in.

Address

contractAddress

20 Bytes - The contract address
created, if the transaction was a
contract creation, otherwise
null.

Quantity

cumulativeGasUsed

The total amount of gas used
when this transaction was
executed in the block.

Address

from

20 Bytes - The address of the
sender.

Quantity

gasUsed

The amount of gas used by this
specific transaction alone.

Log []

Array of log objects, which this
transaction generated.

Data

logsBloom

256 Bytes - A bloom filter of
logs/events generated by
contracts during transaction
execution. Used to efficiently
rule out transactions without
expected logs.

Hash

root

32 Bytes - Merkle root of the
state trie after the transaction
has been executed (optional
after Byzantium hard fork
EIP609)

Quantity

status

0x0 indicates transaction
failure , Ox1 indicates

372

tran@iHpRet4EsSARI Referen

blocks mined after Byzantium
hard fork EIP609, null before.

ce TS

https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L96
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L98
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L100
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L102
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L104
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L108
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L110
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L112
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L114
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L116
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L106
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L118
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L120

Incubed Documentation, Release 2.3

10.5.16 Type Data

Source: modules/eth/api.ts

=string

10.5.17 Type TxRequest

Source: modules/eth/api.ts

10.5. Package modules/eth

373

https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L49
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L243

Incubed Documentation, Release 2.3

any (] args the argument to pass to the
method (optional)

number confirmations number of block to wait before
confirming (optional)

Data data the data to send (optional)

Address from address of the account to use
(optional)

number gas the gas needed (optional)

number gasPrice the gasPrice used (optional)

string method the ABI of the method to be

used (optional)

number nonce the nonce (optional)

Hash pk raw private key in order to sign
(optional)

Address to contract (optional)

Quantity value the value in wei (optional)

10.5.18 Type AuthSpec

Source: modules/eth/header.ts

Authority specification for proof of authority chains

374 Chapter 10. API Reference TS

https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L269
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L275
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L251
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L248
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L254
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L257
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L266
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L260
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L272
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L245
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L263
https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L46

Incubed Documentation, Release 2.3

Buffer [] authorities List of validator addresses
storead as an buffer array
Buffer proposer proposer of the block this
authspec belongs
ChainSpec spec chain specification
10.5.19 Type HistoryEntry
Source: modules/eth/header.ts
number block the block
AuraValidatoryProof proof the proof
| string/]
string|] validators the validators
10.5.20 Type ABIField
Source: modules/eth/api.ts
boolean indexed the indexed (optional)
string name the name
string type the type

10.5.21 Type Hex

Source: modules/eth/api.ts

10.5. Package modules/eth

375

https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L48
https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L52
https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L50
https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L115
https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L117
https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L118
https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L116
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L60
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L61
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L62
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L63
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L45

Incubed Documentation, Release 2.3

=string

10.6 Package modules/ipfs

10.6.1 Type IpfsAPI

Source: modules/ipfs/api.ts

simple API for IPFS

IpfsAPI constructor (simple API for IPFS
_client:Client)

Client client the client

Promise<Buffer> get (retrieves the conent for a hash
hash:string, from IPFS.
resultEncoding:st ring)

Promise<string> put (stores the data on ipfs and
data:Buffer returns the IPFS-Hash.
dataEncoding:string)

10.7 Package util

a collection of util classes inside incubed. They can be get directly through require ('in3/Jjs/srrc/util/

util')

10.7.1 Type DeltaHistory

Source: util/DeltaHistory.ts

376

Chapter 10. API Reference TS

https://github.com/slockit/in3/blob/master/src/modules/ipfs/api.ts#L40
https://github.com/slockit/in3/blob/master/src/modules/ipfs/api.ts#L41
https://github.com/slockit/in3/blob/master/src/modules/ipfs/api.ts#L41
https://github.com/slockit/in3/blob/master/src/modules/ipfs/api.ts#L53
https://github.com/slockit/in3/blob/master/src/modules/ipfs/api.ts#L64
https://github.com/slockit/in3/blob/master/src/util/DeltaHistory.ts#L42

Incubed Documentation, Release 2.3

DeltaHistory constructor (constructor
init:7 [],
deltaStrings:boolean)

Delta<T> [] data the data
void addState (add state
start:number,
data:T [])
T1] getData (get data

index:number)

number getLastIndex () get last index

void loadDeltaStrings (load delta strings
deltas:string [])

string[] toDeltaStrings () to delta strings

10.7.2 Type Delta

Source: util/DeltaHistory.ts

This file is part of the Incubed project. Sources: https://github.com/slockit/in3

10.7. Package util 377

https://github.com/slockit/in3/blob/master/src/util/DeltaHistory.ts#L43
https://github.com/slockit/in3/blob/master/src/util/DeltaHistory.ts#L43
https://github.com/slockit/in3/blob/master/src/util/DeltaHistory.ts#L68
https://github.com/slockit/in3/blob/master/src/util/DeltaHistory.ts#L55
https://github.com/slockit/in3/blob/master/src/util/DeltaHistory.ts#L64
https://github.com/slockit/in3/blob/master/src/util/DeltaHistory.ts#L115
https://github.com/slockit/in3/blob/master/src/util/DeltaHistory.ts#L112
https://github.com/slockit/in3/blob/master/src/util/DeltaHistory.ts#L35

Incubed Documentation, Release 2.3

number block the block
T1] data the data
number len the len
number start the start

10.8 Common Module

The common module (in3-common) contains all the typedefs used in the node and server.

Interface BlockData the BlockData
Interface LogData the LogData
Type Receipt the Receipt
Interface ReceiptData the ReceiptData
Type Transaction the Transaction
Interface TransactionData the TransactionData
Interface Transport the Transport
AxiosTransport AxiosTransport the AxiosTransport
value= _transport.
AxiosTransport

Continued on next page

378 Chapter 10. API Reference TS

https://github.com/slockit/in3/blob/master/src/util/DeltaHistory.ts#L36
https://github.com/slockit/in3/blob/master/src/util/DeltaHistory.ts#L39
https://github.com/slockit/in3/blob/master/src/util/DeltaHistory.ts#L38
https://github.com/slockit/in3/blob/master/src/util/DeltaHistory.ts#L37
https://github.com/slockit/in3-common/blob/master/src/index.ts#L77

Incubed Documentation, Release 2.3

Table 6 — continued from previous page

Block Block the Block
value=
_serialize.Block
any address (converts it to a Buffer with 20
val:any) bytes length
Block blockFromHex (converts a hexstring to a
hex:string) block-object
any bytes (converts it to a Buffer
val:any)
any bytes32 (converts it to a Buffer with 32
val:any) bytes length
any bytes8 (converts it to a Buffer with 8
val:any) bytes length
cbor cbor the cbor
value=_cbor
chainAliases the chainAliases
value=
_util.aliases
number [] createRandomlIndexes (create random indexes
len:number,
limit:number,
seed:Buffer ,
result:number [])
any createTx (creates a Transaction-object
transaction:any) from the rpc-transaction-data
Buffer getSigner (get signer
data:Block)

Continued on next page

10.8. Common Module 379

https://github.com/slockit/in3-common/blob/master/src/index.ts#L69
https://github.com/slockit/in3-common/blob/master/src/index.ts#L98
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L331
https://github.com/slockit/in3-common/blob/master/src/index.ts#L99
https://github.com/slockit/in3-common/blob/master/src/index.ts#L93
https://github.com/slockit/in3-common/blob/master/src/index.ts#L94
https://github.com/slockit/in3-common/blob/master/src/index.ts#L86
https://github.com/slockit/in3-common/blob/master/src/index.ts#L83
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L237
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L296
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L250

Incubed Documentation, Release 2.3

Table 6 — continued from previous page

Buffer hash (returns the hash of the object
val:Block
| Transaction
| Receipt
| Account
| Buffer)
index rlp the rlp
value=
_serialize.rlp
serialize serialize the serialize
value= _serialize
storage storage the storage
value= _storage
Buffer [] toAccount (to account
account:AccountData)
Buffer [] toBlockHeader (create a Buffer[] from
block:BlockData) RPC-Response
Object toReceipt (create a Buffer[] from
r:ReceiptData) RPC-Response
Buffer [] toTransaction (create a Buffer[] from
tx:TransactionData) RPC-Response
transport transport the transport
value= _transport
any uint (converts it to a Buffer with a
val:any) variable length. 0 = length 0
any uint128 (uint128
val:any)

Continued on next page

380

Chapter 10. API Reference TS

https://github.com/slockit/in3-common/blob/master/src/index.ts#L92
https://github.com/slockit/in3-common/blob/master/src/index.ts#L101
https://github.com/slockit/in3-common/blob/master/src/index.ts#L64
https://github.com/slockit/in3-common/blob/master/src/index.ts#L80
https://github.com/slockit/in3-common/blob/master/src/index.ts#L90
https://github.com/slockit/in3-common/blob/master/src/index.ts#L102
https://github.com/slockit/in3-common/blob/master/src/index.ts#L91
https://github.com/slockit/in3-common/blob/master/src/index.ts#L100
https://github.com/slockit/in3-common/blob/master/src/index.ts#L75
https://github.com/slockit/in3-common/blob/master/src/index.ts#L95
https://github.com/slockit/in3-common/blob/master/src/index.ts#L97

Incubed Documentation, Release 2.3

Table 6 — continued from previous page

any uint64 (uint64
val:any)
util util the util
value=_util
validate validate the validate
value= _validate

10.9 Package index.ts

10.9.1 Type BlockData

Source: index.ts

Block as returned by eth_getBlockByNumber Block as returned by eth_getBlockByNumber

10.9. Package index.ts

381

https://github.com/slockit/in3-common/blob/master/src/index.ts#L96
https://github.com/slockit/in3-common/blob/master/src/index.ts#L40
https://github.com/slockit/in3-common/blob/master/src/index.ts#L37
https://github.com/slockit/in3-common/blob/master/src/index.ts#L65

Incubed Documentation, Release 2.3

string coinbase the coinbase (optional)

string | number difficulty the difficulty

string extraData the extraData

string|number gasLimit the gasLimit

string | number gasUsed the gasUsed

string hash the hash

string logsBloom the logsBloom

string miner the miner

string mixHash the mixHash (optional)

string | number nonce the nonce (optional)

string | number number the number

string parentHash the parentHash

string receiptRoot the receiptRoot (optional)

string receiptsRoot the receiptsRoot

string (] sealFields the sealFields (optional)
382 string sha3Uncles the %Q?Bh%ie!}o API Reference TS

https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L59
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L65
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L70
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L67
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L68
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L55
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L64
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L58
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L72
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L73
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L66
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L56
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L63
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L62
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L71
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L57
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L60
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L69
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L74
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L61
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L75

Incubed Documentation, Release 2.3

10.9.2 Type LogData

Source: index.ts

LogData as part of the TransactionReceipt LogData as part of the TransactionReceipt

string address the address

string blockHash the blockHash

string blockNumber the blockNumber
string data the data

string logIndex the logIndex

boolean removed the removed

string/|] topics the topics

string transactionHash the transactionHash
string transactionIndex the transactionIndex
string transactionLogIndex the transactionLogIndex

10.9.3 Type ReceiptData

Source: index.ts

TransactionReceipt as returned by eth_getTransactionReceipt TransactionReceipt as returned by
eth_getTransactionReceipt

10.9. Package index.ts 383

https://github.com/slockit/in3-common/blob/master/src/index.ts#L66
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L122
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L120
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L121
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L123
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L116
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L115
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L124
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L119
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L118
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L117
https://github.com/slockit/in3-common/blob/master/src/index.ts#L67

Incubed Documentation, Release 2.3

string blockHash the blockHash (optional)

string | number blockNumber the blockNumber (optional)

string | number cumulativeGasUsed the cumulativeGasUsed
(optional)

string | number gasUsed the gasUsed (optional)

LogData [] logs the logs

string logsBloom the logsBloom (optional)

string root the root (optional)

stringlboolean status the status (optional)

string transactionHash the transactionHash (optional)

number transactionIndex the transactionIndex (optional)

10.9.4 Type TransactionData

Source: index.ts

Transaction as returned by eth_getTransactionByHash Transaction as returned by eth_getTransactionByHash

384 Chapter 10. API Reference TS

https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L132
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L131
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L135
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L136
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L138
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L137
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L134
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L133
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L129
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L130
https://github.com/slockit/in3-common/blob/master/src/index.ts#L68

Incubed Documentation, Release 2.3

string

blockHash

the blockHash (optional)

number | string

blockNumber

the blockNumber (optional)

number | string chainld the chainld (optional)
string condition the condition (optional)
string creates the creates (optional)
string data the data (optional)
string from the from (optional)
number | string gas the gas (optional)
number | string gasLimit the gasLimit (optional)
number | string gasPrice the gasPrice (optional)
string hash the hash
string input the input
number | string nonce the nonce
string publicKey the publicKey (optional)
string r the r (optional)

10.9. P%gg index.ts raw 385

the raw (optional)

https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L81
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L82
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L83
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L84
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L85
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L91
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L86
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L87
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L88
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L89
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L80
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L90
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L92
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L93
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L98
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L94
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L99
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L95
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L96
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L97
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L100
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L101

Incubed Documentation, Release 2.3

10.9.5 Type Transport

Source: index.ts

A Transport-object responsible to transport the message to the handler. A Transport-object responsible to transport the
message to the handler.

Promise<> handle (handles a request by passing
url:string, the data to the handler

data:RPCRequest
| RPCRequest [],
timeout:number)

Promise<boolean> isOnline () check whether the handler is
onlne.
number [] random (generates random numbers
count:number) (between 0-1)

10.10 Package modules/eth

10.10.1 Type Block

Source: modules/eth/serialize.ts

encodes and decodes the blockheader

386 Chapter 10. API Reference TS

https://github.com/slockit/in3-common/blob/master/src/index.ts#L76
https://github.com/slockit/in3-common/blob/master/src/util/transport.ts#L46
https://github.com/slockit/in3-common/blob/master/src/util/transport.ts#L51
https://github.com/slockit/in3-common/blob/master/src/util/transport.ts#L56
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L240

Incubed Documentation, Release 2.3

Block constructor (creates a Block-Onject from
data:Buffer either the block-data as
| string returned from rpc, a buffer or a
hex-string of the encoded
| BlockDat
ockData) blockheader
BlockHeader raw the raw Buffer fields of the
BlockHeader
Tx (] transactions the transaction-Object (if
given)
Buffer bloom bloom
Buffer coinbase coinbase
Buffer difficulty difficulty
Buffer extra extra
Buffer gasLimit gas limit
Buffer gasUsed gas used
Buffer number number
Buffer parentHash parent hash
Buffer receiptTrie receipt trie
Buffer [] sealedFields sealed fields
Buffer e state-root
10.10. Package modules/eth 387

Buffer

timestamp

timestamp

https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L261
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L243
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L246
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L254
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L250
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L255
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L260
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L257
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L258
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L256
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L248
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L253
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L261
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L251
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L259
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L252
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L249
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L284
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L279
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L289

Incubed Documentation, Release 2.3

10.10.2 Type Transaction

Source: modules/eth/serialize.ts

Buffer[] of the transaction = Buffer []

10.10.3 Type Receipt

Source: modules/eth/serialize.ts

Buffer[] of the Receipt = [Buffer ,Buffer ,Buffer ,Buffer , Buffer], Buffer []]

10.10.4 Type Account

Source: modules/eth/serialize.ts

Buffer[] of the Account = Buffer []

10.10.5 Type serialize

Source: modules/eth/serialize.ts

388 Chapter 10. API Reference TS

https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L45
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L51
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L48
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L1

Incubed Documentation, Release 2.3

Class Block encodes and decodes the
blockheader

Interface AccountData Account-Object

Interface BlockData Block as returned by
eth_getBlockByNumber

Interface LogData LogData as part of the
TransactionReceipt

Interface ReceiptData TransactionReceipt as returned
by eth_getTransactionReceipt

Interface TransactionData Transaction as returned by
eth_getTransactionByHash

Type Account Buffer[] of the Account

Type BlockHeader Buffer[] of the header

Type Receipt Buffer[] of the Receipt

Type Transaction Buffer[] of the transaction

index rlp RLP-functions

value=ethUtil.rlp
any address (converts it to a Buffer with 20
val:any) bytes length
Block blockFromHex (converts a hexstring to a

hex:string)

block-object

10.10,

Package modules/eth

string

blockToHex (
block:any)

converts blockdata to a
hexstring

389

https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L40
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L160
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L331
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L326
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L158
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L152
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L154
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L156
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L296
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L146
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L143
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L207
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L168
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L216
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L193
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L162
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L165
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L164

Incubed Documentation, Release 2.3

10.10.6 Type storage

Source: modules/eth/storage.ts

390 Chapter 10. API Reference TS

https://github.com/slockit/in3-common/blob/master/src/modules/eth/storage.ts#L1

Incubed Documentation, Release 2.3

any getStorageArrayKey (calc the storrage array key
pos:number,
arrayIndex:number,
structSize:number,
structPos:number)

any getStorageMapKey (calcs the storage Map key.
pos:number,
key:string,
structPos:number)

Promise<> getStorage Value (get a storage value from the
rpc:string, server
contract:string,
pos:number,
type: 'address'

| 'bytes32'

| 'bytesl6!'

| 'bytes4'

["int"'

| "string',
keyOrIndex:number

| string,
structSize:number,
structPos:number)

stringl getString Value (creates a string from storage.
data:Buffer ,
storageKey:Buffer)

string getString ValueFromList (concats the storage values to a
values:Buffer [], string.

len:number)

BN toBN (converts any value to BN
val:any)

10.10. Package modules/eth 391

https://github.com/slockit/in3-common/blob/master/src/modules/eth/storage.ts#L43
https://github.com/slockit/in3-common/blob/master/src/modules/eth/storage.ts#L55
https://github.com/slockit/in3-common/blob/master/src/modules/eth/storage.ts#L103
https://github.com/slockit/in3-common/blob/master/src/modules/eth/storage.ts#L65
https://github.com/slockit/in3-common/blob/master/src/modules/eth/storage.ts#L84
https://github.com/slockit/in3-common/blob/master/src/modules/eth/storage.ts#L91

Incubed Documentation, Release 2.3

10.10.7 Type AccountData

Source: modules/eth/serialize.ts

Account-Object

string balance the balance
string code the code (optional)
string codeHash the codeHash
string nonce the nonce

string storageHash the storageHash

10.10.8 Type BlockHeader

Source: modules/eth/serialize.ts

Buffer[] of the header = Buffer []

10.11 Package types

10.11.1 Type RPCRequest

Source: types/types.ts
a JSONRPC-Request with N3-Extension

392

Chapter 10. API Reference TS

https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L105
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L107
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L110
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L109
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L106
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L108
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L42
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L370

Incubed Documentation, Release 2.3

number | string id the identifier of the request
example: 2 (optional)
IN3RPCRequestConfig in3 the IN3-Config (optional)
'2.0" jsonrpc the version
string method the method to call
example: eth_getBalance
any [] params the params
example:

0xe36179e2286ef405¢929C90ad
(optional)

BE70E649B22a945 lates

10.11.2 Type RPCResponse

Source: types/types.ts

a JSONRPC-Responset with N3-Extension

10.11. Package types

393

https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L384
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L393
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L374
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L379
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L389
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L398

Incubed Documentation, Release 2.3

string

error

in case of an error this needs to
be set (optional)

string | number id the id matching the request
example: 2

IN3ResponseConfig in3 the IN3-Result (optional)

IN3NodeConfig in3Node the node handling this response
(internal only) (optional)

'2.0" jsonrpc the version

any result the params

example: Oxa35bc (optional)

10.11.3 Type IN3BRPCRequestConfig

Source: types/types.ts

additional config for a IN3 RPC-Request

394

Chapter 10. API Reference TS

https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L411
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L407
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L420
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L424
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L402
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L416
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L179

Incubed Documentation, Release 2.3

string

chainld

the requested chainld
example: Ox1

any

clientSignature

the signature of the client
(optional)

number

finality

if given the server will deliver
the blockheaders of the
following blocks until at least
the number in percent of the
validators is reached. (optional)

boolean

includeCode

if true, the request should
include the codes of all
accounts. otherwise only the
the codeHash is returned. In
this case the client may ask by
calling eth_getCode()
afterwards

example: true (optional)

number

latestBlock

if specified, the blocknumber
latest will be replaced by
blockNumber- specified value

example: 6 (optional)

string]

signatures

a list of addresses requested to
sign the blockhash

example:
0x6C1a01C2aB554930A937B0a
(optional)

PE8105fB47946c679

boolean

useBinary

if true binary-data will be used.
(optional)

boolean

useFullProof

if true all data in the response
will be proven, which leads to a
higher payload. (optional)

boolean

useRef

if true binary-data (starting

10.11

. Package types

with a 0x) will be refered if
occuring again. (optional)

395

https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L184
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L223
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L214
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L189
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L198
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L228
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L206
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L210
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L202
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L219
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L193
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L233

Incubed Documentation, Release 2.3

10.11.4 Type IN3ResponseConfig

Source: types/types.ts

additional data returned from a IN3 Server

number currentBlock the current blocknumber.
example: 320126478 (optional)

number lastNodeList the blocknumber for the last
block updating the nodelist. If
the client has a smaller
blocknumber he should update
the nodeList.

example: 326478 (optional)

number lastValidatorChange the blocknumber of gthe last
change of the validatorList
(optional)

Proof proof the Proof-data (optional)

string version the in3 protocol version.

example: 1.0.0 (optional)

10.11.5 Type IN3BNodeConfig

Source: types/types.ts

a configuration of a in3-server.

396 Chapter 10. API Reference TS

https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L238
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L256
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L247
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L251
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L242
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L261
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L90

Incubed Documentation, Release 2.3

string

address

the address of the node, which

is the public address it iis
signing with.

example:
0x6C1a01C2aB554930A937B0a!

PE8105fB47946c679

number

capacity

the capacity of the node.
example: 100 (optional)

string|]

chainlds

the list of supported chains
example: Ox1

number

deposit

the deposit of the node in wei
example: 12350000

number

index

the index within the contract
example: 13 (optional)

number

props

the properties of the node.
example: 3 (optional)

number

registerTime

the UNIX-timestamp when the
node was registered

example: 1563279168
(optional)

number

timeout

the time (in seconds) until an
owner is able to receive his
deposit back after he
unregisters himself

example: 3600 (optional)

number

unregisterTime

the UNIX-timestamp when the
node is allowed to be deregister
example: 1563279168
(optional)

tring
ng

=

10.11

. Package types

q

example: https://in3.slock.it

397

https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L100
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L125
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L115
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L120
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L95
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L130
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L135
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L105
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L140
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L110
https://in3.slock.it

Incubed Documentation, Release 2.3

10.11.6 Type Proof

Source: types/types.ts

the Proof-data as part of the in3-section

398 Chapter 10. API Reference TS

https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L309

Incubed Documentation, Release 2.3

accounts

a map of addresses and their
AccountProof (optional)

string

block

the serialized blockheader as
hex, required in most proofs
example:
0x72804cfa0179d648ccbe6a6b5b
(optional)

any []

finalityBlocks

the serialized blockheader as
hex, required in case of finality
asked

example:
0x72804cfa0179d648ccbe6ab5b()
(optional)

LogProof

logProof

the Log Proof in case of a
Log-Request (optional)

string[]

merkleProof

the serialized merle-noodes
beginning with the root-node
(optional)

string[]

merkleProofPrev

the serialized merkle-noodes
beginning with the root-node of
the previous entry (only for full
proof of receipts) (optional)

Signature []

signatures

requested signatures (optional)

any [l

transactions

the list of transactions of the
block

example: (optional)

number

txIndex

the transactionIndex within the
block

example: 4 (optional)

1a6463a8f1ebb14f3aff6

1a6463a8f1ebb14{3aff6

10.11,

—u

Packagé types

tXProof

the seriatized merkie-nodes
beginning with the root-node in
order to prrof the
transactionIndex (optional)

399

https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L354
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L319
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L324
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L350
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L338
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L342
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L365
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L329
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L361
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L346
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L314
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L334

Incubed Documentation, Release 2.3

10.11.7 Type LogProof

Source: types/types.ts

a Object holding proofs for event logs. The key is the blockNumber as hex

10.11.8 Type Signature

Source: types/types.ts

Verified ECDSA Signature. Signatures are a pair (r, s). Where r is computed as the X coordinate of a point R, modulo
the curve order n.

400 Chapter 10. API Reference TS

https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L266
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L429

Incubed Documentation, Release 2.3

string address the address of the signing node
example:
0x6C1a01C2aB554930A937B0aRE8105fB47946¢679
(optional)

number block the blocknumber

example: 3123874

string blockHash the hash of the block

example:
0x6C1a01C2aB554930A937B0a212346037E8105fB479-

string msgHash hash of the message

example:
0x9C1a01C2aB554930A937B0a212346037E8105fB479-

string r Positive non-zero Integer
signature.r

example:
0x72804cfa0179d648ccbe6a65b(1a6463a8f1ebb14f3affo

string s Positive non-zero Integer
signature.s

example:
0x6d17b34acaf95fee98c0437b4ac839d8a2ecelbl8166da’

number v Calculated curve point, or
identity element O.

example: 28

10.12 Package util

10.12.1 Type AxiosTransport

Source: util/transport.ts

Default Transport impl sending http-requests.

10.12. Package util 401

https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L434
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L439
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L444
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L449
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L454
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L459
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L464
https://github.com/slockit/in3-common/blob/master/src/util/transport.ts#L64

Incubed Documentation, Release 2.3

AxiosTransport constructor (Default Transport impl sending
format: ' json' http-requests.
| "cbor'
| "jsonRef")
'json' | '"cbor' | format the format
'jsonRef"'
Promise<> handle (handle
url:string,
data:RPCRequest
| RPCRequest [],
timeout:number)
Promise<boolean> isOnline () is online
number [] random (random
count:number)

10.12.2 Type cbor

Source: util/cbor.ts

402

Chapter 10. API Reference TS

https://github.com/slockit/in3-common/blob/master/src/util/transport.ts#L66
https://github.com/slockit/in3-common/blob/master/src/util/transport.ts#L66
https://github.com/slockit/in3-common/blob/master/src/util/transport.ts#L81
https://github.com/slockit/in3-common/blob/master/src/util/transport.ts#L72
https://github.com/slockit/in3-common/blob/master/src/util/transport.ts#L110
https://github.com/slockit/in3-common/blob/master/src/util/cbor.ts#L1

Incubed Documentation, Release 2.3

val:T ,
cache:string[])

any convertToBuffer (convert to buffer
val:any)

any convertToHex (convert to hex
val:any)

T createRefs (create refs

RPCRequest []

decodeRequests (
request:Buffer)

decode requests

RPCResponse (]

decodeResponses (
responses:Buffer)

decode responses

val:T ,
cache:string[])

Buffer encodeRequests (turn
requests:RPCRequest [])

Buffer encodeResponses (encode responses
responses:RPCResponse
1))

T resolveRefs (resolve refs

10.12.3 Type transport

Source: util/transport.ts

10.12. Package util

403

https://github.com/slockit/in3-common/blob/master/src/util/cbor.ts#L69
https://github.com/slockit/in3-common/blob/master/src/util/cbor.ts#L83
https://github.com/slockit/in3-common/blob/master/src/util/cbor.ts#L101
https://github.com/slockit/in3-common/blob/master/src/util/cbor.ts#L45
https://github.com/slockit/in3-common/blob/master/src/util/cbor.ts#L59
https://github.com/slockit/in3-common/blob/master/src/util/cbor.ts#L41
https://github.com/slockit/in3-common/blob/master/src/util/cbor.ts#L56
https://github.com/slockit/in3-common/blob/master/src/util/cbor.ts#L122
https://github.com/slockit/in3-common/blob/master/src/util/transport.ts#L1

Incubed Documentation, Release 2.3

Class AxiosTransport Default Transport impl sending
http-requests.
Interface Transport A Transport-object responsible

to transport the message to the
handler.

10.12.4 Type util

Source: util/util.ts

404

Chapter 10. API Reference TS

https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L1

Incubed Documentation, Release 2.3

BN BN the BN
value= ethUtil.BN
any Buffer This file is part of the Incubed
project.
Sources: https://github.com/
slockit/in3-common
value=
require ('buffer').
Buffer
T checkForError (check a RPC-Response for
res:T) errors and rejects the promise if
found
number [] createRandomlIndexes (create random indexes
len:number,
limit:number,
seed:Buffer ,
result:number [])
string fixLength (fix length
hex:string)
string getAddress (returns a address from a private
pkistring) key
Buffer getSigner (get signer
data:Block)
string padEnd (padEnd for legacy
val:string,
minLength:number,
fill:string)
string padStart (padStart for legacy
val:string,
minLength:number,
10.12. Package util fill:string) 405
Promise<any> promisify (simple promisy-function

https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L44
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L36
https://github.com/slockit/in3-common
https://github.com/slockit/in3-common
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L76
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L237
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L48
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L191
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L250
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L230
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L223
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L54
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L85
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L147
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L96
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L197
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L119
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L180
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L65

Incubed Documentation, Release 2.3

10.12.5 Type validate

Source: util/validate.ts

Ajv ajv the ajv instance with custom
formatters and keywords
value= new A7jv ()
void validate (validate
ob:any,
def:any)
void validateAndThrow (validates the data and throws an

fn:Ajv. ValidateFunction ,
ob:any)

error in case they are not valid.

406

Chapter 10. API Reference TS

https://github.com/slockit/in3-common/blob/master/src/util/validate.ts#L1
https://github.com/slockit/in3-common/blob/master/src/util/validate.ts#L42
https://github.com/slockit/in3-common/blob/master/src/util/validate.ts#L70
https://github.com/slockit/in3-common/blob/master/src/util/validate.ts#L64

cHAPTER 11

APl Reference WASM

Even though the incubed client is written in C, we are using emscripten to build wasm. Together with some binding-
code incubed runs in any Javascript-Runtime. Using WASM gives us 3 important features:

1. Performance. Since WASM runs at almost native speed it is very fast

2. Security Since the WASM-Module has no dependencies it reduces the risk of using a malicious dependency,
which would be able to manipulate Prototypes. Also, since the real work is happening inside the wasm, trying
to change Prototype would not work.

3. Size The current wasm-file is about 200kb. This is smaller then most other libraries and can easily be used in
any app or website.

11.1 Installing

This client uses the in3-core sources compiled to wasm. The wasm is included into the js-file wich makes it easier to
include the data. This module has no dependencies! All it needs is included inta a wasm of about 300kB.

Installing incubed is as easy as installing any other module:

npm install --save in3-wasm

11.1.1 WASM-support

Even though most browsers and javascript enviroment such as nodejs, have full support for wasm, there are ocasions,
where WASM is fully supported. In case you want to run incubed within a react native app, you might face such issues.
In this case you can use in3-asmjs, which has the same API, but runs on pure javascript (a bit slower and bigger, but
full support everywhere).

407

https://www.npmjs.com/package/in3-asmjs

Incubed Documentation, Release 2.3

11.2 Building from Source

11.2.1 install emscripten

In order to build the wasm or asmjs from source you need to install emscripten first. In case you have not done it yet:

Get the emsdk repo
git clone https://github.com/emscripten—-core/emsdk.git

Enter that directory
cd emsdk

install the latest-upstream sdk and activate it
./emsdk install latest-upstream && ./emsdk activate latest-upstream

Please make sure you add this line to your .bash_profile or .zshrc
source <PATH_TO_EMSDK>/emsdk_env.sh > /dev/null

11.2.2 CMake

With emscripten set up, you can now configure the wasm and build it (in the in3-c directory):

create a build directory
mkdir -p build
cd build

configure CMake
emcmake cmake -DWASM=true -DCMAKE_BUILD_TYPE=MINSIZEREL

and build it
make —-j8 in3_wasm

optionally you can also run the tests
make test

Per default the generated wasm embedded the wasm-data as base64 and resulted in the build/module. If you want
to build asmjs, use the ~-DASMJS=true as an additional option. If you don’t want to embedd the wasm, add
-DWASM_EMBED=false. If you want to set the ~-DCMAKE_BUILD_TYPE=DEBUG your filesize increases but all
function names are kept (resulting in readable stacktraces) and emscriptten will add a lot of checks and assertions.

For more options please see the CMake Options.

11.3 Examples

11.3.1 get_block_rpc

source : in3-c/wasm/examples/get_block_rpc.js

read block as rpc

/// read block as rpc

(continues on next page)

408 Chapter 11. APl Reference WASM

https://in3.readthedocs.io/en/develop/api-c.html#cmake-options
https://github.com/slockit/in3-c/blob/master/wasm/examples/get_block_rpc.js

Incubed Documentation, Release 2.3

(continued from previous page)

const IN3 = require('in3-wasm')

async function showLatestBlock () {
// create new incubed instance
var ¢ = new IN3()

await c.setConfig({
chainId: 0x5 // use goerli
})

// send raw RPC-Request (this would throw if the response contains an error)
const lastBlockResponse = await c.sendRPC('eth getBlockByNumber', ['latest', |
—~false])

console.log("latest Block: ", JSON.stringify(lastBlockResponse, null, 2))

// clean up
c.free()

showLatestBlock () .catch (console.error)

11.3.2 get_block_api

source : in3-c/wasm/examples/get_block_api.ts

read block with API

/// read block with API
import { IN3 } from 'in3-wasm'
async function showLatestBlock () {
// create new incubed instance
const client = new IN3 ({
chainId: 'goerli'

})

// send raw RPC-Request
const lastBlock = await client.eth.getBlockByNumber ()

console.log("latest Block: ", JSON.stringify(lastBlock, null, 2))

// clean up
client.free ()

showLatestBlock () .catch (console.error)

11.3.3 register_pugin

source : in3-c/wasm/examples/register_pugin.ts

11.3. Examples 409

https://github.com/slockit/in3-c/blob/master/wasm/examples/get_block_api.ts
https://github.com/slockit/in3-c/blob/master/wasm/examples/register_pugin.ts

Incubed Documentation, Release 2.3

register a custom plugin

/// register a custom plugin
import { IN3, RPCRequest } from 'in3-wasm'
import x as crypto from 'crypto'

class Sha256Plugin {

// this function will register for handling rpc-methods

// only if we return something other then ‘undefined’', it will be taken as the,
—result of the rpc.

// 1f we don't return, the request will be forwarded to the incubed nodes

handleRPC (c: IN3, request: RPCRequest): any {

if (request.method === 'sha256") {
// assert params
if (request.params.length != 1 || typeof (request.params[0]) != 'string')

throw new Error ('Only one parameter with as string is expected!')
// create hash
const hash = crypto.createHash('sha256") .update (Buffer.from(request.params[0],

—'utf8')) .digest ()

// return the result
return '0Ox' + hash.toString('hex')

async function registerPlugin() {
// create new incubed instance
const client = new IN3()

// register the plugin
client.registerPlugin (new Sha256Plugin())

// exeucte a rpc—call
const result = await client.sendRPC("sha256", ["testdata"])

console.log (" sha256: ", result)

// clean up
client.free ()

registerPlugin () .catch(console.error)

11.3.4 use web3

source : in3-c/wasm/examples/use_web3.ts

use incubed as Web3Provider in web3js

410 Chapter 11. APl Reference WASM

https://github.com/slockit/in3-c/blob/master/wasm/examples/use_web3.ts

Incubed Documentation, Release 2.3

/// use incubed as Web3Provider in web3js

// import in3-Module
import { IN3 } from 'in3-wasm'
const Web3 = require('web3"')

const in3 = new IN3 ({
proof: 'standard',
signatureCount: 1,
requestCount: 1,
chainId: 'mainnet',
replacelatestBlock: 10
})

// use the In3Client as Http-Provider
const web3 = new Web3(in3.createWeb3Provider());

(async () => {
// use the web3
const block = await web3.eth.getBlock('latest')

console.log("Block : ", Dblock)

}) () .catch (console.error);

11.3.5 in3_in_browser

source : in3-c/wasm/examples/in3_in_browser.html

use incubed directly in html

<!-- use incubed directly in html -->
<html>
<head>
<script src="node_modules/in3-wasm/index.js"></script>
</head>
<body>
IN3-Demo
<div>
result:
<pre id="result"> ...waiting... </pre>
</div>
<script>

var in3 = new IN3({ chainId: Oxl, replacelatestBlock: 6, requestCount: 3 });
in3.eth.getBlockByNumber ('latest', false)
.then (block => document.getElementById('result').innerHTML = JSON.
—stringify(block, null, 2))
.catch(alert)
.finally (() => in3.free())
</script>
</body>

</html>

11.3. Examples 411

https://github.com/slockit/in3-c/blob/master/wasm/examples/in3_in_browser.html

Incubed Documentation, Release 2.3

11.3.6 Building

In order to run those examples, you need to install in3-wasm and typescript first. The build.sh will do this and the run

the tsc-compiler

’./build.sh

In order to run a example use

’node build/get_block_api.ts

11.4 Incubed Module

This page contains a list of all Datastructures and Classes used within the IN3 WASM-Client

Importing incubed is as easy as

import {IN3} from "in3-wasm"

11.4.1 BufferType and BigintType

The WASM-Module comes with no dependencies. This means per default it uses the standard classes provided as part

of the EMCAScript-Standard.

If you work with a library which expects different types, you can change the generic-type and giving a converter:

Type BigIntType

Per default we use bigint. This is used whenever we work with number too big to be stored as a numbe r-type.

If you want to change this type, use setConverBiglnt() function.

Type Buffer

Per default we use UInt 8Array. This is used whenever we work with raw bytes.

If you want to change this type, use serConverBuffer() function.

Generics

import {IN3Generic} from 'in3-wasm'
import BN from 'bn.js'

// create a new client by setting the Generic Types
const ¢ = new IN3Generic<BN,Buffer> ()

// set the converter-functions
IN3Generic.setConverBuffer (val => Buffer.from(val))
IN3Generic.setConverBigInt (val => new BN (val))

412 Chapter 11

. API Reference WASM

Incubed Documentation, Release 2.3

11.4.2 Package

While the In3Client-class is also the default import, the following imports can be used:

IN3 Class default Incubed client with
bigint for big numbers
Uint8 Array for bytes

IN3Generic Class the IN3Generic

SimpleSigner Class the SimpleSigner

AccountAPI Interface The Account API

BTCBlock Interface a full Block including the
transactions

BTCBlockHeader Interface a Block header

BlocklInfo Interface the BlockInfo

BtcAPI Interface API for handling BitCoin data

BtcTransaction Interface a BitCoin Transaction.

BtcTransactionlnput Interface a Input of a Bitcoin Transaction

BtcTransactionOutput Interface a Input of a Bitcoin Transaction

DepositResponse Interface the DepositResponse

ETHOpInfoResp Interface the ETHOpInfoResp

EthAPI Interface The API for ethereum
operations.

Continued on next page

11.4. Incubed Module

413

Incubed Documentation, Release 2.3

Table 1 — continued from previous page

Fee Interface the Fee

IN3Config Interface the configuration of the
IN3-Client. This can be
changed at any time.

All properties are optional and
will be verified when sending
the next request.

IN3NodeConfig Interface a configuration of a in3-server.

IN3NodeWeight Interface a local weight of a n3-node.
(This is used internally to
weight the requests)

IN3Plugin Interface a Incubed plugin.

Depending on the methods this
will register for those actions.

IpfsAPI Interface API for storing and retrieving
IPFS-data.
RPCRequest Interface a JSONRPC-Request with

N3-Extension

RPCResponse Interface a JSONRPC-Responset with
N3-Extension

Signer Interface the Signer
Token Interface the Token

Tokens Interface the Tokens
TxInfo Interface the TxInfo

Continued on next page

414 Chapter 11. APl Reference WASM

Incubed Documentation, Release 2.3

Table 1 — continued from previous page

TxType Interface the TxType

Utils Interface Collection of different
util-functions.

Web3Contract Interface the Web3Contract

Web3Event Interface the Web3Event

Web3TransactionObject Interface the Web3TransactionObject

ZKAccountlnfo Interface the ZKAccountInfo

ZksyncAPI Interface API for zksync.

ABI Type literal the ABI

ABIField Type literal the ABIField

Address Type alias a 20 byte Address encoded as
Hex (starting with 0x)

Block Type literal the Block

BlockType Type BlockNumber or predefined
Block

Data Type alias data encoded as Hex (starting
with 0x)

Hash Type alias a 32 byte Hash encoded as Hex
(starting with 0x)

Hex Type a Hexcoded String (starting
with 0x)

Continued on next page

11.4. Incubed Module

415

Incubed Documentation, Release 2.3

Table 1 — continued from previous page

Log Type literal the Log

LogFilter Type literal the LogFilter

Quantity Type a Biglnteger encoded as hex.
Signature Type literal Signature

Transaction Type literal the Transaction
TransactionDetail Type literal the TransactionDetail
TransactionReceipt Type literal the TransactionReceipt
TxRequest Type literal the TxRequest

btc_config Interface bitcoin configuration.
zksync_config Interface zksync configuration.

11.5 Package index

11.5.1 Type IN3

Source: index.d.ts

default Incubed client with bigint for big numbers Uint8 Array for bytes

416

Chapter 11. API Reference WASM

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L557

Incubed Documentation, Release 2.3

default IN3Generic supporting both ES6 and UMD
usage

util Utils<any> collection of util-functions.

btc BtcAPI<UintSArray> btc API

config IN3Config IN3 config

eth EthAPI<bigint,Uint8Array> ethl APL

ipfs IpfsAPI<Uint8Array> ipfs API

signer Signer<bigint,Uint8Array> the signer, if specified this
interface will be used to sign
transactions, if not, sending
transaction will not be possible.

util Utils<Uint8Array> collection of util-functions.

zksync ZksyncAPI<Uint8Array> zksync API

freeAll()

frees all Incubed instances.

static void freeAll ()

onlnit()

registers a function to be called as soon as the wasm is ready. If it is already initialized it will call it right away.
static Promise<T> onlnit (fn:()=>7T)

Parameters:

11.5. Package index 417

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L549
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L542
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L526
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L426
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L518
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L524
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L482
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L531
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L522
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L512
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L506

Incubed Documentation, Release 2.3

fn O=>T the function to call

Returns:

static Promise<T>

setConvertBigint()

set convert big int
static any setConvertBigInt (convert:(any) => any)

Parameters:

convert (any) => any convert

Returns:

static any

setConvertBuffer()

set convert buffer
static any setConvertBuffer (convert:(any) => any)

Parameters:

convert (any) => any convert

Returns:

static any

setStorage()

changes the storage handler, which is called to read and write to the cache.
static void setStorage (handler:)

Parameters:

handler handler

418 Chapter 11. APl Reference WASM

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L566
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L567
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L495

Incubed Documentation, Release 2.3

setTransport()

changes the default transport-function.

static void setTransport (fn:(string, string, number)=>Promise<string>)

Parameters:
fn (string, string, the function to fetch the
number) => response for the given url
Promise<string>
constructor()

creates a new client.
IN3 constructor (config:Partial<IN3Config>)

Parameters:

config Partial<IN3Config> a optional config

Returns:

IN3

createWeb3Provider()

returns a Object, which can be used as Web3Provider.

const web3 = new Web3(new IN3().createWeb3Provider())

any createWeb3Provider ()
Returns:

any

free()

disposes the Client. This must be called in order to free allocated memory!
any free ()
Returns:

any

11.5. Package index 419

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L490
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L557
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L477
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L468

Incubed Documentation, Release 2.3

registerPlugin()

rregisters a plugin. The plugin may define methods which will be called by the client.

void registerPlugin (plugin:/N3Plugin<bigint,Uint8Array>)

Parameters:

plugin

IN3Plugin<bigint, UintSArray>

the plugin-object to register

send()

sends a raw request. if the request is a array the response will be a array as well. If the callback is given it will be called
with the response, if not a Promise will be returned. This function supports callback so it can be used as a Provider for

the web3.

Promise<RPCResponse> send (request:RPCRequest , callback:(Error , RPCResponse) => void)

Parameters:
request RPCRequest a JSONRPC-Request with
N3-Extension
callback (Error , RPCResponse) => callback
void
Returns:

Promise<RPCResponse>

sendRPC()

sends a RPC-Requests specified by name and params.

if the response contains an error, this will be thrown. if not the result will be returned.

Promise<any> sendRPC (method:string, params:any [])

Parameters:

420

Chapter 11. API Reference WASM

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L537
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L444
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L453

Incubed Documentation, Release 2.3

method string the method to call.
params any [] params

Returns:

Promise<any>

sendSyncRPC()

sends a RPC-Requests specified by name and params as a sync call. This is only alowed if the request is handled
internally, like web3_sha3,

if the response contains an error, this will be thrown. if not the result will be returned.

any sendSyncRPC (method:string, params:any [])

Parameters:
method string the method to call.
params any [] params

Returns:

any

setConfig()

sets configuration properties. You can pass a partial object specifieing any of defined properties.
void setConfig (config:Partial<IN3Config>)

Parameters:

config Partial<IN3Config> config

11.5.2 Type IN3Generic

Source: index.d.ts

11.5. Package index 421

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L463
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L436
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L422

Incubed Documentation, Release 2.3

default IN3Generic supporting both ES6 and UMD
usage

util Utils<any> collection of util-functions.

btc BtcAPI<BufferType> btc API

config IN3Config IN3 config

cth EthAPI<BigIntType, BufferType> cthl APL.

ipfs IpfsAPI<BufferType> ipfs API

signer Signer<BigIntType, BufferType> Fhe signer, 1.f specified th1§
interface will be used to sign
transactions, if not, sending
transaction will not be possible.
util Utils<BufferType> collection of util-functions.
zksync ZksyncAPI<BufferType> zksync API
freeAll()

frees all Incubed instances.

static void freeAll ()

onlinit()

registers a function to be called as soon as the wasm is ready. If it is already initialized it will call it right away.
static Promise<T> onlnit (fn:()=>7T)

Parameters:

422 Chapter 11. APl Reference WASM

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L549
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L542
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L526
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L426
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L518
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L524
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L482
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L531
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L522
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L512
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L506

Incubed Documentation, Release 2.3

fn O0=>T

the function to call

Returns:

static Promise<T>

setConvertBigint()

set convert big int
static any setConvertBigInt (convert:(any) => any)

Parameters:

convert (any) =>any

convert

Returns:

static any

setConvertBuffer()

set convert buffer
static any setConvertBuffer (convert:(any) => any)

Parameters:

convert (any) => any

convert

Returns:

static any

setStorage()

changes the storage handler, which is called to read and write to the cache.

static void setStorage (handler:)

Parameters:

handler

handler

11.5. Package index

423

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L544
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L545
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L495

Incubed Documentation, Release 2.3

setTransport()

changes the default transport-function.

static void setTransport (fn:(string, string, number)=>Promise<string>)

Parameters:
fn (string, string, the function to fetch the
number) => response for the given url
Promise<string>
constructor()

creates a new client.
IN3Generic constructor (config:Partial<IN3Config>)

Parameters:

config Partial<IN3Config> a optional config

Returns:

IN3Generic

createWeb3Provider()

returns a Object, which can be used as Web3Provider.

const web3 = new Web3(new IN3().createWeb3Provider())

any createWeb3Provider ()
Returns:

any

free()

disposes the Client. This must be called in order to free allocated memory!
any free ()
Returns:

any

424 Chapter 11. APl Reference WASM

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L490
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L426
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L477
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L468

Incubed Documentation, Release 2.3

registerPlugin()

rregisters a plugin. The plugin may define methods which will be called by the client.

void registerPlugin (plugin:/N3Plugin<BiglntType, BufferType>)

Parameters:

plugin

IN3Plugin<BigIntType, BufferTyp|

L ;he plugin-object to register

send()

sends a raw request. if the request is a array the response will be a array as well. If the callback is given it will be called
with the response, if not a Promise will be returned. This function supports callback so it can be used as a Provider for

the web3.

Promise<RPCResponse> send (request:RPCRequest , callback:(Error , RPCResponse) => void)

Parameters:
request RPCRequest a JSONRPC-Request with
N3-Extension
callback (Error , RPCResponse) => callback
void
Returns:

Promise<RPCResponse>

sendRPC()

sends a RPC-Requests specified by name and params.

if the response contains an error, this will be thrown. if not the result will be returned.

Promise<any> sendRPC (method:string, params:any [])

Parameters:

11.5. Package index

425

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L537
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L444
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L453

Incubed Documentation, Release 2.3

method string the method to call.
params any [] params

Returns:

Promise<any>

sendSyncRPC()

sends a RPC-Requests specified by name and params as a sync call. This is only alowed if the request is handled
internally, like web3_sha3,

if the response contains an error, this will be thrown. if not the result will be returned.

any sendSyncRPC (method:string, params:any [])

Parameters:
method string the method to call.
params any [] params

Returns:

any

setConfig()

sets configuration properties. You can pass a partial object specifieing any of defined properties.
void setConfig (config:Partial<IN3Config>)

Parameters:

config Partial<IN3Config> config

11.5.3 Type SimpleSigner

Source: index.d.ts

426 Chapter 11. APl Reference WASM

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L463
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L436
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L660

Incubed Documentation, Release 2.3

accounts

the accounts

constructor()

constructor

SimpleSigner constructor (pks:string | BufferType [])

Parameters:

pks

string | BufferType []

pks

Returns:

SimpleSigner

prepareTransaction()

optiional method which allows to change the transaction-data before sending it. This can be used for redirecting it

through a multisig.

Promise<Transaction> prepareTransaction (client:IN3Generic<BigintType, BufferType> , tx:Transaction)

Parameters:
client IN3Generic<BigIntType, Buﬁ"erTypggent
tx Transaction x
Returns:

Promise<Transaction>

sign()

signing of any data. if hashFirst is true the data should be hashed first, otherwise the data is the hash.

Promise<BufferType> sign (data:Hex , account:Address , hashFirst:boolean, ethV:boolean)

Parameters:

11.5. Package index

427

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L661
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L663
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L667
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L676

Incubed Documentation, Release 2.3

data Hex a Hexcoded String (starting
with 0x)
account Address a 20 byte Address encoded as
Hex (starting with 0x)
hashFirst boolean hash first
ethV boolean ethv
Returns:
Promise<BufferType>
addAccount()
add account
string addAccount (pk:Hash)
Parameters:
pk Hash a 32 byte Hash encoded as Hex
(starting with 0x)
Returns:
string
canSign()

returns true if the account is supported (or unlocked)

Promise<boolean> canSign (address:Address)

Parameters:
address Address a 20 byte Address encoded as
Hex (starting with 0x)
428 Chapter 11. APl Reference WASM

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L665
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L670

Incubed Documentation, Release 2.3

Returns:

Promise<boolean>

11.5.4 Type AccountAPI

Source: index.d.ts

The Account API

add()

adds a private key to sign with. This method returns address of the pk
Promise<string> add (pk:string | BufferType)

Parameters:

pk string | BufferType

Returns:

Promise<string>

11.5.5 Type BTCBlock

Source: index.d.ts

a full Block including the transactions

11.5. Package index

429

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1198
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1205
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1685

Incubed Documentation, Release 2.3

bits string bits (target) for the block as hex

chainwork string total amount of work since
genesis

confirmations number number of confirmations or
blocks mined on top of the
containing block

difficulty number difficulty of the block

hash string the hash of the blockheader

height number block number

mediantime string unix timestamp in seconds
since 1970

merkleroot string merkle root of the trie of all
transactions in the block

nTx number number of transactions in the
block

nextblockhash string hash of the next blockheader

nonce number nonce-field of the block

previousblockhash string hash of the parent blockheader

time string unix timestamp in seconds
since 1970

430 | x T Ghapiet tiionAPl Reference WASM

U . A

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1671
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1675
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1655
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1673
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1653
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1657
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1667
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1663
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1677
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1681
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1669
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1679
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1665
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1687
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1659
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1661

Incubed Documentation, Release 2.3

11.5.6 Type BTCBlockHeader

Source: index.d.ts

a Block header

11.5. Package index 431

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1651

Incubed Documentation, Release 2.3

bits string bits (target) for the block as hex

chainwork string total amount of work since
genesis

confirmations number number of confirmations or
blocks mined on top of the
containing block

difficulty number difficulty of the block

hash string the hash of the blockheader

height number block number

mediantime string unix timestamp in seconds
since 1970

merkleroot string merkle root of the trie of all
transactions in the block

nTx number number of transactions in the
block

nextblockhash string hash of the next blockheader

nonce number nonce-field of the block

previousblockhash string hash of the parent blockheader

time string unix timestamp in seconds
since 1970

432 | version number Ghaptersih API Reference WASM

P

e vt o v o

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1671
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1675
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1655
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1673
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1653
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1657
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1667
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1663
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1677
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1681
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1669
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1679
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1665
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1659
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1661

Incubed Documentation, Release 2.3

11.5.7 Type Blockinfo

Source: index.d.ts

blockNumber number the blockNumber
committed boolean the committed
verified boolean the verified

11.5.8 Type BtcAPI

Source: index.d.ts

API for handling BitCoin data

getBlockBytes()

retrieves the serialized block (bytes) including all transactions

Promise<BufferType> getBlockBytes (blockHash:Hash)

Parameters:
blockHash Hash a 32 byte Hash encoded as Hex
(starting with 0x)
Returns:
Promise<BufferType>

getBlockHeader()

retrieves the blockheader and returns the data as json.

Promise<BTCBlockHeader> getBlockHeader (blockHash:Hash)

Parameters:

blockHash

Hash

a 32 byte Hash encoded as Hex
(starting with 0x)

11.5. Package index

433

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L825
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L826
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L827
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L828
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1694
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1714
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1702

Incubed Documentation, Release 2.3

Returns:

Promise<BTCBlockHeader>

getBlockHeaderBytes()

retrieves the serialized blockheader (bytes)

Promise<BufferType> getBlockHeaderBytes (blockHash:Hash)

Parameters:
blockHash Hash a 32 byte Hash encoded as Hex
(starting with 0x)
Returns:
Promise<BufferType>

getBlockWithTxData()

retrieves the block including all tx data as json.

Promise<BTCBlock> getBlockWithTxData (blockHash:Hash)

Parameters:

blockHash

Hash

a 32 byte Hash encoded as Hex
(starting with 0x)

Returns:

Promise<BTCBlock>

getBlockWithTxIds()

retrieves the block including all tx ids as json.

Promise<BTCBlock> getBlockWithTxIds (blockHash:Hash)

Parameters:
blockHash Hash a 32 byte Hash encoded as Hex
(starting with 0x)
Returns:
Promise<BTCBlock>
434 Chapter 11. APl Reference WASM

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1705
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1708
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1711

Incubed Documentation, Release 2.3

getTransaction()

retrieves the transaction and returns the data as json.
Promise<BtcTransaction> getTransaction (txid:Hash)

Parameters:

txid Hash

a 32 byte Hash encoded as Hex
(starting with 0x)

Returns:
Promise<BtcTransaction>
getTransactionBytes()

retrieves the serialized transaction (bytes)

Promise<BufferType> getTransactionBytes (txid:Hash)

Parameters:
txid Hash a 32 byte Hash encoded as Hex
(starting with 0x)
Returns:
Promise<BufferType>

11.5.9 Type BtcTransaction

Source: index.d.ts

a BitCoin Transaction.

11.5. Package index

435

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1696
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1699
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1603

Incubed Documentation, Release 2.3

blockhash Hash the block hash of the block
containing this transaction.

blocktime number The block time in seconds
since epoch (Jan 1 1970 GMT)

confirmations number The confirmations.

hash Hash The transaction hash (differs
from txid for witness
transactions)

hex Data the hex representation of raw
data

in_active_chain boolean true if this transaction is part of
the longest chain

locktime number The locktime

size number The serialized transaction size

time number The transaction time in seconds
since epoch (Jan 1 1970 GMT)

txid Hash The requested transaction id.

version number The version

vin BtcTransactionInput [] the transaction inputs

vout BtcTransactionOutput [] the transaction outputs

436 | ysize number Chapten1lxa AR Beference WASM

(differs from size for witness
transactions)

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1632
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1641
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1635
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1614
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1608
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1605
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1629
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1617
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1638
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1611
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1626
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1644
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1647
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1620
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1623

Incubed Documentation, Release 2.3

11.5.10 Type BtcTransactionlnput

Source: index.d.ts

a Input of a Bitcoin Transaction

scriptSig the script
sequence number The script sequence number
txid Hash the transaction id
txinwitness Data [] hex-encoded witness data (if
any)
vout number the index of the
transactionoutput
11.5.11 Type BtcTransactionOutput
Source: index.d.ts
a Input of a Bitcoin Transaction
n number the index
scriptPubKey the script
value number the value in BTC
vout number the index of the
transactionoutput

11.5.12 Type DepositResponse

Source: index.d.ts

11.5. Package index

437

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1546
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1554
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1563
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1548
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1566
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1551
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1571
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1576
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1582
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1573
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1579
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L867

Incubed Documentation, Release 2.3

receipt TransactionReceipt the receipt

11.5.13 Type ETHOpInfoResp

Source: index.d.ts

block BlockInfo the block

executed boolean the executed

11.5.14 Type EthAPI

Source: index.d.ts

The API for ethereum operations.

accounts AccountAPI<BufferType> accounts-API
client IN3Generic<BigIntType, BufferTy pgh>C client used.

signer Signer<BigIntType, BufferType> a custom signer (optional)

blockNumber()

Returns the number of most recent block. (as number)
Promise<number> blockNumber ()
Returns:

Promise<number>

call()

Executes a new message call immediately without creating a transaction on the block chain.

Promise<string> call (tx:Transaction , block:BlockType)

438 Chapter 11. APl Reference WASM

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L868
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L838
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L840
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L839
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1280
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1294
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1284
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1289
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1300
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1308

Incubed Documentation, Release 2.3

Parameters:
X Transaction tx
block BlockType BlockNumber or predefined
Block
Returns:
Promise<string>
callFn()

Executes a function of a contract, by passing a method-signature and the arguments, which will then be ABI-encoded
and send as eth_call.

Promise<any> callFn (to:Address , method:string, args:any [])

Parameters:

to Address a 20 byte Address encoded as
Hex (starting with 0x)

method string method
args any [] args

Returns:

Promise<any>

chainld()

Returns the EIP155 chain ID used for transaction signing at the current best block. Null is returned if not available.
Promise<string> chainld ()
Returns:

Promise<string>

clientVersion()

Returns the clientVersion. This may differ in case of an network, depending on the node it communicates with.

11.5. Package index 439

https://github.com/ethereumjs/ethereumjs-abi/blob/master/README.md#simple-encoding-and-decoding
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1312
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1316

Incubed Documentation, Release 2.3

Promise<string> clientVersion ()

Returns:

Promise<string>

constructor()

constructor

any constructor (client:IN3Generic<BiglntType, BufferType>)

Parameters:

client

IN3Generic<BiglntType, BufferTy

b ggent

Returns:

any

contractAt()

contract at

contractAt (abi:ABI [], address:Address)

Parameters:

abi

ABI]

abi

address

Address

a 20 byte Address encoded as
Hex (starting with 0x)

decodeEventData()

decode event data

any decodeEventData (log:Log , d:ABI')

Parameters:
log Log log
d ABI d
440 Chapter 11. APl Reference WASM

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1320
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1296
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1479
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1519

Incubed Documentation, Release 2.3

Returns:

any

estimateGas()

Makes a call or transaction, which won’t be added to the blockchain and returns the used gas, which can be used for
estimating the used gas.

Promise<number> estimateGas (tx:Transaction)

Parameters:

tx Transaction tx

Returns:

Promise<number>

gasPrice()

Returns the current price per gas in wei. (as number)
Promise<number> gasPrice ()
Returns:

Promise<number>

getBalance()

Returns the balance of the account of given address in wei (as hex).

Promise<BigIntType> getBalance (address:Address , block:BlockType)

Parameters:
address Address a 20 byte Address encoded as
Hex (starting with 0x)
block BlockType BlockNumber or predefined
Block
Returns:

Promise<BigintType>

11.5. Package index 441

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1324
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1304
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1328

Incubed Documentation, Release 2.3

getBlockByHash()

Returns information about a block by hash.

Promise<Block> getBlockByHash (hash:Hash , includeTransactions:boolean)

Parameters:
hash Hash a 32 byte Hash encoded as Hex
(starting with 0x)
includeTransactions boolean include transactions
Returns:

Promise<Block>

getBlockByNumber()

Returns information about a block by block number.

Promise<Block> getBlockByNumber (block:BlockType , includeTransactions:boolean)

Parameters:
block BlockType BlockNumber or predefined
Block
includeTransactions boolean include transactions
Returns:

Promise<Block>

getBlockTransactionCountByHash()

Returns the number of transactions in a block from a block matching the given block hash.

Promise<number> getBlockTransactionCountByHash (block:Hash)

Parameters:
block Hash a 32 byte Hash encoded as Hex
(starting with 0x)
442 Chapter 11. APl Reference WASM

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1340
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1344
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1348

Incubed Documentation, Release 2.3

Returns:
Promise<number>
getBlockTransactionCountByNumber()

Returns the number of transactions in a block from a block matching the given block number.

Promise<number> getBlockTransactionCountByNumber (block:Hash)

Parameters:
block Hash a 32 byte Hash encoded as Hex
(starting with 0x)
Returns:
Promise<number>
getCode()

Returns code at a given address.

Promise<string> getCode (address:Address , block:BlockType)

Parameters:
address Address a 20 byte Address encoded as
Hex (starting with 0x)
block BlockType BlockNumber or predefined
Block
Returns:
Promise<string>

getFilterChanges()

Polling method for a filter, which returns an array of logs which occurred since last poll.
Promise<> getFilterChanges (id:Quantity)

Parameters:

id Quantity a BigInteger encoded as hex.

11.5. Package index 443

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1352
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1332
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1356

Incubed Documentation, Release 2.3

Returns:

Promise<>

getFilterLogs()

Returns an array of all logs matching filter with given id.
Promise<> getFilterLogs (id:Quantity)

Parameters:

id Quantity

a BigInteger encoded as hex.

Returns:

Promise<>

getLogs()

Returns an array of all logs matching a given filter object.
Promise<> getlLogs (filter:LogFilter)

Parameters:

filter LogFilter

filter

Returns:

Promise<>

getStorageAt()

Returns the value from a storage position at a given address.

Promise<string> getStorageAt (address:Address , pos:Quantity , block:BlockType)

Parameters:

444

Chapter 11. API Reference WASM

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1360
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1364
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1336

Incubed Documentation, Release 2.3

address Address a 20 byte Address encoded as
Hex (starting with 0x)
pos Quantity a Biglnteger encoded as hex.
block BlockType BlockNumber or predefined
Block
Returns:
Promise<string>

getTransactionByBlockHashAndIndex()

Returns information about a transaction by block hash and transaction index position.

Promise<TransactionDetail> getTransactionByBlockHashAndIndex (hash:Hash , pos:Quantity)

Parameters:
hash Hash a 32 byte Hash encoded as Hex
(starting with 0x)
pos Quantity a BigInteger encoded as hex.
Returns:

Promise<TransactionDetail>

getTransactionByBlockNumberAndindex()

Returns information about a transaction by block number and transaction index position.

Promise<TransactionDetail> getTransactionByBlockNumberAndIndex (block:BlockType , pos:Quantity)

Parameters:

11.5. Package index

445

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1368
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1372

Incubed Documentation, Release 2.3

block BlockType BlockNumber or predefined
Block
pos Quantity a Biglnteger encoded as hex.
Returns:

Promise<TransactionDetail>

getTransactionByHash()

Returns the information about a transaction requested by transaction hash.

Promise<TransactionDetail> getTransactionByHash (hash:Hash)

Parameters:

hash

Hash

a 32 byte Hash encoded as Hex
(starting with 0x)

Returns:

Promise<TransactionDetail>

getTransactionCount()

Returns the number of transactions sent from an address. (as number)

Promise<number> getTransactionCount (address:Address , block:BlockType)

Parameters:
address Address a 20 byte Address encoded as
Hex (starting with 0x)
block BlockType BlockNumber or predefined
Block
Returns:
Promise<number>
446 Chapter 11. APl Reference WASM

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1376
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1380

Incubed Documentation, Release 2.3

getTransactionReceipt()

Returns the receipt of a transaction by transaction hash. Note That the receipt is available even for pending transactions.
Promise<TransactionReceipt> getTransactionReceipt (hash:Hash)

Parameters:

hash Hash a 32 byte Hash encoded as Hex
(starting with 0x)

Returns:

Promise<TransactionReceipt>

getUncleByBlockHashAndindex()

Returns information about a uncle of a block by hash and uncle index position. Note: An uncle doesn’t contain
individual transactions.

Promise<Block> getUncleByBlockHashAndIndex (hash:Hash , pos:Quantity)

Parameters:
hash Hash a 32 byte Hash encoded as Hex
(starting with 0x)
pos Quantity a BigInteger encoded as hex.
Returns:
Promise<Block>

getUncleByBlockNumberAndindex()

Returns information about a uncle of a block number and uncle index position. Note: An uncle doesn’t contain
individual transactions.

Promise<Block> getUncleByBlockNumberAndIndex (block:BlockType , pos:Quantity)

Parameters:

11.5. Package index 447

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1385
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1390
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1395

Incubed Documentation, Release 2.3

block BlockType BlockNumber or predefined
Block
pos Quantity a Biglnteger encoded as hex.
Returns:

Promise<Block>

getUncleCountByBlockHash()

Returns the number of uncles in a block from a block matching the given block hash.

Promise<number> getUncleCountByBlockHash (hash:Hash)

Parameters:
hash Hash a 32 byte Hash encoded as Hex
(starting with 0x)
Returns:
Promise<number>

getUncleCountByBlockNumber()

Returns the number of uncles in a block from a block matching the given block hash.

Promise<number> getUncleCountByBlockNumber (block:BlockType)

Parameters:
block BlockType BlockNumber or predefined
Block
Returns:
Promise<number>
hashMessage()

a Hexcoded String (starting with 0x)
Hex hashMessage (data:Data)

448

Chapter 11. API Reference WASM

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1399
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1403
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1520

Incubed Documentation, Release 2.3

Parameters:
data Data data encoded as Hex (starting
with 0x)
Returns:
Hex

newBlockFilter()

Creates a filter in the node, to notify when a new block arrives. To check if the state has changed, call
eth_getFilterChanges.

Promise<string> newBlockFilter ()

Returns:

Promise<string>

newFilter()
Creates a filter object, based on filter options, to notify when the state changes (logs). To check if the state has changed,
call eth_getFilterChanges.

A note on specifying topic filters: Topics are order-dependent. A transaction with a log with topics [A, B] will be
matched by the following topic filters:

[] “anything” [A] “A in first position (and anything after)” [null, B] “anything in first position AND B in second
position (and anything after)” [A, B] “A in first position AND B in second position (and anything after)” [[A, B], [A,
B]] “(A OR B) in first position AND (A OR B) in second position (and anything after)”

Promise<string> newFilter (filter:LogFilter)

Parameters:

filter LogFilter filter

Returns:

Promise<string>

newPendingTransactionFilter()

Creates a filter in the node, to notify when new pending transactions arrive.
To check if the state has changed, call eth_getFilterChanges.
Promise<string> newPendingTransactionFilter ()

Returns:

Promise<string>

11.5. Package index 449

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1407
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1420
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1426

Incubed Documentation, Release 2.3

protocolVersion()

Returns the current ethereum protocol version.
Promise<string> protocolVersion ()
Returns:

Promise<string>

resolveENS()

resolves a name as an ENS-Domain.

Promise<Address> resolveENS (name:string, type:Address , registry:st ring)

Parameters:
name string the domain name
type Address the type (currently only addr is
supported)
registry string optionally the address of the
registry (default is the mainnet
ens registry)
Returns:

Promise<Address>

sendRawTransaction()

Creates new message call transaction or a contract creation for signed transactions.

Promise<string> sendRawTransaction (data:Data)

Parameters:
data Data data encoded as Hex (starting
with 0x)
Returns:
Promise<string>
450 Chapter 11. APl Reference WASM

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1434
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1457
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1462

Incubed Documentation, Release 2.3

sendTransaction()

sends a Transaction

Promise<> sendTransaction (args:7xRequest)

Parameters:

args

TxRequest

args

Returns:

Promise<>

sign()

signs any kind of message using the \x19Ethereum Signed Message: \n-prefix

Promise<BufferType> sign (account:Address , data:Data)

Parameters:
account Address the address to sign the message
with (if this is a 32-bytes
hex-string it will be used as
private key)
data Data the data to sign (Buffer,
hexstring or utf8-string)
Returns:
Promise<BufferType>
syncing()

Returns the state of the underlying node.
Promise<> syncing ()
Returns:

Promise<>

11.5. Package index

451

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1470
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1468
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1442

Incubed Documentation, Release 2.3

toWei()

Returns the value in wei as hexstring.

string toWei (value:string, unit:string)

Parameters:
value string value
unit string unit
Returns:
string

uninstallFilter()

Uninstalls a filter with given id. Should always be called when watch is no longer needed. Additonally Filters timeout

when they aren’t requested with eth_getFilterChanges for a period of time.

Promise<Quantity> uninstallFilter (id:Quantity)

Parameters:

id Quantity

a BigInteger encoded as hex.

Returns:

Promise<Quantity>

web3ContractAt()

web3 contract at

Web3Contract web3ContractAt (abi:ABI [], address:Address , options:)

Parameters:

452

Chapter 11. API Reference WASM

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1438
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1430
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1472

Incubed Documentation, Release 2.3

abi ABI [] abi

address Address a 20 byte Address encoded as
Hex (starting with 0x)

options options

Returns:

Web3Contract

11.5.15 Type Fee

Source: index.d.ts

feeType TxType the feeType
gasFee number the gasFee
gasPrice number the gasPrice
totalFee number the totalFee
totalGas number the totalGas
zkpFee number the zkpFee

11.5.16 Type IN3Config

Source: index.d.ts

the configuration of the IN3-Client. This can be changed at any time. All properties are optional and will be verified
when sending the next request.

11.5. Package index 453

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L847
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L848
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L851
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L850
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L853
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L849
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L852
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L39

Incubed Documentation, Release 2.3

autoUpdateList

boolean

if true the nodelist will be
automaticly updated if the
lastBlock is newer.

default: true
(optional)

bootWeights

boolean

if true, the first request
(updating the nodelist) will also
fetch the current health status
and use it for blacklisting
unhealthy nodes. This is used
only if no nodelist is availabkle
from cache.

default: false
(optional)

btc

btc_config

config for btc (optional)

chainld

string

The chain-id based on EIP-155.

or the name of the supported
chain.

Currently we support
‘mainnet’, ‘goerli’, ‘kovan’,
‘ipfs’ and ‘local’

While most of the chains use
preconfigured chain settings,

‘local’ actually uses the local
running client turning of proof.

example: ‘Ox1’ or ‘mainnet’ or
‘goerli’

default: ‘mainnet’

chainRegistry

string

main chain-registry contract

example:
0xe36179e2286ef405¢929C90ad
(optional)

BE70E649B22a945

454

finality

number

Chapter 11. API Reference V)

the number in percent needed
in order reach finality if you
run on a POA-Chain.

VASM

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L52
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L99
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L254
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L67
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L186
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L82
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L91
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L117
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L122
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L191
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L107
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L149
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L129
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L154
https://in3.readthedocs.io/en/develop/spec.html#node-structure
https://in3.readthedocs.io/en/develop/spec.html#node-structure
https://in3.readthedocs.io/en/develop/spec.html#node-structure
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L195
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L161
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L168
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L175
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L180
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L74
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L136
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L143
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L252

Incubed Documentation, Release 2.3

transport()

sets the transport-function.

Promise<string> transport (url:string, payload:string, timeout:number)

Parameters:
url string url
payload string payload
timeout number timeout

Returns:

Promise<string>

11.5.17 Type IN3NodeConfig

Source: index.d.ts

a configuration of a in3-server.

11.5. Package index 455

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L45
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L259

Incubed Documentation, Release 2.3

address string the address of the node, which
is the public address it iis
signing with.

example:
0x6C1a01C2aB554930A937B0a2E8105fB47946c679

capacity number the capacity of the node.
example: 100 (optional)

chainlds string/|] the list of supported chains
example: Ox1

deposit number the deposit of the node in wei
example: 12350000

index number the index within the contract
example: 13 (optional)

props number the properties of the node.
example: 3 (optional)

registerTime number the UNIX-timestamp when the
node was registered

example: 1563279168
(optional)

timeout number the time (in seconds) until an
owner is able to receive his
deposit back after he
unregisters himself

example: 3600 (optional)

unregisterTime number the UNIX-timestamp when the
node is allowed to be deregister
example: 1563279168
(optional)

the-endpoint to-postto
tHE-CHAPOHHOPOStto

a56 | Ghantsr. 1., AP) Reference WASM

]

He-

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L269
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L294
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L284
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L289
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L264
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L299
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L304
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L274
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L309
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L279
https://in3.slock.it

Incubed Documentation, Release 2.3

11.5.18 Type IN3NodeWeight

Source: index.d.ts

a local weight of a n3-node. (This is used internally to weight the requests)

avgResponseTime

number

average time of a response in
ms

example: 240 (optional)

blacklistedUntil

number

blacklisted because of failed
requests until the timestamp
example: 1529074639623
(optional)

lastRequest

number

timestamp of the last request in
ms

example: 1529074632623
(optional)

pricePerRequest

number

last price (optional)

responseCount

number

number of uses.
example: 147 (optional)

weight

number

factor the weight this noe
(default 1.0)

example: 0.5 (optional)

11.5.19 Type IN3Plugin

Source: index.d.ts

11.5.20 Type IpfsAPI

Source: index.d.ts

API for storing and retrieving IPFS-data.

11.5. Package index

457

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L314
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L329
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L343
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L338
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L333
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L324
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L319
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L399
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1527

Incubed Documentation, Release 2.3

get()

retrieves the content for a hash from IPFS.
Promise<BufferType> get (multihash:string)

Parameters:

multihash string

the IPFS-hash to fetch

Returns:

Promise<BufferType>

put()

stores the data on ipfs and returns the [PFS-Hash.
Promise<string> put (content:BufferType)

Parameters:

content BufferType

puts a IPFS content

Returns:

Promise<string>

11.5.21 Type RPCRequest

Source: index.d.ts

a JSONRPC-Request with N3-Extension

458

Chapter 11. API Reference WASM

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1533
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1538
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L349

Incubed Documentation, Release 2.3

id number | string the identifier of the request
example: 2 (optional)

jsonrpc '2.0" the version

method string the method to call
example: eth_getBalance

params any [] the params

example:
0xe36179e2286ef405¢929C90adBE70E649B22a945 lates
(optional)

11.5.22 Type RPCResponse

Source: index.d.ts

a JSONRPC-Responset with N3-Extension

error string in case of an error this needs to
be set (optional)

id string | number the id matching the request
example: 2

jsonrpc '2.0" the version

result any the params

example: Oxa35bc (optional)

11.5.23 Type Signer

Source: index.d.ts

11.5. Package index 459

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L363
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L353
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L358
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L368
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L373
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L386
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L382
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L377
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L391
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L646

Incubed Documentation, Release 2.3

prepareTransaction()

optiional method which allows to change the transaction-data before sending it. This can be used for redirecting it
through a multisig.

Promise<Transaction> prepareTransaction (client:IN3Generic<BigintType,BufferType> , tx:Transaction)

Parameters:
client IN3Generic<BigIntType, BufferTy pg gent
tx Transaction tx
Returns:

Promise<Transaction>

sign()

signing of any data. if hashFirst is true the data should be hashed first, otherwise the data is the hash.

Promise<BufferType> sign (data:Hex , account:Address , hashFirst:boolean, ethV:boolean)

Parameters:
data Hex a Hexcoded String (starting
with 0x)
account Address a 20 byte Address encoded as
Hex (starting with 0x)
hashFirst boolean hash first
ethV boolean ethv
Returns:
Promise<BufferType>
canSign()

returns true if the account is supported (or unlocked)

460 Chapter 11. APl Reference WASM

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L648
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L657

Incubed Documentation, Release 2.3

Promise<boolean> canSign (address:Address)

Parameters:
address Address a 20 byte Address encoded as
Hex (starting with 0x)
Returns:
Promise<boolean>

11.5.24 Type Token

Source: index.d.ts

address String the address
decimals number the decimals
id number the id
symbol String the symbol

11.5.25 Type Tokens

Source: index.d.ts

11.5.26 Type TxInfo

Source: index.d.ts

11.5. Package index 461

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L651
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L860
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L861
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L862
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L863
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L864
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L856
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L831

Incubed Documentation, Release 2.3

block BlockInfo the block
executed boolean the executed
failReason string the failReason
success boolean the success
11.5.27 Type TxType
Source: index.d.ts
type 'Withdraw' the type
| "Transfer'
| "TransferToNew'

11.5.28 Type Utils

Source: index.d.ts

Collection of different util-functions.

abiDecode()

decodes the given data as ABI-encoded (without the methodHash)

any [] abiDecode (signature:string, data:Data)

Parameters:
signature string the method signature, which
must contain a return
description
data Data the data to decode
462 Chapter 11. APl Reference WASM

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L832
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L833
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L834
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L835
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L843
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L844
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L682
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L702

Incubed Documentation, Release 2.3

Returns:

any []

abiEncode()

encodes the given arguments as ABI-encoded (including the methodHash)

Hex abiEncode (signature:string, args:any [])

Parameters:
signature string the method signature
args any [] the arguments
Returns:
Hex

checkAddressChecksum()

checks whether the given address is a correct checksumAddress If the chainld is passed, it will be included accord to

EIP 1191

boolean checkAddressChecksum (address:Address , chainld:number)

Parameters:
address Address the address (as hex)
chainld number the chainld (if supported)
Returns:
boolean

createSignatureHash()

a Hexcoded String (starting with 0x)
Hex createSignatureHash (def:ABI)

Parameters:

11.5. Package index

463

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L695
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L718
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L685

Incubed Documentation, Release 2.3

def

ABI

def

Returns:

Hex

decodeEvent()

decode event
any decodeEvent (log:Log , d:ABI')

Parameters:

Log

log

ABI

Returns:

any

ecSign()

create a signature (65 bytes) for the given message and kexy

BufferType ecSign (pk:Hex | BufferType , msg:Hex | BufferType , hashFirst:boolean, adjustV:boolean)

Parameters:

464

Chapter 11. API Reference WASM

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L687
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L782

Incubed Documentation, Release 2.3

pk Hex the private key
| BufferType
msg Hex the message
| BufferType
hashFirst boolean if true the message will be

hashed first (default:true), if not
the message is the hash.

adjustV boolean if true (default) the v value will
be adjusted by adding 27

Returns:

BufferType

getVersion()

returns the incubed version.
string getVersion ()
Returns:

string

isAddress()

checks whether the given address is a valid hex string with Ox-prefix and 20 bytes
boolean isAddress (address:Address)

Parameters:

address Address the address (as hex)

Returns:

boolean

11.5. Package index 465

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L747
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L724

Incubed Documentation, Release 2.3

keccak()

calculates the keccack hash for the given data.

BufferType keccak (data:BufferType | Data)

Parameters:
data BufferType the data as Uint8Array or hex
| Data data.
Returns:
BufferType
private2address()
generates the public address from the private key.
Address private2address (pk:Hex | BufferType)
Parameters:
pk Hex the private key.
| BufferType
Returns:
Address
randomBytes()

returns a Buffer with strong random bytes. Thsi will use the browsers crypto-module or in case of nodejs use the

crypto-module there.

BufferType randomBytes (len:number)

Parameters:
len number the number of bytes to
generate.
Returns:
BufferType
466 Chapter 11. APl Reference WASM

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L730
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L796
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L737

Incubed Documentation, Release 2.3

soliditySha3()

solidity sha3
string soliditySha3 (args:any [])

Parameters:

args any [] args

Returns:
string
splitSignature()

takes raw signature (65 bytes) and splits it into a signature object.

Signature splitSignature (signature:Hex | BufferType , message:BufferType | Hex , hashFirst:boolean)

Parameters:
signature Hex the 65 byte-signature
| BufferType
message BufferType the message
| Hex
hashFirst boolean if true (default) this will be
taken as raw-data and will be
hashed first.
Returns:
Signature
toBuffer()

converts any value to a Buffer. optionally the target length can be specified (in bytes)
BufferType toBuffer (data:Hex | BufferType | number | bigint, len:number)

Parameters:

11.5. Package index 467

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L688
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L790
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L762

Incubed Documentation, Release 2.3

data Hex data
| BufferType
| number
Ibigint
len number len
Returns:
BufferType
toChecksumAddress()

generates a checksum Address for the given address. If the chainld is passed, it will be included accord to EIP 1191

Address toChecksumAddress (address:Address , chainld:number)

Parameters:
address Address the address (as hex)
chainld number the chainld (if supported)
Returns:
Address
toHex()

converts any value to a hex string (with prefix 0x). optionally the target length can be specified (in bytes)

Hex toHex (data:Hex | BufferType | number | bigint, len:number)

Parameters:

468

Chapter 11. API Reference WASM

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L710
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L743

Incubed Documentation, Release 2.3

data Hex data
| BufferType
| number
Ibigint
len number len
Returns:
Hex
toMinHex()

removes all leading O in the hexstring

string toMinHex (key:string | BufferType | number)

Parameters:
key string key
| BufferType
| number
Returns:
string
toNumber()

converts any value to a hex string (with prefix 0x). optionally the target length can be specified (in bytes)

number toNumber (data:string | BufferType | number | bigint)

Parameters:
data string data
| BufferType
| number
Ibigint
Returns:
number

11.5. Package index 469

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L750
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L768

Incubed Documentation, Release 2.3

toUint8Array()

converts any value to a Uint8Array. optionally the target length can be specified (in bytes)
BufferType toUint8Array (data:Hex | BufferType | number | bigint, len:number)

Parameters:

data Hex data
| BufferType
| number

|bigint

len number len

Returns:

BufferType

toUtf8()

convert to String
string toUtf8 (val:any)

Parameters:

val any val

Returns:

string

11.5.29 Type Web3Contract

Source: index.d.ts

events the events

methods the methods

options the options

470 Chapter 11. APl Reference WASM

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L756
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L773
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1234
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1255
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1249
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1235

Incubed Documentation, Release 2.3

deploy()

deploy
Web3TransactionObject deploy (args:)

Parameters:

args args

Returns:
Web3TransactionObject
once()

once

void once (eventName:string, options:, handler:(Error , Web3Event) => void)

Parameters:
eventName string event name
options options
handler (Error , Web3Event) =>void | handler
getPastEvents()

get past events

Promise<> getPastEvents (evName:string, options:)

Parameters:
evName string ev name
options options
Returns:
Promise<>

11.5. Package index 471

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1245
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1253
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1268

Incubed Documentation, Release 2.3

11.5.30 Type Web3Event

Source: index.d.ts

address Address the address
blockHash Hash the blockHash
blockNumber number the blockNumber
event string the event

logIndex number the logIndex

raw the raw
returnValues the returnValues
signature string the signature
transactionHash Hash the transactionHash
transactionIndex number the transactionIndex

11.5.31 Type Web3TransactionObject

Source: index.d.ts

call()

call
Promise<any> call (options:)

Parameters:

472 Chapter 11. APl Reference WASM

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1175
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1184
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1186
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1185
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1179
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1181
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1187
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1176
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1180
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1183
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1182
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1210
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1211

Incubed Documentation, Release 2.3

options

options

Returns:

Promise<any>

encodeABI()

a Hexcoded String (starting with 0x)
Hex encodeABI ()
Returns:

Hex

estimateGas()

estimate gas
Promise<number> estimateGas (options:)

Parameters:

options

options

Returns:

Promise<number>

send()

send
Promise<any> send (options:)

Parameters:

options

options

Returns:

Promise<any>

11.5. Package index

473

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1231
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1225
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1217

Incubed Documentation, Release 2.3

11.5.32 Type ZKAccountinfo

Source: index.d.ts

address string the address
committed the committed
depositing the depositing
id number the id

verified the verified

11.5.33 Type ZksyncAPI

Source: index.d.ts

API for zksync.

deposit()

deposits the declared amount into the rollup

Promise<DepositResponse> deposit (amount:number,
ERC20:boolean, account:string)

Parameters:

token:string, approveDepositAmountFor-

474

Chapter 11. API Reference WASM

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L801
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L802
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L803
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L810
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L815
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L816
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L874
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L935

Incubed Documentation, Release 2.3

amount number amount in wei to deposit
token string the token identifier e.g. ETH
boolean bool that is set to true if it is a

D itA tForERC20
approveliepositamountrot erc20 token that needs approval

account string address of the account that
wants to deposit (if left empty
it will be taken from current
signer)

Returns:

Promise<DepositResponse>

emergencyWithdraw()

executes an emergency withdrawel onchain
Promise<String> emergency Withdraw (token:string)

Parameters:

token string the token identifier e.g. ETH

Returns:

Promise<String>

getAccountinfo()

gets current account Infoa and balances.
Promise<ZKAccountInfo> getAccountInfo (account:string)

Parameters:

11.5. Package index 475

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L959
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L880

Incubed Documentation, Release 2.3

account string the address of the account . if
not specified, the first signer is
used.

Returns:

Promise<ZKAccountInfo>

getContractAddress()

gets the contract address of the zksync contract
Promise<String> getContractAddress ()
Returns:

Promise<String>

getEthoplinfo()

returns the state of receipt of the PriorityOperation
Promise<ETHOpInfoResp> getEthopInfo (opld:number)

Parameters:

opld number the id of the PriorityOperation

Returns:

Promise<ETHOpInfoResp>

getSyncKey()

returns private key used for signing zksync transactions
String getSyncKey ()
Returns:

String

getTokenPrice()

returns the current token price

Promise<Number> getTokenPrice (tokenSymbol:string)

476 Chapter 11. APl Reference WASM

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L885
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L907
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L926
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L913

Incubed Documentation, Release 2.3

Parameters:

tokenSymbol string

the address of the token

Returns:

Promise<Number>

getTokens()

returns an object containing Token objects with its short name as key

Promise<Tokens> getTokens ()
Returns:

Promise<Tokens>

getTxFee()

returns the transaction fee

Promise<Fee> getTxFee (txType:TxType , receipient:string, token:string)

Parameters:
txType TxType either Withdraw or Transfer
receipient string the address the transaction is
send to
token string the token identifier e.g. ETH
Returns:
Promise<Fee>

getTxInfo()

get transaction info
Promise<TxInfo> getTxInfo (txHash:string)

Parameters:

11.5. Package index

477

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L890
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L921
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L896

Incubed Documentation, Release 2.3

txHash

string

the has of the tx you want the
info about

Returns:

Promise<TxInfo>

setKey()

set the signer key based on the current pk

Promise<String> setKey ()

Returns:

Promise<String>

transfer()

transfers the specified amount to another address within the zksync rollup

Promise<String> transfer (to:string, amount:number, token:string, account:string)

Parameters:
to string address of the receipient
amount number amount to send in wei
token string the token indentifier e.g. ETH
account string address of the account that
wants to transfer (if left empty
it will be taken from current
signer)
Returns:
Promise<String>
478 Chapter 11. APl Reference WASM

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L901
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L944

Incubed Documentation, Release 2.3

withdraw()

withdraws the specified amount from the rollup to a specific address

Promise<String> withdraw (ethAddress:st ring, amount:number, token:st ring, account:st ring)

Parameters:
ethAddress string the receipient address
amount number amount to withdraw in wei
token string the token identifier e.g. ETH
account string address of the account that
wants to withdraw (if left
empty it will be taken from
current signer)
Returns:
Promise<String>

11.5.34 Type ABI

Source: index.d.ts

11.5. Package index 479

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L953
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L614

Incubed Documentation, Release 2.3

11.5.35 Type ABIField

anonymous boolean the anonymous (optional)
components ABIField [] the components (optional)
constant boolean the constant (optional)
inputs ABIField [] the inputs (optional)

internal Type

string

the internal Type (optional)

name

string

the name (optional)

outputs

ABIField []1 any []

the outputs (optional)

payable

boolean

the payable (optional)

stateMutability

'pure’

| 'view'

| 'nonpayable'
| 'payable'

| string

the stateMutability (optional)

type

'function'

| "constructor'
| 'event'

| "fallback'

| string

the type

Source: index.d.ts

480

Chapter 11. API Reference WASM

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L615
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L619
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L616
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L620
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L624
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L622
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L621
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L617
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L618
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L623
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L608

Incubed Documentation, Release 2.3

indexed boolean the indexed (optional)
internal Type string the internalType (optional)
name string the name

type string the type

11.5.36 Type Address

Source: index.d.ts

a 20 byte Address encoded as Hex (starting with 0x) a Hexcoded String (starting with 0x) = string

11.5.37 Type Block

Source: index.d.ts

11.5. Package index 481

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L610
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L609
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L611
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L612
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L590
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1059

Incubed Documentation, Release 2.3

author Address 20 Bytes - the address of the
author of the block (the
beneficiary to whom the mining
rewards were given)

difficulty Quantity integer of the difficulty for this
block

extraData Data the ‘extra data’ field of this
block

gasLimit Quantity the maximum gas allowed in
this block

gasUsed Quantity the total used gas by all
transactions in this block

hash Hash hash of the block. null when its
pending block

logsBloom Data 256 Bytes - the bloom filter for
the logs of the block. null when
its pending block

miner Address 20 Bytes - alias of ‘author’

nonce Data 8 bytes hash of the generated
proof-of-work. null when its
pending block. Missing in case
of PoA.

number Quantity The block number. null when
its pending block

parentHash Hash hash of the parent block

482 | receiptsRoot Data Chdptes 1the ARL Reference WASM

receipts trie of the block

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1079
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1083
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1087
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1091
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1093
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1063
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1071
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1081
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1067
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1061
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1065
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1077
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1101
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1069
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1089
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1075
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1095
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1085
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1097
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1073
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1099

Incubed Documentation, Release 2.3

11.5.38 Type Data

Source: index.d.ts

data encoded as Hex (starting with 0x) a Hexcoded String (starting with 0x) = string

11.5.39 Type Hash

Source: index.d.ts

a 32 byte Hash encoded as Hex (starting with 0x) a Hexcoded String (starting with 0x) = st ring

11.5.40 Type Log

Source: index.d.ts

11.5. Package index 483

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L594
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L586
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1103

Incubed Documentation, Release 2.3

address

Address

20 Bytes - address from which
this log originated.

blockHash

Hash

Hash, 32 Bytes - hash of the
block where this log was in.
null when its pending. null
when its pending log.

blockNumber

Quantity

the block number where this
log was in. null when its
pending. null when its pending
log.

data

Data

contains the non-indexed
arguments of the log.

logIndex

Quantity

integer of the log index position
in the block. null when its
pending log.

removed

boolean

true when the log was removed,
due to a chain reorganization.
false if its a valid log.

topics

Data []

- Array of 0 to 4 32 Bytes
DATA of indexed log
arguments. (In solidity: The
first topic is the hash of the
signature of the event (e.g. De-
posit(address,bytes32,uint256)),
except you declared the event
with the anonymous specifier.)

transactionHash

Hash

Hash, 32 Bytes - hash of the
transactions this log was
created from. null when its
pending log.

transactionIndex

Quantity

integer of the transactions index
position log was created from.

1o nendino loo-

484

uull VVh\./ll Sponamz10g

Chapter 11. API Reference V

VASM

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1117
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1113
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1115
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1119
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1107
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1105
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1121
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1111
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1109

Incubed Documentation, Release 2.3

11.5.41 Type LogFilter

Source: index.d.ts

address

Address

(optional) 20 Bytes - Contract
address or a list of addresses
from which logs should
originate.

fromBlock

BlockType

Quantity or Tag - (optional)
(default: latest) Integer block
number, or ‘latest’ for the last
mined block or ‘pending’,
‘earliest’ for not yet mined
transactions.

limit

Quantity

a(optional) The maximum
number of entries to retrieve
(latest first).

toBlock

BlockType

Quantity or Tag - (optional)
(default: latest) Integer block
number, or ‘latest’ for the last
mined block or ‘pending’,
‘earliest’ for not yet mined
transactions.

topics

stringlstring[][]

(optional) Array of 32 Bytes
Data topics. Topics are
order-dependent. It’s possible
to pass in null to match any
topic, or a subarray of multiple
topics of which one should be
matching.

11.5.42 Type Signature

Source: index.d.ts

Signature

11.5. Package index

485

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1124
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1130
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1126
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1134
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1128
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1132
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L599

Incubed Documentation, Release 2.3

message Data the message
messageHash Hash the messageHash

r Hash the r

S Hash the s

signature Data the signature (optional)
v Hex the v

11.5.43 Type Transaction

Source: index.d.ts

486

Chapter 11. API Reference WASM

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L600
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L601
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L603
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L604
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L605
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L602
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L626

Incubed Documentation, Release 2.3

chainld

any

optional chain id (optional)

data

string

4 byte hash of the method
signature followed by encoded
parameters. For details see
Ethereum Contract ABI.

from

Address

20 Bytes - The address the
transaction is send from.

gas

Quantity

Integer of the gas provided for
the transaction execution.
eth_call consumes zero gas, but
this parameter may be needed
by some executions.

gasPrice

Quantity

Integer of the gas price used for
each paid gas.

nonce

Quantity

nonce

to

Address

(optional when creating new
contract) 20 Bytes - The
address the transaction is
directed to.

value

Quantity

Integer of the value sent with
this transaction.

11.5.44 Type TransactionDetail

Source: index.d.ts

11.5. Package index

487

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L642
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L638
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L628
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L632
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L634
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L640
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L630
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L636
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1016

Incubed Documentation, Release 2.3

blockHash Hash 32 Bytes - hash of the block
where this transaction was in.
null when its pending.

blockNumber BlockType block number where this
transaction was in. null when
its pending.

chainld Quantity the chain id of the transaction,
if any.

condition any (optional) conditional
submission, Block number in
block or timestamp in time or
null. (parity-feature)

creates Address creates contract address

from Address 20 Bytes - address of the
sender.

gas Quantity gas provided by the sender.

gasPrice Quantity gas price provided by the
sender in Wei.

hash Hash 32 Bytes - hash of the
transaction.

input Data the data send along with the
transaction.

nonce Quantity the number of transactions
made by the sender prior to this
one.

488 | pk any Chédptel e pARItReferense WASM

for signing (optional)

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1022
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1024
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1050
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1054
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1052
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1028
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1036
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1034
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1018
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1038
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1020
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1056
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1048
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1044
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1046
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1042
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1030
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1026
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1040
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1032

Incubed Documentation, Release 2.3

11.5.45 Type TransactionReceipt

Source: index.d.ts

11.5. Package index 489

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L982

Incubed Documentation, Release 2.3

blockHash

Hash

32 Bytes - hash of the block
where this transaction was in.

blockNumber

BlockType

block number where this
transaction was in.

contractAddress

Address

20 Bytes - The contract address
created, if the transaction was a
contract creation, otherwise
null.

cumulativeGasUsed

Quantity

The total amount of gas used
when this transaction was
executed in the block.

events

event objects, which are only
added in the web3Contract
(optional)

from

Address

20 Bytes - The address of the
sender.

gasUsed

Quantity

The amount of gas used by this
specific transaction alone.

logs

Log (]

Array of log objects, which this
transaction generated.

logsBloom

Data

256 Bytes - A bloom filter of
logs/events generated by
contracts during transaction
execution. Used to efficiently
rule out transactions without
expected logs.

root

Hash

32 Bytes - Merkle root of the
state trie after the transaction
has been executed (optional
after Byzantium hard fork

490

GHBRARI 11. API Reference V)

VASM

status

Quantity

0x0 indicates transaction

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L984
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L986
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L988
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L990
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1010
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L992
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L996
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L998
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1000
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1002
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1004
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L994
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1006
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1008

Incubed Documentation, Release 2.3

11.5.46 Type TxRequest

Source: index.d.ts

args any [] the argument to pass to the
method (optional)

confirmations number number of block to wait before
confirming (optional)

data Data the data to send (optional)

from Address address of the account to use
(optional)

gas number the gas needed (optional)

gasPrice number the gasPrice used (optional)

method string the ABI of the method to be

used (optional)

nonce number the nonce (optional)

pk Hash raw private key in order to sign
(optional)

timeout number number of seconds to wait for

confirmations before giving up.
Default: 10 (optional)

to Address contract (optional)

value Quantity the value in wei (optional)

11.5. Package index 491

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1137
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1163
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1169
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1145
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1142
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1148
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1151
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1160
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1154
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1166
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1172
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1139
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1157

Incubed Documentation, Release 2.3

11.5.47 Type btc_config

Source: index.d.ts

bitcoin configuration.

maxDAP number max number of DAPs
(Difficulty Adjustment Periods)
allowed when accepting new
targets. (optional)

maxDiff number max increase (in percent) of the
difference between targets
when accepting new targets.

(optional)
11.5.48 Type zksync_config
Source: index.d.ts
zksync configuration.
account string the account to be used. if not

specified, the first signer will be
used. (optional)

provider_url string url of the zksync-server
(optional)

11.5.49 Type Hex

Source: index.d.ts

a Hexcoded String (starting with 0x) = string

11.5.50 Type BlockType

Source: index.d.ts

BlockNumber or predefined Block = number | 'latest' | 'earliest'| 'pending'

492 Chapter 11. APl Reference WASM

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1720
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1724
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L1729
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L966
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L975
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L970
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L578
https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L574

Incubed Documentation, Release 2.3

11.5.51 Type Quantity

Source: index.d.ts

a BigInteger encoded as hex. = number | Hex

11.5. Package index 493

https://github.com/slockit/in3-c/blob/master/wasm/src/index.d.ts#L582

Incubed Documentation, Release 2.3

494 Chapter 11. APl Reference WASM

cHAPTER 12

API Reference Python

12.1 Python Incubed client
This library is based on the C version of Incubed, which limits the compatibility for Cython, so please contribute by

compiling it to your own platform and sending us a pull-request!

Go to our readthedocs page for more.

12.1.1 Quickstart

Install with pip

pip install in3

In3 Client API

import in3

in3_client = in3.Client ()

Sends a request to the Incubed Network, that in turn will collect proofs from the_,
—Ethereum client,

attest and sign the response, then send back to the client, that will verify,,
—signatures and proofs.

block_number = in3_client.eth.block_number ()

print (block_number) # Mainnet's block number

in3_client # incubed network api

in3_client.eth # ethereum api

in3_client.account # ethereum account api
in3_client.contract # ethereum smart-contract api

495

http://github.com/slockit/in3-c
https://in3.readthedocs.io/

Incubed Documentation, Release 2.3

Developing & Tests

Install dev dependencies, IDEs should automatically recognize interpreter if done like this.

python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt

Compile local libraries and run tests. Make sure you have cmake installed.

./buidl_libs.sh

Index
Explanation of this source code architecture and how it is organized. For more on design-patterns see here or on Martin
Fowler’s Catalog of Patterns of Enterprise Application Architecture.
¢ in3.init.py: Library entry point, imports organization. Standard for any pipy package.
* in3.client: Incubed Client and APIL.
¢ in3.model: MVC Model classes for the Incubed client module domain.
¢ in3.transport: HTTP Transport function and error handling.
¢ in3.wallet: WiP - Wallet APIL.
* in3.exception: Custom exceptions.
¢ in3.eth: Ethereum module.
¢ in3.eth.api: Ethereum APIL.
¢ in3.eth.account: Ethereum accounts.
* in3.eth.contract: Ethereum smart-contracts API.
¢ in3.eth.model: MVC Model classes for the Ethereum client module domain. Manages serialization.
¢ in3.eth.factory: Ethereum Object Factory. Manages deserialization.
¢ in3.libin3: Module for the libin3 runtime. Libin3 is written in C and can be found here.
* in3.libin3.shared: Native shared libraries for multiple operating systems and platforms.
¢ in3.libin3.enum: Enumerations mapping C definitions to python.
¢ in3.libin3.lib_loader: Bindings using Ctypes.

* in3.libin3.runtime: Runtime object, bridging the remote procedure calls to the libin3 instances.

12.2 Examples

12.2.1 connect_to_ethereum

source : in3-c/python/examples/connect_to_ethereum.py

496 Chapter 12. API Reference Python

http://geekswithblogs.net/joycsharp/archive/2012/02/19/design-patterns-for-model.aspx
https://martinfowler.com/eaaCatalog/
https://martinfowler.com/eaaCatalog/
https://github.com/slockit/in3-c
https://github.com/slockit/in3-c/blob/master/python/examples/connect_to_ethereum.py

Incubed Documentation, Release 2.3

mwn

Connects to Ethereum and fetches attested information from each chain.

mwn

import in3

print ('\nEthereum Main Network')

client = in3.Client ()

latest_block = client.eth.block_number ()

gas_price = client.eth.gas_price()

print ('Latest BN: {/\nGas Price: {} Wei'.format (latest_block, gas_price))

print ('\nEthereum Kovan Test Network')

client = in3.Client ('kovan')

latest_block = client.eth.block_number ()

gas_price = client.eth.gas_price()

print ('Latest BN: {/\nGas Price: [} Wei'.format (latest_block, gas_price))

print ('\nEthereum Goerli Test Network')

client = in3.Client ('goerli')

latest_block = client.eth.block_number ()

gas_price = client.eth.gas_price()

print ('Latest BN: {/\nGas Price: [} Wei'.format (latest_block, gas_price))

Produces

Ethereum Main Network
Latest BN: 9801135

Gas Price: 2000000000 wWei

Ethereum Kovan Test Network
Latest BN: 17713464
Gas Price: 6000000000 Wwei

Ethereum Goerli Test Network
Latest BN: 2460853
Gas Price: 4610612736 Wei

mmwn

12.2.2 incubed network

source : in3-c/python/examples/incubed_network.py

mmn

Shows Incubed Network Nodes Stats

mmwn

import in3

print ('\nEthereum Goerli Test Network')

client = in3.Client ('goerli')

node_list = client.refresh_node_list ()

print ('\nIncubed Registry:')

print ("\ttotal servers:', node_list.totalServers)

print ("\tlast updated in block:', node_list.lastBlockNumber)
print ("\tregistry ID:', node_list.registryId)

print ("\tcontract address:', node_list.contract)

(continues on next page)

12.2. Examples

497

https://github.com/slockit/in3-c/blob/master/python/examples/incubed_network.py

Incubed Documentation, Release 2.3

(continued from previous page)

print ('\nNodes Registered:\n'")

for node in node_list.nodes:
print ("\turl:', node.url)
print ("\tdeposit:', node.deposit)
print ("\tweight:', node.weight)
print ("\tregistered in block:', node.registerTime)
print ("\n")

Produces
mrmn

Ethereum Goerli Test Network

Incubed Registry:
total servers: 7
last updated in block: 2320627

registry ID: 0x67c02e5e272f£9d6b4a33716614061dd298283£86351079e£903bf0d4410a44ea

contract address: 0x5f51e413581dd76759e9eed51e63d14c8d1379c8
Nodes Registered:

url: https://in3-v2.slock.it/goerli/nd-1
deposit: 10000000000000000

weight: 2000

registered in block: 1576227711

url: https://in3-v2.slock.it/goerli/nd-2
deposit: 10000000000000000

weight: 2000

registered in block: 1576227741

url: https://in3-v2.slock.it/goerli/nd-3
deposit: 10000000000000000

weight: 2000

registered in block: 1576227801

url: https://in3-v2.slock.it/goerli/nd—-4
deposit: 10000000000000000

weight: 2000

registered in block: 1576227831

url: https://in3-v2.slock.it/goerli/nd-5
deposit: 10000000000000000

weight: 2000

registered in block: 1576227876

url: https://tincubeth.komputing.org/
deposit: 10000000000000000

weight: 1

registered in block: 1578947320

url: https://h5145fkzz70c3gmb.onion/

(continues on next page)

498 Chapter 12. API Reference Python

Incubed Documentation, Release 2.3

(continued from previous page)

deposit: 10000000000000000
weight: 1
registered in block: 1578954071

mwn

12.2.3 resolve_eth_names

source : in3-c/python/examples/resolve_eth_names.py

mwn

Resolves ENS domains to Ethereum addresses
ENS is a smart-contract system that registers and resolves " .eth' domains.

mn

import in3

def _print():
print ('\nAddress for {} @ [}'".format (domain, chain, address))
print ('Owner for {} @ {}: .format (domain, chain, owner))

Find ENS for the desired chain or the address of your own ENS resolver. https://
—docs.ens.domains/ens—deployments
domain = 'depraz.eth'

print ('\nEthereum Name Service')

Instantiate In3 Client for Goerli

chain = 'goerli'

client = in3.Client (chain, cache_enabled=False)
address = client.ens_address (domain)

owner = client.ens_owner (domain)

_print()

Instantiate In3 Client for Mainnet

chain = 'mainnet'

client = in3.Client (chain, cache_enabled=False)
address = client.ens_address (domain)

owner = client.ens_owner (domain)

_print ()

Instantiate In3 Client for Kovan
chain = 'kovan'
client = in3.Client (chain, cache_enabled=True)
try:
address = client.ens_address (domain)
owner = client.ens_owner (domain)
_print ()
except in3.ClientException:
print ("\nENS is not available on Kovan.')

Produces

mwn

Ethereum Name Service

(continues on next page)

12.2. Examples 499

https://github.com/slockit/in3-c/blob/master/python/examples/resolve_eth_names.py

Incubed Documentation, Release 2.3

(continued from previous page)

Address for depraz.eth @ mainnet: 0x0b56ae81586d2728ceaf7c00a6020c5d63£02308
Owner for depraz.eth @ mainnet: 0x6fa33809667a99a805b610c49ee2042863b1bb83

ENS is not available on Kovan.
mmn

12.2.4 send_transaction

source : in3-c/python/examples/send_transaction.py

mwn

Sends Ethereum transactions using Incubed.

Incubed send Transaction does all necessary automation to make sending a transaction,
—a breeze.

Works with included ‘data’ field for smart-contract calls.

mn

import json

import in3

import time

On Metamask, be sure to be connected to the correct chain, click on the "... ' icon,
—on the right corner of
your Account name, select ‘Account Details'. There, click 'Export Private Key',

—copy the value to use as secret.

By reading the terminal input, this value will stay in memory only. Don't forget to,
—cls or clear terminal after ;)

sender_secret = input ("Sender secret: ")

receiver = input ("Receiver address: ")

1000000000000000000 == 1 ETH

1000000000 == 1 Gwel Check https://etherscan.io/gasTracker.
value_in_wei = 1463926659

None for Eth mainnet

chain = 'goerli'

client = in3.Client (chain if chain else 'mainnet')

A transaction is only final if a certain number of blocks are mined on top of it.
This number varies with the chain's consensus algorithm. Time can be calculated,
—over using:

wait_time = blocks_for_consensus #* avg_block_time_in_secs

For mainnet and paying low gas, it might take 10 minutes.
confirmation_wait_time_in_seconds = 30

etherscan_link_mask = 'https://{}{}etherscan.io/tx/{}"'

print ('-= Ethereum Transaction using Incubed =- \n')
try:
sender = client.eth.account.recover (sender_secret)
tx = in3.eth.NewTransaction (to=receiver, value=value_in_wei)
print ('[.] Sending {} Wei from [} to {}. Please wait.\n'.format (tx.value, sender.
—address, tx.to))
tx_hash = client.eth.account.send_transaction (sender, tx)
print ('[.] Transaction accepted with hash {}.'.format (tx_hash))
add_dot_if_chain = '.' if chain else ''
print (etherscan_link _mask.format (chain, add_dot_if_chain, tx_hash))
while True:

(continues on next page)

500 Chapter 12. API Reference Python

https://github.com/slockit/in3-c/blob/master/python/examples/send_transaction.py

Incubed Documentation, Release 2.3

(continued from previous page)

try:
print ('"\n[.] Waiting {} seconds for confirmation.\n'.format (confirmation_
—walt_time_in_seconds))
time.sleep(confirmation_wait_time_in_seconds)

receipt: in3.eth.TransactionReceipt = client.eth.transaction_receipt (tx_
<—>haSh)

print ('[.] Transaction was sent successfully!\n')

print (json.dumps (receipt.to_dict (), indent=4, sort_keys=True))

print ('[.] Mined on block {} used {} GWei.'.format (receipt.blockNumber,
—receipt.gasUsed))

break

except Exception:
print ('[!] Transaction not mined yet, check https://etherscan.io/

—gasTracker.'")
print ('[!] Just wait some minutes longer than the average for the price_

—paid!")
except in3.PrivateKeyNotFoundException as e:

print (str(e))
except in3.ClientException as e:

print ('Client returned error: ', str(e))

print ('Please try again.')

Response
mmn

Ethereum Transaction using Incubed

Sending 1463926659 Wei from 0x0b56Ae81586D2728Ceaf7C00A6020C5D63£02308 to,,
—0x6fa33809667a99a805b610c49ee2042863b1bb83.

Transaction accepted with hash,,
—Oxbeebda39e31e42d2a26476830fdcdc2d21e9df090af203e7601d76a43074d8d3.
https://goerli.etherscan.io/tx/
—0xbeebdal39e31e42d2a26476830fdcdc2d21e9df090af203e7601d76a43074d8d3

Waiting 25 seconds for confirmation.

Transaction was sent successfully!
{
"From": "0x0b56Ae81586D2728Ceaf7C00A6020C5D63f02308",
"blockHash": "0x9693714c9d7dbd31f36c041fbd262532e68301701bldalad4ee8fc04e0386d868b",
"blockNumber": 2615346,
"cumulativeGasUsed": 21000,
"gasUsed": 21000,
"logsBloom":
= "0x00

"
",

"status": 1,
"to": "0x6FA33809667A99A805b610C49EE2042863b1bb83",
"transactionHash":

— "Oxbeebda39e31e42d2a26476830fdcdc2d21e9df090arf203e7601d76a43074d8d3",
"transactionIndex": 0

Mined on block 2615346 used 21000 GwWei.

mown

12.2. Examples 501

0000000000001

Incubed Documentation, Release 2.3

12.2.5 smart_contract

source : in3-c/python/examples/smart_contract.py

mwn

Manually calling ENS smart-contract

!'[UML Sequence Diagram of how Ethereum Name Service ENS resolves a name.] (https://1h5.
—googleusercontent.com/_

—OPPzaxTxKggx9HuxloeWtK8ggEfIIBKRCEA6BKMwZdzAfUpIY6cz 7NKSCFmiuw7TwknbhFNVRCJIsswHLgkxUE
—HI9d2RZdAG28kgipT64JyPZUP——bAizozaDcx(Cg34)

mwn

import in3

client = in3.Client ('goerli')

domain_name = client.ens_namehash ('depraz.eth')
ens_registry_addr = '0x00000000000c2e074ec69a0dfb2997babc7d2ele’
ens_resolver_abi = 'resolver (bytes32) :address’

Find resolver contract for ens name

resolver_tx = {
"to": ens_registry_addr,
"data": client.eth.contract.encode (ens_resolver_abi, domain_name)
}
tx = in3.eth.NewTransaction (x*resolver_tx)
encoded_resolver_addr = client.eth.contract.call (tx)
resolver_address = client.eth.contract.decode (ens_resolver_abi, encoded_resolver_addr)

Resolve name
ens_addr_abi = 'addr (bytes32) :address'
name_tx = {
"to": resolver_address,
"data": client.eth.contract.encode (ens_addr_abi, domain_name)
}
encoded_domain_address = client.eth.contract.call(in3.eth.NewTransaction (x+name_tx))
domain_address = client.eth.contract.decode (ens_addr_abi, encoded_domain_address)

print ('"END domain:\n{/\nResolved by:\n{/\nTo address:\n{}'.format (domain_name,
—resolver_address, domain_address))

Produces

mmn

END domain:
0x4a17491df266270a8801cee362535e520a5d95896a719e4a7d869fb22a93162e
Resolved by:

0x4b1488b7a6b320d2d721406204abc3eecaa9ad329

To address:

0x0bb56ae81586d2728ceaf7c00a6020c5d63f02308

mwn

V5KAdRzpeNbyg$§.

12.2.6 Running the examples

To run an example, you need to install in3 first:

pip install in3

This will install the library system-wide. Please consider using virtualenv or pipenv for a project-wide install.

502 Chapter 12. API Reference Python

https://github.com/slockit/in3-c/blob/master/python/examples/smart_contract.py

Incubed Documentation, Release 2.3

Then copy one of the examples and paste into a file, i.e. example.py:

MacOS

’pbpaste > example.py ‘

Execute the example with python:

’python example.py ‘

12.3 Incubed Modules

12.3.1 Client

Client (self,

chain: str = 'mainnet',
in3_config: ClientConfig = None,
cache_enabled: bool = True,

transport=<function https_transport at 0x1016b7£80>)

Incubed network client. Connect to the blockchain via a list of bootnodes, then gets the latest list of nodes in the
network and ask a certain number of the to sign the block header of given list, putting their deposit at stake. Once with
the latest list at hand, the client can request any other on-chain information using the same scheme.

Arguments:
e chain str - Ethereum chain to connect to. Defaults to mainnet. Options: ‘mainnet’, ‘kovan’, ‘goerli’, ‘ewc’.
* in3_config ClientConfig or str - (optional) Configuration for the client. If not provided, default is loaded.

e cache_enabled bool - False will disable local storage caching.

* transport function - Transport function for custom request routing. Defaults to https.

refresh_node_list

Client.refresh_node_list ()

Gets the list of Incubed nodes registered in the selected chain registry contract.
Returns:

* node_list NodelList - List of registered in3 nodes and metadata.

config

Client.config()

Client configuration dictionary.
Returns:

* configdict - Client configuration keys and values.

12.3. Incubed Modules 503

Incubed Documentation, Release 2.3

ens_namehash

Client.ens_namehash (domain_name: str)

Name format based on EIP-137
Arguments:

* domain_name - ENS supported domain. mydomain.ens, mydomain.xyz, etc
Returns:

* node str - Formatted string referred as node in ENS documentation

ens_address

Client.ens_address (domain_name: str, registry: str = None)

Resolves ENS domain name to what account that domain points to.
Arguments:

* domain_name - ENS supported domain. mydomain.ens, mydomain.xyz, etc

* registry - ENS registry contract address. i.e. 0x00000000000C2E074eC69A0dFb2997BA6C7d2¢ele
Returns:

* address str - Ethereum address corresponding to what account that domain points to.

ens_owner

Client.ens_owner (domain_name: str, registry: str = None)

Resolves ENS domain name to Ethereum address of domain owner.
Arguments:

e domain_name - ENS supported domain. i.e mydomain.eth

* registry - ENS registry contract address. i.e. 0x00000000000C2E074eC69A0dFb2997BA6C7d2¢ele
Returns:

* owner_address str - Ethereum address corresponding to domain owner.

ens_resolver

Client.ens_resolver (domain_name: str, registry: str = None)

Resolves ENS domain name to Smart-contract address of the resolver registered for that domain.
Arguments:

* domain_name - ENS supported domain. i.e mydomain.eth

e registry - ENS registry contract address. i.e. 0x00000000000C2E074eC69A0dFb2997BA6CT7d2ele
Returns:

* resolver_contract_address str - Smart-contract address of the resolver registered for that domain.

504 Chapter 12. API Reference Python

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-137.md#name-syntax

Incubed Documentation, Release 2.3

12.3.2 ClientConfig

ClientConfig(self,
chain_finality_threshold: int = None,
account_secret: str = None,
latest_block_stall: int = None,
node_signatures: int = None,
node_signature_consensus: int = None,
node_min_deposit: int = None,
node_list_auto_update: bool = None,
node_limit: int = None,
request_timeout: int = None,
request_retries: int = None,
response_proof_level: str = None,
response_includes_code: bool = None,
response_keep_proof: bool = None,
transport_binary_format: bool = None,
transport_ignore_tls: bool = None,
boot_weights: bool = None,
in3_registry: dict = None)

Determines the behavior of the in3 client, which chain to connect to and how to manage information security policies.

Considering integrity is guaranteed and confidentiality is not available on public blockchains, these settings will pro-
vide a balance between availability, and financial stake in case of repudiation.

The newer the block is, higher are the chances it gets repudiated by a fork in the chain. In3 nodes will decide
individually to sign on repudiable information, reducing the availability. If the application needs the very latest block,
consider using a calculated value in node_signature_consensus and set node_signatures to zero. This
setting is as secure as a light-client.

The older the block gets, the highest is its availability because of the close-to-zero repudiation risk, but blocks older
than circa one year are stored in Archive Nodes, expensive computers, so, despite of the low risk, there are not
many nodes available with such information, and they must search for the requested block in its database, lowering
the availability as well. If the application needs access to old blocks, consider setting request_timeout and
request_retries to accomodate the time the archive nodes take to fetch the inforamtion.

The verification policy enforces an extra step of security, adding a financial stake in case of repudiation or false/broken
proof. For high security application, consider setting a calculated value in node_min_deposit and request as much
signatures as necessary in node_signatures. Setting chain_finality_threshold high will guarantee
non-repudiability.

All args are Optional. Defaults connect to Ethereum main network with regular security levels.
Arguments:

e chain_finality_threshold int - Behavior depends on the chain consensus algorithm: POA - percent
of signers needed in order reach finality (% of the validators) i.e.: 60 %. POW - mined blocks on top of the
requested, i.e. 8 blocks. Defaults are defined in enum.Chain.

e latest_block_stall int - Distance considered safe, consensus wise, from the very latest block. Higher
values exponentially increases state finality, and therefore data security, as well guaranteeded responses from
in3 nodes. example: 10 - will ask for the state from (latestBlock-10).

* account_secret str - Account SK to sign all in3 requests. (Experimental use set_account_sk) exam-
ple: 0x387a8233c96e1fc0ad5¢284353276177af2186e7afa85296f106336e376669f7

* node_signatures inf - Node signatures attesting the response to your request. Will send a separate request
for each. example: 3 nodes will have to sign the response.

12.3. Incubed Modules 505

Incubed Documentation, Release 2.3

node_signature_consensus int - Useful when node_signatures <= 1. The client will check for consensus
in responses. example: 10 - will ask for 10 different nodes and compare results looking for a consensus in the
responses.

node_min_deposit int - Only nodes owning at least this amount will be chosen to sign responses to your
requests. i.e. 1000000000000000000 Wei

node_list_auto_update bool - If true the nodelist will be automatically updated. False may compromise
data security.

node_limit int - Limit nodes stored in the client. example: 150 nodes
request_timeout int - Milliseconds before a request times out. example: 100000 ms
request_retries int - Maximum times the client will retry to contact a certain node. example: 10 retries

response_proof_level str- ‘none’l’standard’|’full’ Full gets the whole block Patricia-Merkle-Tree, Stan-
dard only verifies the specific tree branch concerning the request, None only verifies the root hashes, like a
light-client does.

response_includes_code bool - If true, every request with the address field will include the data, if
existent, that is stored in that wallet/smart-contract. If false, only the code digest is included.

response_keep_proof bool - If true, proof data will be kept in every rpc response. False will remove this
data after using it to verify the responses. Useful for debugging and manually verifying the proofs.

transport_binary_format - If true, the client will communicate with the server using a binary payload
instead of json.

transport_ignore_t1ls - The client usually verify https tls certificates. To communicate over insecure
http, turn this on.

boot_weights bool - if true, the first request (updating the nodelist) will also fetch the current health status
and use it for blacklisting unhealthy nodes. This is used only if no nodelist is availabkle from cache.

in3_registry dict - In3 Registry Smart Contract configuration data

12.3.3 In3Node

In3Node (self, url: str, address: Account, index: int, deposit: int,

props: int, timeout: int, registerTime: int, weight: int)

Registered remote verifier that attest, by signing the block hash, that the requested block and transaction were indeed
mined are in the correct chain fork.

Arguments:

url str - Endpoint to post to example: https://in3.slock.it
index int - Index within the contract example: 13

address in3.Account - Address of the node, which is the public address it is signing with. example:
0x6C1a01C2aB554930A937B0a2E8105fB47946¢679

deposit int - Deposit of the node in wei example: 12350000
props int - Properties of the node. example: 3

timeout int - Time (in seconds) until an owner is able to receive his deposit back after he unregisters himself
example: 3600

registerTime inf - When the node was registered in (unixtime?)

506

Chapter 12. API Reference Python

Incubed Documentation, Release 2.3

* weight int - Score based on qualitative metadata to base which nodes to ask signatures from.

12.3.4 NodelList

NodelList (self, nodes: [<class 'in3.model.In3Node'>], contract: Account,
registryId: str, lastBlockNumber: int, totalServers: int)

List of incubed nodes and its metadata, in3 registry contract from which the list was taken, network/registry id, and
last block number in the selected chain.

Arguments:
¢ nodes [In3Node] - list of incubed nodes
* contract Account - incubed registry contract from which the list was taken
e registryId str-uuid of this incubed network. one chain could contain more than one incubed networks.
* lastBlockNumber inf - last block signed by the network

* totalServers int - Total servers number (for integrity?)

12.3.5 EthAccountApi

EthAccountApi (self, runtime: In3Runtime, factory: EthObjectFactory)

Manages accounts and smart-contracts

create

EthAccountApi.create (grng=False)

Creates a new Ethereum account and saves it in the wallet.
Arguments:

* grng bool - True uses a Quantum Random Number Generator api for generating the private key.
Returns:

e account Account - Newly created Ethereum account.

recover

EthAccountApi.recover (secret: str)

Recovers an account from a secret.
Arguments:

e secret str - Account private key in hexadecimal string
Returns:

e account Account - Recovered Ethereum account.

12.3. Incubed Modules 507

Incubed Documentation, Release 2.3

parse_mnemonics

EthAccountApi.parse_mnemonics (mnemonics: str)

Recovers an account secret from mnemonics phrase
Arguments:

* mnemonics str - BIP39 mnemonics phrase.
Returns:

e secret str - Account secret. Use recover_account to create a new account with this secret.

sign

EthAccountApi.sign(private_key: str, message: str)

Use ECDSA to sign a message.
Arguments:

* private_key str - Must be either an address(20 byte) or an raw private key (32 byte)”’}}’

* message str - Data to be hashed and signed. Dont input hashed data unless you know what you are doing.
Returns:

* signed_message str - ECDSA calculated 1, s, and parity v, concatenated. v =27 + (r % 2)

balance

EthAccountApi.balance (address: str, at_block: int = 'latest')

Returns the balance of the account of given address.
Arguments:

* address str - address to check for balance

* at_block int or str - block number IN3BlockNumber or EnumBlockStatus
Returns:

* balance int - integer of the current balance in wei.

send_transaction

EthAccountApi.send_transaction (sender: Account,
transaction: NewTransaction)

Signs and sends the assigned transaction. Requires account . secret value set. Transactions change the state of an
account, just the balance, or additionally, the storage and the code. Every transaction has a cost, gas, paid in Wei. The
transaction gas is calculated over estimated gas times the gas cost, plus an additional miner fee, if the sender wants to
be sure that the transaction will be mined in the latest block.

Arguments:

508 Chapter 12. API Reference Python

Incubed Documentation, Release 2.3

* sender Account - Sender Ethereum account. Senders generally pay the gas costs, so they must have enough
balance to pay gas + amount sent, if any.

* transaction NewTransaction - All information needed to perform a transaction. Minimum is to and value.
Client will add the other required fields, gas and chaindId.

Returns:

* tx_hash hex - Transaction hash, used to get the receipt and check if the transaction was mined.

send_raw_transaction

EthAccountApi.send_raw_transaction(signed_transaction: str)

Sends a signed and encoded transaction.

Arguments:

* signed_transaction - Signed keccak hash of the serialized transaction Client will add the other required
fields, gas and chaindId.

Returns:

e tx_hash hex - Transaction hash, used to get the receipt and check if the transaction was mined.

estimate_gas

EthAccountApi.estimate_gas (transaction: NewTransaction)

Gas estimation for transaction. Used to fill transaction.gas field. Check RawTransaction docs for more on gas.

Arguments:

e transaction - Unsent transaction to be estimated. Important that the fields data or/and value are filled in.

Returns:

* gas int - Calculated gas in Wei.

transaction_count

EthAccountApi.transaction_count (address: str, at_block: int = 'latest')

Number of transactions mined from this address. Used to set transaction nonce. Nonce is a value that will make a
transaction fail in case it is different from (transaction count + 1). It exists to mitigate replay attacks.

Arguments:
¢ address str - Ethereum account address
e at_block int - Block number

Returns:

e tx_count int - Number of transactions mined from this address.

12.3. Incubed Modules 509

Incubed Documentation, Release 2.3

checksum_address

EthAccountApi.checksum_address (address: str, add_chain_id: bool = True)

Will convert an upper or lowercase Ethereum address to a checksum address, that uses case to encode values. See
EIP55.

Arguments:

* address - Ethereum address string or object.

* add_chain_id bool - Will append the chain id of the address, for multi-chain support, canonical for Eth.
Returns:

e checksum_address - EIP-55 compliant, mixed-case address object.

12.3.6 EthContractApi

EthContractApi (self, runtime: In3Runtime, factory: EthObjectFactory)

Manages smart-contract data and transactions

call

EthContractApi.call (transaction: NewTransaction,
block_number: int = '"latest')

Calls a smart-contract method. Will be executed locally by Incubed’s EVM or signed and sent over to save the
state changes. Check https://ethereum.stackexchange.com/questions/3514/how-to-call-a-contract-method-using-the-
eth-call-json-rpc-api for more.

Arguments:
transaction (NewTransaction):

* block_number int or str - Desired block number integer or ‘latest’, ‘earliest’, ‘pending’.
Returns:

* method_returned_value - A hexadecimal. For decoding use in3.abi_decode.

storage_at

EthContractApi.storage_at (address: str,
position: int = O,
at_block: int = 'latest')

Stored value in designed position at a given address. Storage can be used to store a smart contract state, constructor or
just any data. Each contract consists of a EVM bytecode handling the execution and a storage to save the state of the
contract. The storage is essentially a key/value store. Use get_code to get the smart-contract code.

Arguments:
e address str - Ethereum account address

* position int - Position index, 0x0 up to 0x64

510 Chapter 12. API Reference Python

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-55

Incubed Documentation, Release 2.3

e at_Dblock int or str - Block number

Returns:

* storage_at str- Stored value in designed position. Use decode("hex’) to see ascii format of the hex data.

code

EthContractApi.code (address: str, at_block: int = 'latest')

Smart-Contract bytecode in hexadecimal. If the account is a simple wallet the function will return ‘0x’.
Arguments:

* address str - Ethereum account address

e at_Dblock int or str - Block number
Returns:

* bytecode str - Smart-Contract bytecode in hexadecimal.

encode

EthContractApi.encode (fn_signature: str, =fn_args)

Smart-contract ABI encoder. Used to serialize a rpc to the EVM. Based on the Solidity specification. Note: Parameters
refers to the list of variables in a method declaration. Arguments are the actual values that are passed in when the
method is invoked. When you invoke a method, the arguments used must match the declaration’s parameters in type
and order.

Arguments:

e fn_signature str - Function name, with parameters. i.e. getBalance (uint256) :uint256, can con-
tain the return types but will be ignored.

e fn_args tuple - Function parameters, in the same order as in passed on to method_name.

Returns:
e encoded_fn_call str-i.e. “0xf8b2cb4f0000000000000000000000001234567890123456789012345678901234567890

decode

EthContractApi.decode (fn_signature: str, encoded_value: str)

Smart-contract ABI decoder. Used to parse rpc responses from the EVM. Based on the Solidity specification.

Arguments:

* fn_signature - Function signature. e.g. (address, string,uint256) or
getBalance (address) :uint256. In case of the latter, the function signature will be ignored and

only the return types will be parsed.

e encoded_value - Abi encoded values. Usually the string returned from a rpc to the EVM.

Returns:
¢ decoded_return_values tuple - “0x1234567890123456789012345678901234567890”, “0x05”

12.3. Incubed Modules 511

https://solidity.readthedocs.io/en/v0.5.3/abi-spec.html
https://solidity.readthedocs.io/en/v0.5.3/abi-spec.html

Incubed Documentation, Release 2.3

12.3.7 EthereumApi

EthereumApi (self, runtime: In3Runtime)

Module based on Ethereum’s api and web3.js

keccak256

EthereumApi.keccak256 (message: str)

Keccak-256 digest of the given data. Compatible with Ethereum but not with SHA3-256.
Arguments:

* message str - Message to be hashed.
Returns:

* digest str - The message digest.

gas_price

EthereumApi.gas_price()

The current gas price in Wei (1 ETH equals 1000000000000000000 Wei).
Returns:

* price int - minimum gas value for the transaction to be mined

block_number

EthereumApi.block_number ()

Returns the number of the most recent block the in3 network can collect signatures to verify. Can be changed by
Client.Config.replaceLatestBlock. If you need the very latest block, change Client.Config.signatureCount to zero.

Returns:

block_number (int) : Number of the most recent block

block_by_ hash

EthereumApi.block_by_hash (block_hash: str, get_full block: bool = False)

Blocks can be identified by root hash of the block merkle tree (this), or sequential number in which it was mined
(get_block_by_number).

Arguments:

* block_hash str - Desired block hash

e get_full_block bool - If true, returns the full transaction objects, otherwise only its hashes.
Returns:

e block Block - Desired block, if exists.

512 Chapter 12. API Reference Python

Incubed Documentation, Release 2.3

block_by number

EthereumApi.block_by_number (block_number: [<class 'int'>],
get_full _block: bool = False)

Blocks can be identified by sequential number in which it was mined, or root hash of the block merkle tree (this)
(get_block_by_hash).

Arguments:

* block_number int or str - Desired block number integer or ‘latest’, ‘earliest’, ‘pending’.

* get_full block bool - If true, returns the full transaction objects, otherwise only its hashes.
Returns:

e block Block - Desired block, if exists.

transaction_by hash

EthereumApi.transaction_by_hash (tx_hash: str)

Transactions can be identified by root hash of the transaction merkle tree (this) or by its position in the block transac-
tions merkle tree. Every transaction hash is unique for the whole chain. Collision could in theory happen, chances are
67148E-63%.

Arguments:
e tx_hash - Transaction hash.
Returns:

e transaction - Desired transaction, if exists.

transaction_receipt

EthereumApi.transaction_receipt (tx_hash: str)

After a transaction is received the by the client, it returns the transaction hash. With it, it is possible to gather the
receipt, once a miner has mined and it is part of an acknowledged block. Because how it is possible, in distributed
systems, that data is asymmetric in different parts of the system, the transaction is only “final” once a certain number
of blocks was mined after it, and still it can be possible that the transaction is discarded after some time. But, in general
terms, it is accepted that after 6 to 8 blocks from latest, that it is very likely that the transaction will stay in the chain.

Arguments:
¢ tx_hash - Transaction hash.
Returns:

* tx_receipt - The mined Transaction data including event logs.

12.3.8 Ethereum Objects

12.3. Incubed Modules 513

Incubed Documentation, Release 2.3

DataTransferObject

DataTransferObject ()

Maps marshalling objects transferred to, and from a remote facade, in this case, libin3 rpc api. For more on design-
patterns see Martin Fowler’s Catalog of Patterns of Enterprise Application Architecture.

Transaction

Transaction(self, From: str, to: str, gas: int, gasPrice: int, hash: str,
nonce: int, transactionIndex: int, blockHash: str,

value: int, input: str, publicKey: str, standardv: int,

raw: str, creates: str, chainId: int, r: int, s: int,

v: int)

Arguments:
e From hex str - Address of the sender account.
e to hex str - Address of the receiver account. Left undefined for a contract creation transaction.

* gas int - Gas for the transaction miners and execution in wei. Will get multiplied by gasPrice. Use
in3.eth.account.estimate_gas to get a calculated value. Set too low and the transaction will run out of gas.

e value int - Value transferred in wei. The endowment for a contract creation transaction.

* data hex str - Either a ABI byte string containing the data of the function call on a contract, or in the case of a
contract-creation transaction the initialisation code.

* gasPrice int - Price of gas in wei, defaults to in3.eth.gasPrice. Also know as tx fee price. Set your
gas price too low and your transaction may get stuck. Set too high on your own loss. gasLimit (int); Maximum
gas paid for this transaction. Set by the client using this rationale if left empty: gasLimit = G(transaction) +
G(txdatanonzero) x dataByteLength. Minimum is 21000.

* nonce int - Number of transactions mined from this address. Nonce is a value that will make a transaction fail in
case it is different from (transaction count + 1). It exists to mitigate replay attacks. This allows to overwrite your
own pending transactions by sending a new one with the same nonce. Use in3.eth.account.get_transaction_count
to get the latest value.

* hash hex str - Keccak of the transaction bytes, not part of the transaction. Also known as receipt, because this
field is filled after the transaction is sent, by eth_sendTransaction

* blockHash hex str - Block hash that this transaction was mined in. null when its pending.
* blockHash int - Block number that this transaction was mined in. null when its pending.
* transactionIndex int - Integer of the transactions index position in the block. null when its pending.

* signature hex str - ECDSA of transaction.data, calculated 1, s and v concatenated. V is parity set by v =27
+(r % 2).

NewTransaction

NewTransaction (self,
From: str = None,
to: str = None,
nonce: int = None,
value: int = None,

(continues on next page)

514 Chapter 12. API Reference Python

https://martinfowler.com/eaaCatalog/

Incubed Documentation, Release 2.3

(continued from previous page)

data: str = None,
gasPrice: int = None,
gasLimit: int = None,
hash: str = None,
signature: str = None)

Unsent transaction. Use to send a new transaction.
Arguments:
* From hex str - Address of the sender account.
¢ to hex str - Address of the receiver account. Left undefined for a contract creation transaction.
* value int - (optional) Value transferred in wei. The endowment for a contract creation transaction.

* data hex str - (optional) Either a ABI byte string containing the data of the function call on a contract, or in
the case of a contract-creation transaction the initialisation code.

* gasPrice int - (optional) Price of gas in wei, defaults to in3.eth.gasPrice. Also know as tx fee price.
Set your gas price too low and your transaction may get stuck. Set too high on your own loss. gasLimit (int);
(optional) Maximum gas paid for this transaction. Set by the client using this rationale if left empty: gasLimit =
G(transaction) + G(txdatanonzero) x dataByteLength. Minimum is 21000.

* nonce int - (optional) Number of transactions mined from this address. Nonce is a value that will make
a transaction fail in case it is different from (transaction count + 1). It exists to mitigate replay attacks.
This allows to overwrite your own pending transactions by sending a new one with the same nonce. Use
in3.eth.account.get_transaction_count to get the latest value.

* hash hex str - (optional) Keccak of the transaction bytes, not part of the transaction. Also known as receipt,
because this field is filled after the transaction is sent.

* signature hex str - (optional) ECDSA of transaction, r, s and v concatenated. V is parity set by v=27 + (r
% 2).

Filter

Filter(self, fromBlock: int, toBlock: int, address: str, topics: list,
blockhash: str)

Filters are event catchers running on the Ethereum Client. Incubed has a client-side implementation. An event will
be stored in case it is within to and from blocks, or in the block of blockhash, contains a transaction to the designed
address, and has a word listed on topics.

Log

Log (self, address: <built-in function hex>,

blockHash: <built-in function hex>, blockNumber: int,

data: <built-in function hex>, logIndex: int, removed: bool,
topics: [<built-in function hex>],

transactionHash: <built-in function hex>, transactionIndex: int,
transactionLogIndex: int, Type: str)

Transaction Log for events and data returned from smart-contract method calls.

12.3. Incubed Modules 515

Incubed Documentation, Release 2.3

TransactionReceipt

TransactionReceipt (self,

blockHash: <built-in function hex>,
blockNumber: int,

cumulativeGasUsed: int,

From: str,

gasUsed: int,

logsBloom: <built-in function hex>,
status: int,

transactionHash: <built-in function hex>,
transactionIndex: int,

logs: [<class 'in3.eth.model.Log'>] = None,
to: str = None,
contractAddress: str = None)

Receipt from a mined transaction.
Arguments:
blockHash: blockNumber:
e cumulativeGasUsed - total amount of gas used by block From:
* gasUsed - amount of gas used by this specific transaction logs: logsBloom:
e status - 1 if transaction succeeded, O otherwise. transactionHash: transactionIndex:

e to - Account to which this transaction was sent. If the transaction was a contract creation this value is set to
None.

e contractAddress - Contract Account address created, f the transaction was a contract creation, or None
otherwise.

Account

Account (self,
address: str,
chain_id: int,
secret: int = None,
domain: str = None)

An Ethereum account.

Arguments:
* address - Account address. Derived from public key.
e chain_id - ID of the chain the account is used in.
* secret - Account private key. A 256 bit number.

* domain - ENS Domain name. ie. niceguy.eth

12.4 Library Runtime

Shared Library Runtime module

516 Chapter 12. API Reference Python

Incubed Documentation, Release 2.3

Loads 1ibin3 according to host hardware architecture and OS. Maps symbols, methods and types from the library.

Encapsulates low-level rpc calls into a comprehensive runtime.

12.4.1 In3Runtime

In3Runtime (self, chain_id: int, cache_enabled: bool, transport_fn)

Instantiate libin3 and frees it when garbage collected.

Arguments:
e chain_id int - Chain-id based on EIP-155. Default is Ox1 for Ethereum mainNet.
* cache_enabled bool - False will disable local storage cache.

* transport_fn - Transport function to handle the HTTP Incubed Network requests.

12.4.2 in3.libin3.rpc_api

Load libin3 shared library for the current system, map function ABI, sets in3 network transport functions.

libin3_new

libin3_new(chain_id: int, cache_enabled: bool,
transport_fn: <function CFUNCTYPE at 0x1019e3320>)

Instantiate new In3 Client instance.
Arguments:

e chain_id int - Chain id as integer

* cache_enabled bool - False will disable local storage cache.

* transport_fn - Transport function for the in3 network requests

* storage_fn - Cache Storage function for node list and requests caching
Returns:

* instance int - Memory address of the client instance, return value from libin3_new

libin3_free

libin3_free(instance: int)

Free In3 Client objects from memory.
Arguments:

* instance int - Memory address of the client instance, return value from libin3_new

12.4. Library Runtime

517

Incubed Documentation, Release 2.3

libin3_call

libin3_call (instance: int, fn_name: bytes, fn_args: bytes)

Make Remote Procedure Call to an arbitrary method of a libin3 instance

Arguments:

e instance int - Memory address of the client instance, return value from libin3_new

* fn_name bytes - Name of function that will be called in the client rpc.

e fn_args - (bytes) Serialized list of arguments, matching the parameters order of this function. i.e. ['0x123’]

Returns:

e result int - Function execution status.

libin3_set_pk

libin3_set_pk(instance: int, private_key: bytes)

Register the signer module in the In3 Client instance, with selected private key loaded in memory.

Arguments:

* instance int - Memory address of the client instance, return value from libin3_new

* private_key - 256 bit number.

libin3_in3_req_add_response

1ibin3_in3_req _add_response (xargs)

Transport function that registers a response to a request.
Arguments:

*args:

libin3_new_bytes _t

1libin3_new_bytes_t (value: bytes, length: int)

C Bytes struct
Arguments:
* length - byte array length
* value - byte array
Returns:

e ptr_addr - address of the instance of this struct

518 Chapter 12

. API Reference Python

cHAPTER 13

API Reference Java

13.1 Installing

The Incubed Java client uses JNI in order to call native functions. But all the native-libraries are bundled inside the
jar-file. This jar file ha no dependencies and can even be used standalone:

like

java —-cp in3.jar in3.IN3 eth_getBlockByNumber latest false

13.1.1 Downloading

The jar file can be downloaded from the latest release. here.

Alternatively, If you wish to download Incubed using the maven package manager, add this to your pom.xml

<dependency>
<groupId>it.slock</groupId>
<artifactId>in3</artifactId>
<version>2.21</version>
</dependency>

After which, install in3 withmvn install.

13.1.2 Building

For building the shared library you need to enable java by using the ~-DJAVA=t rue flag:

git clone git@github.com:slockit/in3-c.git
mkdir -p in3-c/build

cd in3-c/build

cmake -DJAVA=true .. && make

519

https://github.com/slockit/in3-c/releases

Incubed Documentation, Release 2.3

You will find the in3. jar in the build/lib - folder.

13.1.3 Android

In order to use Incubed in android simply follow these steps:

Step 1: Create a top-level CMakeLists.txt in android project inside app folder and link this to gradle. Follow the steps
using this guide on howto link.

The Content of the CMakeLists.txt should look like this:

cmake_minimum_required (VERSION 3.4.1)

turn off FAST MATH in the evm.
ADD_DEFINITIONS (-DIN3_MATH_LITE)

loop through the required module and cretae the build-folders
foreach (module

c/src/core

c/src/verifier/ethl/nano

c/src/verifier/ethl/evm

c/src/verifier/ethl/basic

c/src/verifier/ethl/full

java/src

c/src/third-party/crypto

c/src/third-party/tommath

c/src/api/ethl)
file (MAKE_DIRECTORY in3-c/S{module}/outputs)
add_subdirectory (in3-c/${module/ in3-c/${module }/outputs)
endforeach ()

Step 2: clone in3-c into the app-folder or use this script to clone and update in3:

#!/usr/bin/env sh

#github-url for in3-c
IN3_SRC=https://github.com/slockit/in3-c.git

cd app

if it exists we only call git pull

if [-d in3-c]; then
cd in3-c
git pull
cd

else

1if not we clone it
git clone SIN3_SRC
fi

copy the java-sources to the main java path
cp -r in3-c/java/src/in3 src/main/java/

Step 3: Use methods available in app/src/main/java/in3/IN3.java from android activity to access IN3 functions.
Here is example how to use it:

https://github.com/slockit/in3-example-android

520 Chapter 13. API Reference Java

https://developer.android.com/studio/projects/gradle-external-native-builds
https://github.com/slockit/in3-c.git
https://github.com/slockit/in3-example-android

Incubed Documentation, Release 2.3

13.2 Examples

13.2.1 CallFunction

source : in3-c/java/examples/CallFunction.java

Calling Functions of Contracts

// This Example shows how to call functions and use the decoded results. Here we get,

—the struct from the registry.

import in3.x*;
import in3.ethl.x;

public class CallFunction {
//
public static void main(Stringl[] args) {
// create incubed
IN3 in3 = IN3.forChain(Chain.MAINNET); // set it to mainnet (which is also dthe_

—default)

// call a contract, which uses eth_call to get the result.

Object[] result = (Object[]) in3.getEthlAPTI().call(// call_,
—a function of a contract
"0x2736D225£85740£42D17987100dc8d58e9e16252", /7
—address of the contract
"servers (uint256) : (string,address,uint256,uint256,uint256,address)", //,
—function signature
1); // first,,

—argument, which is the index of the node we are looking for.

System.out.println ("url " + result[0]);
System.out.println ("owner " + result[l]);
System.out.println("deposit : " + result[2]);
System.out.println("props " + result[3]);

13.2.2 Configure

source : in3-c/java/examples/Configure.java

Changing the default configuration

// In order to change the default configuration, just use the classes inside in3.

—config package.
package in3;

import in3.x*;
import in3.config.x;
import in3.ethl.Block;

public class Configure {
//
public static void main(String[] args) {

(continues on next page)

13.2. Examples 521

https://github.com/slockit/in3-c/blob/master/java/examples/CallFunction.java
https://github.com/slockit/in3-c/blob/master/java/examples/Configure.java

Incubed Documentation, Release 2.3

(continued from previous page)

// create incubed client
IN3 in3 = IN3.forChain(Chain.GOERLI); // set it to goerli

// Setup a Configuration object for the client

ClientConfiguration clientConfig = in3.getConfig();
clientConfig.setReplacelatestBlock (6); // define that latest will be -6
clientConfig.setAutoUpdateList (false); // prevents node automatic update
clientConfig.setMaxAttempts (1) ; // sets max attempts to 1 before giving up
clientConfig.setProof (Proof.none); // does not require proof (not recommended)

// Setup the ChainConfiguration object for the nodes on a certain chain

ChainConfiguration chainConfiguration = new ChainConfiguration (Chain.GOERLI,
—~clientConfig);

chainConfiguration.setNeedsUpdate (false);

chainConfiguration.setContract ("0xaclb824795eleblf6e609fe0da9b9af8beaab60f") ;

chainConfiguration.setRegistryId(
—"0x23d5345c5¢c13180a8080bd5ddbe7cde64683755dcce6e734d95b7b573845facb") ;

in3.setConfig(clientConfiqg);

Block block = in3.getEthlAPI().getBlockByNumber (Block.LATEST, true);
System.out.println(block.getHash());

13.2.3 GetBalance

source : in3-c/java/examples/GetBalance.java

getting the Balance with or without API

import in3.x*;
import in3.ethl.x*;
import java.math.BigInteger;
import java.util.x;
public class GetBalance ({
static String AC_ADDR = "0xc94770007dda54cF92009BFF0dE90c06F603a09£f";
public static void main(String[] args) throws Exception ({
// create incubed
IN3 in3 = IN3.forChain(Chain.MAINNET); // set it to mainnet (which is also dthe_
—default)

System.out.println("Balance API" + getBalanceAPI (in3) .longValue());

System.out.println("Balance RPC " + getBalanceRPC (in3));

static BigInteger getBalanceAPI (IN3 in3) {
return in3.getEthlAPTI () .getBalance (AC_ADDR, Block.LATEST);

static String getBalanceRPC (IN3 in3) {

(continues on next page)

522 Chapter 13. API Reference Java

https://github.com/slockit/in3-c/blob/master/java/examples/GetBalance.java

Incubed Documentation, Release 2.3

(continued from previous page)

return in3.sendRPC("eth_getBalance", new Object[] {AC_ADDR, "latest"});

13.2.4 GetBlockAPI

source : in3-c/java/examples/GetBlockAPI.java

getting a block with API

import in3.=*;

import in3.ethl.x;

import java.math.BigInteger;
import java.util.x;

public class GetBlockAPI ({
//
public static void main(String[] args) throws Exception ({
// create incubed
IN3 in3 = IN3.forChain(Chain.MAINNET); // set it to mainnet (which is also dthe_,
—default)

// read the latest Block including all Transactions.
Block latestBlock = in3.getEthlAPI () .getBlockByNumber (Block.LATEST, true);

// Use the getters to retrieve all containing data

System.out.println("current BlockNumber : " + latestBlock.getNumber());

System.out.println("minded at : " + new Date(latestBlock.getTimeStamp()) + " by "_
—+ latestBlock.getAuthor());

// get all Transaction of the Block
Transaction[] transactions = latestBlock.getTransactions/();

BigInteger sum = BiglInteger.valueOf (0);

for (int 1 = 0; i < transactions.length; i++)
sum = sum.add (transactions[i].getValue());
System.out.println("total Value transfered in all Transactions : " + sum + " wei
="

}

13.2.5 GetBlockRPC

source : in3-c/java/examples/GetBlockRPC.java

getting a block without API

import in3.=*;

import in3.ethl.x;

import java.math.BigInteger;
import java.util.x;

public class GetBlockRPC ({

(continues on next page)

13.2. Examples 523

https://github.com/slockit/in3-c/blob/master/java/examples/GetBlockAPI.java
https://github.com/slockit/in3-c/blob/master/java/examples/GetBlockRPC.java

Incubed Documentation, Release 2.3

(continued from previous page)

//
public static void main(String[] args) throws Exception ({
// create incubed
IN3 in3 = IN3.forChain(Chain.MAINNET); // set it to mainnet (which is also the,

—default)

// read the latest Block without the Transactions.
String result = in3.sendRPC ("eth_getBlockByNumber", new Object[] {"latest", false}

)7

// print the json-data
System.out.println("current Block : " + result);

13.2.6 GetTransaction

source : in3-c/java/examples/GetTransaction.java

getting a Transaction with or without API

import in3.x*;

import in3.ethl.x;

import java.math.BigInteger;
import java.util.x;

public class GetTransaction {

static String TXN_HASH =
—"0xdd80249a0631cf0f1593¢c7a9c9f9b8545e6c88ab5252287c34bc5d12457eable”;

public static void main(String[] args) throws Exception ({
// create incubed
IN3 in3 = IN3.forChain(Chain.MAINNET); // set it to mainnet (which is also dthe_

—default)

Transaction txn = getTransactionAPI (in3);
System.out.println("Transaction API #blockNumber: " + txn.getBlockNumber ());

System.out.println("Transaction RPC :" + getTransactionRPC (in3)) ;

static Transaction getTransactionAPI (IN3 in3) {
return in3.getEthlAPI () .getTransactionByHash (TXN_HASH) ;

static String getTransactionRPC (IN3 in3) {
return in3.sendRPC("eth_getTransactionByHash", new Object[] {TXN_HASH});

13.2.7 GetTransactionReceipt

source : in3-c/java/examples/GetTransactionReceipt.java

524 Chapter 13. API Reference Java

https://github.com/slockit/in3-c/blob/master/java/examples/GetTransaction.java
https://github.com/slockit/in3-c/blob/master/java/examples/GetTransactionReceipt.java

Incubed Documentation, Release 2.3

getting a TransactionReceipt with or without API

import in3.x*;

import in3.ethl.x;

import java.math.BigInteger;
import java.util.x;

public class GetTransactionReceipt {
static String TRANSACTION_HASH =
—"0xdd80249a0631cf0f1593c7a9c9f9%0b8545e6c88ab5252287¢c34bc5d12457eable”;

//
public static void main(String[] args) throws Exception ({
// create incubed
IN3 in3 = IN3.forChain(Chain.MAINNET); // set it to mainnet (which is also the,
—default)

TransactionReceipt txn = getTransactionReceiptAPI (in3);

System.out.println("TransactionRerceipt API : for txIndex " + txn.
—getTransactionIndex() + " Block num " + txn.getBlockNumber () + " Gas used " + txn.
—getGasUsed () + " status " + txn.getStatus());

System.out.println("TransactionReceipt RPC : " + getTransactionReceiptRPC (in3));

static TransactionReceipt getTransactionReceiptAPI (IN3 in3) {
return in3.getEthlAPI () .getTransactionReceipt (TRANSACTION_HASH) ;

static String getTransactionReceiptRPC (IN3 in3) {
return in3.sendRPC ("eth_getTransactionReceipt"”, new Object[] {TRANSACTION_HASH});

13.2.8 SendTransaction

source : in3-c/java/examples/SendTransaction.java

Sending Transactions

// In order to send, you need a Signer. The SimpleWallet class 1is a basic,
—implementation which can be used.

package in3;

import in3.=*;

import in3.ethl.x*;

import java.io.IOException;

import java.math.BigInteger;

import java.nio.charset.StandardCharsets;
import java.nio.file.Files;

import java.nio.file.Paths;

public class SendTransaction {
/7
public static void main(String[] args) throws IOException {
// create incubed

(continues on next page)

13.2. Examples 525

https://github.com/slockit/in3-c/blob/master/java/examples/SendTransaction.java

Incubed Documentation, Release 2.3

(continued from previous page)

IN3 in3 = IN3.forChain(Chain.MAINNET); // set it to mainnet (which is also dthe,
—default)

// create a wallet managing the private keys
SimpleWallet wallet = new SimpleWallet ();

// add accounts by adding the private keys
String keyFile = "myKey.json";
String myPassphrase = "<secrect>";

// read the keyfile and decoded the private key

String account = wallet.addKeyStore (
Files.readString(Paths.get (keyFile)),
myPassphrase) ;

// use the wallet as signer
in3.setSigner (wallet);

"0x1234567890123456789012345678901234567890";
BigInteger.valueOf (100000);

String receipient
BigInteger value

// create a Transaction

TransactionRequest tx = new TransactionRequest ();
tx.setFrom(account);
tx.setTo("0x1234567890123456789012345678901234567890") ;
tx.setFunction ("transfer (address,uint256)");
tx.setParams (new Object[] {receipient, value});

String txHash = in3.getEthlAPI().sendTransaction (tx);

n

System.out.println("Transaction sent with hash = + txHash);

13.2.9 Building

In order to run those examples, you only need a Java SDK installed.

’./build.sh

will build all examples in this directory.

In order to run a example use

java —cp $IN3/build/lib/in3.jar:. GetBlockAPI

13.3 Package in3

13.3.1 class BlockID

fromHash

public static B1ock ID fromHash(St ring hash);

526 Chapter 13. API Reference Java

Incubed Documentation, Release 2.3

arguments:

String ‘ hash ‘

fromNumber

public static B1ock ID fromNumber(1ong number);

arguments:

| long | number

getNumber

public Long getNumber();

setNumber

public void setNumber(Iong block);

arguments:

] long ‘ block ‘

getHash

public St ring getHash();

setHash

public void setHash(St ring hash);

arguments:

’ String \ hash ‘

toJSON

public String toJSON();

toString

public St ring toString();

13.3.2 class Chain

Constants for Chain-specs.

13.3. Package in3

527

Incubed Documentation, Release 2.3

MULTICHAIN

support for multiple chains, a client can then switch between different chains (but consumes more memory)

Type: static final

MAINNET

use mainnet

Type: static final

KOVAN

use kovan testnet

Type: static final

TOBALABA

use tobalaba testnet

Type: static final

GOERLI

use goerli testnet

Type: static final

EWC

use ewf chain

Type: static final

EVAN

use evan testnet

Type: static final

IPFS

use ipfs

Type: static final

VOLTA

use volta test net

Type: static final

long

long

long

long

long

long

long

long

long

528

Chapter 13. API Reference Java

Incubed Documentation, Release 2.3

LOCAL

use local client

Type: static final long

BTC

use bitcoin client

Type: static final long

13.3.3 class IN3

This is the main class creating the incubed client.

The client can then be configured.

IN3

public IN3();

getConfig

returns the current configuration.

any changes to the configuration will be applied witth the next request.

public ClientConfiguration getConfig();

setSigner

sets the signer or wallet.
public void setSigner(Signer signer);

arguments:

| Signer | signer

getSigner
returns the signer or wallet.

public Signer getSigner();
getlpfs

gets the ipfs-api
public in3.ipfs.APT getlpfs();

13.3. Package in3

529

Incubed Documentation, Release 2.3

getBtcAPI
gets the btc-api

public in3.btc.APT getBtcAPI();
getEth1API
gets the ethereum-api

public in3.ethl.APT getEthl1 API();
getCrypto
gets the utils/crypto-api

public Crypto getCrypto();
setStorageProvider

provides the ability to cache content like nodelists, contract codes and validatorlists
public void setStorageProvider(StorageProvider val);

arguments:

] StorageProvider \ val \

getStorageProvider

provides the ability to cache content

public StorageProvider getStorageProvider();

setTransport

sets The transport interface.
This allows to fetch the result of the incubed in a different way.
public void setTransport(IN3Transport newTransport);

arguments:

| IN3Transport | newTransport

getTransport

returns the current transport implementation.

public IN3Transport getTransport();

530 Chapter 13

. API Reference Java

Incubed Documentation, Release 2.3

getChainld

servers to filter for the given chain.
The chain-id based on EIP-155.
public native long getChainld();

setChainld

sets the chain to be used.
The chain-id based on EIP-155.
public native void setChainld(Zong val);

arguments:

send

send a request.

The request must a valid json-string with method and params

public St ring send(String request);

arguments:

’String

request

sendobject

send a request but returns a object like array or map with the parsed response.

The request must a valid json-string with method and params

public Ob ject sendobject(St ring request);

arguments:

| String | request

sendRPC

send a RPC request by only passing the method and params.

It will create the raw request from it and return the result.

public String sendRPC(String method, Object [] params);

arguments:

String

method

Object []

params

13.3. Package in3

531

Incubed Documentation, Release 2.3

sendRPCasObject

public Object sendRPCasObject(St ring method, Object [] params, boolean useEnsResolver);

arguments:
String method
Object[] | params
boolean useEnsResolver
sendRPCasObject

send a RPC request by only passing the method and params.
It will create the raw request from it and return the result.
public Ob ject sendRPCasObject(St ring method, Object [] params);

arguments:

String method
Object [] params

cacheClear
clears the cache.

public boolean cacheClear();
nodeList
restrieves the node list

public IN3Node [] nodeList();
sign

request for a signature of an already verified hash.
public SignedBlockHash [] sign(BlockID[] blocks, String[] dataNodeAdresses);

arguments:

BlockID[] blocks
String[] | dataNodeAdresses

forChain

create a Incubed client using the chain-config.

if chainld is Chain. MULTICHAIN, the client can later be switched between different chains, for all other chains, it
will be initialized only with the chainspec for this one chain (safes memory)

public static 7N 3 forChain(1ong chainld);

532 Chapter 13. API Reference Java

Incubed Documentation, Release 2.3

arguments:

’ long ‘ chainld ‘

getVersion
returns the current incubed version.

public static native String getVersion();
main

public static void main(String/[] args);

arguments:
[string[] | args |
13.3.4 class IN3DefaultTransport
handle
public byte [] [] handle(String[] urls, byte [] payload);
arguments:
String[] | urls
byte[] payload

13.3.5 class INSNode

getUrl

public St ring getUrl();

getAddress

public St ring getAddress();

getindex

public int getIndex();

getDeposit

public St ring getDeposit();

13.3. Package in3

533

Incubed Documentation, Release 2.3

getProps

public 1ong getProps();

getTimeout

public int getTimeout();

getRegisterTime

public int getRegisterTime();

getWeight

public int getWeight();

13.3.6 class IN3Props

IN3Props

public IN3Props();

setDataNodes

public void setDataNodes(String/[] adresses);

arguments:

setSignerNodes

| string[] | adresses

public void setSignerNodes(String/[] adresses);

arguments:

toString

public St ring toString();

toJSON

public String toJSON();

| string[] | adresses

534

Chapter 13. API Reference Java

Incubed Documentation, Release 2.3

13.3.7 class Loader

loadLibrary

public static void loadLibrary();

13.3.8 class Nodel.ist

getNodes

returns an array of IN3Node

public TN3Node [] getNodes();

13.3.9 class NodeProps
NODE_PROP_PROOF

Type: static final long

NODE_PROP_MULTICHAIN

Type: static final long

NODE_PROP_ARCHIVE

Type: static final long

NODE_PROP_HTTP

Type: static final long

NODE_PROP_BINARY

Type: static final long

NODE_PROP_ONION

Type: static final long

NODE_PROP_STATS

Type: static final long

13.3. Package in3

535

Incubed Documentation, Release 2.3

13.3.10 class SighedBlockHash

getBlockHash

public St ring getBlockHash();

getBlock

public 1ong getBlock();

getR

public String getR();

getS

public String getS();

getV

public 1long getV();

getMsgHash

public St ring getMsgHash();

13.3.11 enum Proof

The Proof type indicating how much proof is required.

The enum type contains the following values:

none 0 | No Verification.
standard | 1 | Standard Verification of the important properties.
full 2 | Full Verification including even uncles wich leads to higher payload.

13.3.12 interface IN3Transport

handle
public byte []1[] handle(String[] urls, byte [] payload);
arguments:
String[] | urls
bytel] payload

536 Chapter 13. API Reference Java

Incubed Documentation, Release 2.3

13.4 Package in3.btc

13.4.1 class API

API for handling BitCoin data.

Use it when connected to Chain.BTC.
API

creates a btc.API using the given incubed instance.
public API(IN3 in3);

arguments:

getTransaction

Retrieves the transaction and returns the data as json.
public Transaction getTransaction(String txid);

arguments:

’ String ‘ txid ‘

getTransactionBytes

Retrieves the serialized transaction (bytes).
public byte [] getTransactionBytes(St ring txid);

arguments:

’ String ‘ txid ‘

getBlockHeader

Retrieves the blockheader.
public BI1ockHeader getBlockHeader(St ring blockHash);

arguments:

| String [blockHash |

13.4. Package in3.btc

537

Incubed Documentation, Release 2.3

getBlockHeaderBytes

Retrieves the byte array representing teh serialized blockheader data.
public byte [] getBlockHeaderBytes(St ring blockHash);

arguments:

| String | blockHash |

getBlockWithTxData

Retrieves the block including the full transaction data.
Use Api::GetBlockWithTxIds” for only the transaction ids.
public B1ock getBlockWithTxData(St ring blockHash);

arguments:

| String | blockHash |

getBlockWithTxlds

Retrieves the block including only transaction ids.
Use Api::GetBlockWithTxData for the full transaction data.
public B1ock getBlockWithTxIds(St ring blockHash);

arguments:

| string | blockHash |

getBlockBytes

Retrieves the serialized block in bytes.
public byte [] getBlockBytes(St ring blockHash);

arguments:

| string | blockHash

13.4.2 class Block

A Block.

getTransactions

Transactions or Transaction of a block.

public Transaction[] getTransactions();

538

Chapter 13

. API Reference Java

Incubed Documentation, Release 2.3

getTransactionHashes
Transactions or Transaction ids of a block.
public String[] getTransactionHashes();
getSize
Size of this block in bytes.
public 1long getSize();
getWeight

Weight of this block in bytes.
public 1ong getWeight();

13.4.3 class BlockHeader

A Block header.

getHash
The hash of the blockheader.
public St ring getHash();
getConfirmations
Number of confirmations or blocks mined on top of the containing block.
public 1ong getConfirmations();
getHeight
Block number.
public 1ong getHeight();
getVersion
Used version.
public 1ong getVersion();
getVersionHex

Version as hex.

public St ring getVersionHex();

13.4. Package in3.btc 539

Incubed Documentation, Release 2.3

getMerkleroot

Merkle root of the trie of all transactions in the block.

public St ring getMerkleroot();

getTime
Unix timestamp in seconds since 1970.
public 1ong getTime();
getMediantime
Unix timestamp in seconds since 1970.
public 1ong getMediantime();
getNonce
Nonce-field of the block.
public 1ong getNonce();
getBits
Bits (target) for the block as hex.
public St ring getBits();
getDifficulty
Difficulty of the block.
public £loat getDifficulty();
getChainwork
Total amount of work since genesis.
public St ring getChainwork();
getNTx
Number of transactions in the block.
public 1ong getNTx();
getPreviousblockhash

Hash of the parent blockheader.

public St ring getPreviousblockhash();

540

Chapter 13. API Reference Java

Incubed Documentation, Release 2.3

getNextblockhash

Hash of the next blockheader.
public St ring getNextblockhash();

13.4.4 class ScriptPubKey

Script on a transaction output.

getAsm
The hash of the blockheader.
public String getAsm();
getHex
The raw hex data.
public St ring getHex();
getReqSigs
The required sigs.
public 1ong getReqSigs();
getType
The type e.g.
: pubkeyhash.
public String getType();
getAddresses

List of addresses.

public String[] getAddresses();

13.4.5 class ScriptSig

Script on a transaction input.

13.4. Package in3.btc 541

Incubed Documentation, Release 2.3

ScriptSig

public ScriptSig(JSON data);

arguments:

750 | daia |

getAsm
The asm data.

public String getAsm();
getHex
The raw hex data.

public String getHex();
13.4.6 class Transaction

A BitCoin Transaction.

asTransaction

public static Transaction asTransaction(Ob ject 0);

arguments:
Object n

asTransactions

public static Transaction [] asTransactions(Object 0);

arguments:
Object n

getTxid
Transaction Id.

public String getTxid();
getHash

The transaction hash (differs from txid for witness transactions).

public St ring getHash();

542

Chapter 13. API Reference Java

Incubed Documentation, Release 2.3

getVersion
The version.
public 1ong getVersion();
getSize
The serialized transaction size.

public 1long getSize();

getVsize

The virtual transaction size (differs from size for witness transactions).

public long getVsize();

getWeight

The transactions weight (between vsize4-3 and vsize4).
public 1ong getWeight();

getLocktime

The locktime.
public 1ong getLocktime();

getHex

The hex representation of raw data.
public St ring getHex();

getBlockhash

The block hash of the block containing this transaction.
public St ring getBlockhash();

getConfirmations

The confirmations.

public 1ong getConfirmations();

getTime

The transaction time in seconds since epoch (Jan 1 1970 GMT).

public 1ong getTime();

13.4. Package in3.btc

543

Incubed Documentation, Release 2.3

getBlocktime

The block time in seconds since epoch (Jan 1 1970 GMT).

public 1ong getBlocktime();

getVin

The transaction inputs.

public TransactionInput [] getVin();

getVout

The transaction outputs.

public TransactionOutput [] getVout();

13.4.7 class Transactionlnput

Input of a transaction.

getTxid
The transaction id.

public St ring getTxid();
getYout
The index of the transactionoutput.

public 1ong getYout();
getScriptSig
The script.

public ScriptSig getScriptSig();
getTxinwitness
Hex-encoded witness data (if any).

public String[] getTxinwitness();
getSequence

The script sequence number.

public 1ong getSequence();

544

Chapter 13. API Reference Java

Incubed Documentation, Release 2.3

13.4.8 class TransactionOutput

A BitCoin Transaction.

TransactionOutput

public TransactionOutput(JSON data);

arguments:

getValue
The value in bitcoins.
public f1loat getValue();
getN
The index in the transaction.
public 1ong getN();
getScriptPubKey

The script of the transaction.

750N | data |

public ScriptPubKey getScriptPubKey();

13.5 Package in3.config

13.5.1 class ChainConfiguration

Part of the configuration hierarchy for IN3 Client.

Holds the configuration a node group in a particular Chain.

nodesConfig

Type: NodeConfigurationArrayList< ,

ChainConfiguration

>

public ChainConfiguration(1ong chain, C1ientConfiguration config);

arguments:

long

chain

ClientConfiguration

config

13.5. Package in3.config

545

Incubed Documentation, Release 2.3

getChain

public 1ong getChain();

isNeedsUpdate

public Boolean isNeedsUpdate();

setNeedsUpdate

public void setNeedsUpdate(boolean needsUpdate);

arguments:

[boolean [needsUpdate |

getContract

public St ring getContract();

setContract

public void setContract(St ring contract);

arguments:

| string | contract

getRegistryld

public St ring getRegistryld();

setRegistryld

public void setRegistryld(St ring registryld);

arguments:

| String | registryld |

getWhiteListContract

public St ring getWhiteListContract();

546

Chapter 13. API Reference Java

Incubed Documentation, Release 2.3

setWhiteListContract

public void setWhiteListContract(St ring whiteListContract);

arguments:

| string | whiteListContract |

getWhiteList

public String[] getWhiteList();

setWhiteList

public void setWhiteList(St ring[] whiteList);

arguments:

’ String[] ‘ whiteList

toJSON

generates a json-string based on the internal data.
public St ring toJSON();

toString

public St ring toString();

13.5.2 class ClientConfiguration

Configuration Object for Incubed Client.

It holds the state for the root of the configuration tree. Should be retrieved from the client instance as IN3::getConfig()
getRequestCount

public Integer getRequestCount();

setRequestCount

sets the number of requests send when getting a first answer
public void setRequestCount(int requestCount);

arguments:

| int [requestCount |

13.5. Package in3.config 547

Incubed Documentation, Release 2.3

isAutoUpdateList

public Boolean isAutoUpdateList();

setAutoUpdateList

activates the auto update.if true the nodelist will be automaticly updated if the lastBlock is newer

public void setAutoUpdateList(boolean autoUpdateList);

arguments:

’boolean

autoUpdateList |

getProof

public Proof getProof();

setProof

sets the type of proof used
public void setProof(Proof proof);

arguments:

getMaxAttempts

public Integer getMaxAttempts();

setMaxAttempts

sets the max number of attempts before giving up

| Proof | proof |

public void setMaxAttempts(int maxAttempts);

arguments:

getSignatureCount

public Integer getSignatureCount();

[int | maxAttempts

548

Chapter 13. API Reference Java

Incubed Documentation, Release 2.3

setSignatureCount

sets the number of signatures used to proof the blockhash.
public void setSignatureCount(int signatureCount);

arguments:

| int | signatureCount |

isStats

public Boolean isStats();

setStats

if true (default) the request will be counted as part of the regular stats, if not they are not shown as part of the dashboard.
public void setStats(boolean stats);

arguments:

| boolean | stats |

getFinality

public Integer getFinality();

setFinality

sets the number of signatures in percent required for the request
public void setFinality(int finality);

arguments:

| int [finality

isincludeCode

public Boolean isIncludeCode();

setincludeCode

public void setlncludeCode(boolean includeCode);

arguments:

] boolean \ includeCode \

13.5. Package in3.config 549

Incubed Documentation, Release 2.3

isBootWeights

public Boolean isBootWeights();

setBootWeights

if true, the first request (updating the nodelist) will also fetch the current health status and use it for blacklisting

unhealthy nodes.
This is used only if no nodelist is availabkle from cache.
public void setBootWeights(boolean value);

arguments:

[boolean | value |

isKeepIn3

public Boolean isKeepIn3();

setKeepln3

public void setKeepIn3(boolean keepln3);

arguments:

’ boolean ‘ keepIn3

isUseHttp

public Boolean isUseHttp();

setUseHttp

public void setUseHttp(boolean useHttp);

arguments:

’ boolean \ useHttp ‘

getTimeout

public Long getTimeout();

550

Chapter 13. API Reference Java

Incubed Documentation, Release 2.3

setTimeout

specifies the number of milliseconds before the request times out.
increasing may be helpful if the device uses a slow connection.
public void setTimeout(1ong timeout);

arguments:

’ long ‘ timeout

getMinDeposit

public Long getMinDeposit();

setMinDeposit

sets min stake of the server.
Only nodes owning at least this amount will be chosen.
public void setMinDeposit(1ong minDeposit);

arguments:

| long [minDeposit

getNodeProps

public Long getNodeProps();

setNodeProps

public void setNodeProps(1ong nodeProps);

arguments:

| long | nodeProps

getNodeLimit

public Long getNodeLimit();

setNodeLimit

sets the limit of nodes to store in the client.

public void setNodeLimit(1ong nodeLimit);

13.5. Package in3.config 551

Incubed Documentation, Release 2.3

arguments:

| long [nodeLimit |

getReplacelLatestBlock

public Integer getReplaceLatestBlock();

setReplaceLatestBlock

replaces the latest with blockNumber- specified value
public void setReplaceLatestBlock(int replaceLatestBlock);

arguments:

| int [replaceLatestBlock |

getRpc

public String getRpc();

setRpc

setup an custom rpc source for requests by setting Chain to local and proof to none
public void setRpc(String rpc);

arguments:

’ String ‘ rpe ‘

getNodesConfig

public ChainConfigurationHashMap< Long, , > getNodesConfig();

setChainsConfig

public void setChainsConfig(HashMap< Long, ChainConfiguration >);

arguments:

’ ChainConfigurationHashMap< Long, , > ‘ chainsConfig ‘

markAsSynced

public void markAsSynced();

552 Chapter 13

. API Reference Java

Incubed Documentation, Release 2.3

isSynced

public boolean isSynced();

toString

public St ring toString();

toJSON

generates a json-string based on the internal data.

public String toJSON();

13.5.3 class NodeConfiguration
Configuration Object for Incubed Client.

It represents the node of a nodelist.
NodeConfiguration

public NodeConfiguration(ChainConfiguration config);

arguments:

’ ChainConfiguration \ config ‘

getUrl

public String getUrl();

setUrl

public void setUrl(St ring url);

arguments:

String ‘ url ‘

getProps

public 1ong getProps();

13.5. Package in3.config

553

Incubed Documentation, Release 2.3

setProps

public void setProps(1ong props);

arguments:

| long | props |

getAddress

public St ring getAddress();

setAddress

public void setAddress(String address);

arguments:

| String | address |

toString

public St ring toString();

13.5.4 interface Configuration

an Interface class, which is able to generate a JSON-String.

toJSON

generates a json-string based on the internal data.

public St ring toJSON();

13.6 Package in3.eth1

13.6.1 class API

a Wrapper for the incubed client offering Type-safe Access and additional helper functions.

API

creates an eth1.API using the given incubed instance.
public API(IN3 in3);

arguments:

554 Chapter 13. API Reference Java

Incubed Documentation, Release 2.3

getBlockByNumber

finds the Block as specified by the number.
use Block .LATEST for getting the lastest block.
public B1ock getBlockByNumber(1ong block, boolean includeTransactions);

arguments:

long block
boolean| includeTransac- | < the Blocknumber < if true all Transactions will be includes, if not only the
tions transactionhashes

getBlockByHash

Returns information about a block by hash.
public B1ock getBlockByHash(St ring blockHash, boolean includeTransactions);

arguments:

String | blockHash
boolean| includeTransac- < the Blocknumber < if true all Transactions will be includes, if not only the
tions transactionhashes

getBlockNumber
the current BlockNumber.

public 1ong getBlockNumber();
getGasPrice
the current Gas Price.

public 1ong getGasPrice();
getChainid

Returns the EIP155 chain ID used for transaction signing at the current best block.
Null is returned if not available.

public St ring getChainld();

call

calls a function of a smart contract and returns the result.

public Object call(TransactionRequest request, 1ong block);

13.6. Package in3.eth1 555

Incubed Documentation, Release 2.3

arguments:

TransactionRequest | request
long block < the transaction to call. < the Block used to for the state.

returns: Ob ject : the decoded result. if only one return value is expected the Object will be returned, if not an array
of objects will be the result.

estimateGas
Makes a call or transaction, which won’t be added to the blockchain and returns the used gas, which can be used for
estimating the used gas.

public 1ong estimateGas(Transact ionRequest request, 1ong block);

arguments:

TransactionRequest | request
long block < the transaction to call. < the Block used to for the state.

returns: long : the gas required to call the function.

getBalance

Returns the balance of the account of given address in wei.
public BigInteger getBalance(St ring address, 1ong block);

arguments:

String | address
long block

getCode

Returns code at a given address.
public String getCode(String address, 1ong block);

arguments:

String | address
long block

getStorageAt

Returns the value from a storage position at a given address.

public String getStorageAt(String address, BigInteger position, Iong block);

556 Chapter 13. API Reference Java

Incubed Documentation, Release 2.3

arguments:
String address
BigInteger | position
long block

getBlockTransactionCountByHash

Returns the number of transactions in a block from a block matching the given block hash.
public 1ong getBlockTransactionCountByHash(St ring blockHash);

arguments:

| String [blockHash |

getBlockTransactionCountByNumber

Returns the number of transactions in a block from a block matching the given block number.
public 1ong getBlockTransactionCountByNumber(1ong block);

arguments:

’ long ‘ block ‘

getFilterChangesFromLogs

Polling method for a filter, which returns an array of logs which occurred since last poll.
public Log [] getFilterChangesFromLogs(1ong id);

arguments:
(o [

getFilterChangesFromBlocks

Polling method for a filter, which returns an array of logs which occurred since last poll.
public String[] getFilterChangesFromBlocks(1ong id);

arguments:
(o [

getFilterLogs

Polling method for a filter, which returns an array of logs which occurred since last poll.

public Log [] getFilterLogs(1long id);

13.6. Package in3.eth1

557

Incubed Documentation, Release 2.3

arguments:

[Tong [

getLogs

Polling method for a filter, which returns an array of logs which occurred since last poll.
public Log [] getlLogs(LogFilter filter);

arguments:

’ LogFilter ‘ filter ‘

getTransactionByBlockHashAndIndex

Returns information about a transaction by block hash and transaction index position.
public Transact ion getTransactionByBlockHashAndIndex(St ring blockHash, int index);

arguments:

String | blockHash
int index

getTransactionByBlockNumberAndindex

Returns information about a transaction by block number and transaction index position.
public Transact ion getTransactionByBlockNumberAndIndex(1ong block, int index);

arguments:

long | block
int index

getTransactionByHash

Returns the information about a transaction requested by transaction hash.
public Transact ion getTransactionByHash(St ring transactionHash);

arguments:

String | transactionHash |

getTransactionCount

Returns the number of transactions sent from an address.

public BigInteger getTransactionCount(St ring address, 1ong block);

558 Chapter 13. API Reference Java

Incubed Documentation, Release 2.3

arguments:

String | address
long block

getTransactionReceipt

Returns the number of transactions sent from an address.
public TransactionReceipt getTransactionReceipt(St ring transactionHash);

arguments:

| String | transactionHash

getUncleByBlockNumberAndindex

Returns information about a uncle of a block number and uncle index position.
Note: An uncle doesn’t contain individual transactions.
public B1ock getUncleByBlockNumberAndIndex(1ong block, int pos);

arguments:

long | block
int pos

getUncleCountByBlockHash

Returns the number of uncles in a block from a block matching the given block hash.
public 1ong getUncleCountByBlockHash(St ring block);

arguments:

’ String ‘ block ‘

getUncleCountByBlockNumber

Returns the number of uncles in a block from a block matching the given block hash.
public 1ong getUncleCountByBlockNumber(1ong block);

arguments:

’ long ‘ block ‘

13.6. Package in3.eth1

559

Incubed Documentation, Release 2.3

newBlockFilter

Creates a filter in the node, to notify when a new block arrives.
To check if the state has changed, call eth_getFilterChanges.
public 1ong newBlockFilter();

newLogFilter

Creates a filter object, based on filter options, to notify when the state changes (logs).
To check if the state has changed, call eth_getFilterChanges.

A note on specifying topic filters: Topics are order-dependent. A transaction with a log with topics [A, B] will be
matched by the following topic filters:

[] “anything” [A] “A in first position (and anything after)” [null, B] “anything in first position AND B in second
position (and anything after)” [A, B] “A in first position AND B in second position (and anything after)” [[A, B], [A,
B]] “(A OR B) in first position AND (A OR B) in second position (and anything after)”

public 1ong newLogFilter(LogFi 1ter filter);

arguments:

’ LogFilter \ filter ‘

uninstallFilter

uninstall filter.
public boolean uninstallFilter(1ong filter);

arguments:

sendRawTransaction

Creates new message call transaction or a contract creation for signed transactions.
public St ring sendRawTransaction(St ring data);

arguments:

| String | data |

returns: String : transactionHash

abiEncode

encodes the arguments as described in the method signature using ABI-Encoding.

public St ring abiEncode(String signature, St ring[] params);

560 Chapter 13. API Reference Java

Incubed Documentation, Release 2.3

arguments:

String signature
Stringl] params

abiDecode

decodes the data based on the signature.
public String[] abiDecode(String signature, St ring encoded);

arguments:

String | signature
String | encoded

checksumAddress

converts the given address to a checksum address.
public St ring checksumAddress(St ring address);

arguments:

| String [address |

checksumAddress

converts the given address to a checksum address.
Second parameter includes the chainld.
public St ring checksumAddress(String address, Boolean useChainld);

arguments:

String address
Boolean | useChainld

ens

resolve ens-name.
public String ens(String name);

arguments:

| String [name |

13.6. Package in3.eth1 561

Incubed Documentation, Release 2.3

ens

resolve ens-name.
Second parameter especifies if it is an address, owner, resolver or hash.
public String ens(String name, ENSMethod type);

arguments:

String name
ENSMethod | type

sendTransaction

sends a Transaction as described by the TransactionRequest.
This will require a signer to be set in order to sign the transaction.
public St ring sendTransaction(TransactionRequest tx);

arguments:

’ TransactionRequest ‘ tx ‘

call

the current Gas Price.

public Object call(String to, St ring function, Ob ject. .. params);

arguments:
String to
String function
Object... | params

returns: Ob ject : the decoded result. if only one return value is expected the Object will be returned, if not an array
of objects will be the result.

13.6.2 class Block

represents a Block in ethereum.

LATEST

The latest Block Number.

Type: static Long

562 Chapter 13. API Reference Java

Incubed Documentation, Release 2.3

EARLIEST
The Genesis Block.
Type: static Long
getTotalDifficulty
returns the total Difficulty as a sum of all difficulties starting from genesis.
public BigInteger getTotalDifficulty();
getGasLimit
the gas limit of the block.
public BigInteger getGasLimit();
getExtraData
the extra data of the block.
public St ring getExtraData();
getDifficulty
the difficulty of the block.
public BigInteger getDifficulty();
getAuthor
the author or miner of the block.
public St ring getAuthor();
getTransactionsRoot
the roothash of the merkletree containing all transaction of the block.

public St ring getTransactionsRoot();

getTransactionReceiptsRoot

the roothash of the merkletree containing all transaction receipts of the block.

public St ring getTransactionReceiptsRoot();

getStateRoot

the roothash of the merkletree containing the complete state.

public St ring getStateRoot();

13.6. Package in3.eth1

563

Incubed Documentation, Release 2.3

getTransactionHashes
the transaction hashes of the transactions in the block.
public String[] getTransactionHashes();
getTransactions
the transactions of the block.
public Transaction[] getTransactions();
getTimeStamp
the unix timestamp in seconds since 1970.

public 1ong getTimeStamp();

getSha3Uncles

the roothash of the merkletree containing all uncles of the block.

public St ring getSha3Uncles();

getSize
the size of the block.

public 1ong getSize();
getSealFields

the seal fields used for proof of authority.

public String[] getSealFields();
getHash
the block hash of the of the header.
public St ring getHash();

getLogsBloom

the bloom filter of the block.
public St ring getLogsBloom();

564

Chapter 13. API Reference Java

Incubed Documentation, Release 2.3

getMixHash

the mix hash of the block.
(only valid of proof of work)
public St ring getMixHash();

getNonce
the mix hash of the block.
(only valid of proof of work)
public String getNonce();
getNumber
the block number
public 1ong getNumber();
getParentHash
the hash of the parent-block.
public St ring getParentHash();
getUncles
returns the blockhashes of all uncles-blocks.
public String[] getUncles();
hashCode

public int hashCode();

equals

public boolean equals(Object obj);

arguments:

13.6.3 class Log

a log entry of a transaction receipt.

’ Object \ obj ‘

13.6. Package in3.eth1

565

Incubed Documentation, Release 2.3

isRemoved

true when the log was removed, due to a chain reorganization.
false if its a valid log.

public boolean isRemoved();

getLogindex

integer of the log index position in the block.
null when its pending log.

public int getLoglndex();

gettTansactionindex

integer of the transactions index position log was created from.
null when its pending log.

public int gettTansactionIndex();

getTransactionHash

Hash, 32 Bytes - hash of the transactions this log was created from.
null when its pending log.

public St ring getTransactionHash();

getBlockHash

Hash, 32 Bytes - hash of the block where this log was in.
null when its pending. null when its pending log.

public St ring getBlockHash();

getBlockNumber

the block number where this log was in.
null when its pending. null when its pending log.

public 1ong getBlockNumber();

getAddress

20 Bytes - address from which this log originated.

public St ring getAddress();

566 Chapter 13

. API Reference Java

Incubed Documentation, Release 2.3

getTopics

Array of 0 to 4 32 Bytes DATA of indexed log arguments.

(In solidity: The first topic is the hash of the signature of the event (e.g. Deposit(address,bytes32,uint256)), except
you declared the event with the anonymous specifier.)

public String[] getTopics();

13.6.4 class LogFilter

Log configuration for search logs.

getFromBlock

public 1ong getFromBlock();

setFromBlock

public void setFromBlock(1ong fromBlock);

arguments:

| long [fromBlock

getToBlock

public 1ong getToBlock();

setToBlock

public void setToBlock(1ong toBlock);

arguments:

’ long ‘ toBlock

getAddress

public St ring getAddress();

setAddress

public void setAddress(St ring address);

arguments:

| String [address |

13.6. Package in3.eth1 567

Incubed Documentation, Release 2.3

getTopics

public Object [] getTopics();

setTopics

public void setTopics(Ob ject [] topics);

arguments:

[Object [] | topics |

getLimit

public int getLimit();

setLimit

public void setLimit(int limit);

arguments:

toString

creates a JSON-String.
public St ring toString();

13.6.5 class SimpleWallet

a simple Implementation for holding private keys to sing data or transactions.

addRawKey

adds a key to the wallet and returns its public address.
public St ring addRawKey(St ring data);

arguments:

] String ‘ data ‘

568

Chapter 13. API Reference Java

Incubed Documentation, Release 2.3

addKeyStore

adds a key to the wallet and returns its public address.
public St ring addKeyStore(St ring jsonData, St ring passphrase);

arguments:

String | jsonData
String | passphrase

prepareTransaction

optiional method which allows to change the transaction-data before sending it.
This can be used for redirecting it through a multisig.
public TransactionRequest prepareTransaction(IN3 in3, TransactionRequest tX);

arguments:

IN3 in3
TransactionRequest | tx

canSign

returns true if the account is supported (or unlocked)
public boolean canSign(St ring address);

arguments:

| string | address

sign

signing of the raw data.
public String sign(String data, St ring address);

arguments:

String | data
String | address

13.6.6 class Transaction

represents a Transaction in ethereum.

13.6. Package in3.eth1 569

Incubed Documentation, Release 2.3

asTransaction

public static Transact ion asTransaction(Ob ject 0);

arguments:
Object n

getBlockHash
the blockhash of the block containing this transaction.
public St ring getBlockHash();
getBlockNumber
the block number of the block containing this transaction.
public 1ong getBlockNumber();
getChainid
the chainld of this transaction.
public St ring getChainld();
getCreatedContractAddress
the address of the deployed contract (if successfull)
public St ring getCreatedContractAddress();
getFrom
the address of the sender.
public St ring getFrom();
getHash
the Transaction hash.
public St ring getHash();
getData

the Transaction data or input data.

public String getData();

570 Chapter 13. API Reference Java

Incubed Documentation, Release 2.3

getNonce
the nonce used in the transaction.
public 1ong getNonce();
getPublicKey
the public key of the sender.
public St ring getPublicKey();
getValue
the value send in wei.
public BigInteger getValue();
getRaw
the raw transaction as rlp encoded data.
public St ring getRaw();
getTo
the address of the receipient or contract.
public St ring getTo();
getSignature
the signature of the sender - a array of the [1, s, V]
public String[] getSignature();
getGasPrice
the gas price provided by the sender.
public 1ong getGasPrice();
getGas
the gas provided by the sender.
public 1ong getGas();
13.6.7 class TransactionReceipt

represents a Transaction receipt in ethereum.

13.6. Package in3.eth1 571

Incubed Documentation, Release 2.3

getBlockHash
the blockhash of the block containing this transaction.
public St ring getBlockHash();
getBlockNumber
the block number of the block containing this transaction.
public 1ong getBlockNumber();
getCreatedContractAddress
the address of the deployed contract (if successfull)
public St ring getCreatedContractAddress();
getFrom
the address of the sender.
public St ring getFrom();
getTransactionHash
the Transaction hash.
public St ring getTransactionHash();
getTransactionindex
the Transaction index.
public int getTransactionIndex();
getTo

20 Bytes - The address of the receiver.
null when it’s a contract creation transaction.

public St ring getTo();

getGasUsed

The amount of gas used by this specific transaction alone.

public 1ong getGasUsed();

572

Chapter 13. API Reference Java

Incubed Documentation, Release 2.3

getLogs

Array of log objects, which this transaction generated.
public Log [] getLogs();

getLogsBloom

256 Bytes - A bloom filter of logs/events generated by contracts during transaction execution.
Used to efficiently rule out transactions without expected logs
public St ring getLogsBloom();

getRoot

32 Bytes - Merkle root of the state trie after the transaction has been executed (optional after Byzantium hard fork
EIP609).

public St ring getRoot();
getStatus

success of a Transaction.

true indicates transaction failure , false indicates transaction success. Set for blocks mined after Byzantium hard fork
EIP609, null before.

public boolean getStatus();

13.6.8 class TransactionRequest

represents a Transaction Request which should be send or called.

getFrom

public St ring getFrom();

setFrom

public void setFrom(St ring from);

arguments:

’ String ‘ from ‘

getTo

public String getTo();

13.6. Package in3.eth1 573

Incubed Documentation, Release 2.3

setTo

public void setTo(String to);

arguments:

getValue

public BigInteger getValue();

setValue

public void setValue(BigInteger value);

arguments:

getNonce

public 1ong getNonce();

setNonce

public void setNonce(long nonce);

arguments:

getGas

public 1ong getGas();

setGas

public void setGas(long gas);

arguments:

getGasPrice

public 1ong getGasPrice();

’ BigInteger ‘ value ‘

[1long | nonce |

[Tong [s |

574

Chapter 13. API Reference Java

Incubed Documentation, Release 2.3

setGasPrice

public void setGasPrice(1ong gasPrice);

arguments:

[long | gasPrice

getFunction

public St ring getFunction();

setFunction

public void setFunction(St ring function);

arguments:

| String | function

getParams

public Object [] getParams();

setParams

public void setParams(Object [] params);

arguments:

[Object [] | params

setData

public void setData(St ring data);

arguments:

’ String ‘ data ‘

getData

creates the data based on the function/params values.
public String getData();

getTransactiondson

public St ring getTransactionJson();

13.6. Package in3.eth1

575

Incubed Documentation, Release 2.3

getResult

public Object getResult(St ring data);

arguments:

| String | data |

13.6.9 enum ENSMethod

The enum type contains the following values:

addr 0
resolver | 1
hash 2
owner 3

13.7 Package in3.ipfs

13.7.1 class API

API for ipfs custom methods.

To be used along with “Chain.IPFS” on in3 instance.

API

creates a ipfs.API using the given incubed instance.
public API(IN3 in3);

arguments:

get

Returns the content associated with specified multihash on success OR NULL on error.
public byte [] get(String multihash);

arguments:

’ String | multihash

576 Chapter 13. API Reference Java

Incubed Documentation, Release 2.3

put

Returns the IPFS multihash of stored content on success OR NULL on error.
public String put(String content);

arguments:

| String [content

put

Returns the IPFS multihash of stored content on success OR NULL on error.

public String put(byte [] content);

arguments:
| byte[] [content
13.8 Package in3.ipfs.API
13.8.1 enum Encoding
The enum type contains the following values:
base64 | O
hex 1
utf8 2

13.9 Package in3.utils

13.9.1 class Account

Pojo that represents the result of an ecrecover operation (see: Crypto class).

getAddress

address from ecrecover operation.
public St ring getAddress();

getPublicKey

public key from ecrecover operation.

public St ring getPublicKey();

13.8. Package in3.ipfs.API 577

Incubed Documentation, Release 2.3

13.9.2 class Crypto

a Wrapper for crypto-related helper functions.

Crypto

public Crypto(IN3 in3);
arguments:
signData

returns a signature given a message and a key.

public Signature signData(String msg, String key, SignatureType siglype);

arguments:
String msg
String key
SignatureType | sigType
decryptKey

public St ring decryptKey(String key, St ring passphrase);

arguments:

String | key
String | passphrase

pk2address

extracts the public address from a private key.
public St ring pk2address(String key);

arguments:

] String \ key \

pk2public

extracts the public key from a private key.
public St ring pk2public(St ring key);

arguments:

’ String ‘ key ‘

578 Chapter 13

. API Reference Java

Incubed Documentation, Release 2.3

ecrecover

extracts the address and public key from a signature.
public Account ecrecover(String msg, String sig);

arguments:

String | msg
String | sig

ecrecover

extracts the address and public key from a signature.

public Account ecrecover(String msg, String sig, SignatureType siglype);

arguments:
String msg
String sig
SignatureType | sigType
signData

returns a signature given a message and a key.
public Signature signData(String msg, String key);

arguments:

String | msg
String | key

13.9.3 class JSON

internal helper tool to represent a JSON-Object.

Since the internal representation of JSON in incubed uses hashes instead of name, the getter will creates these hashes.

get

gets the property
public Object get(String prop);

arguments:

| String [prop | the name of the property.

returns: Object : the raw object.

13.9. Package in3.utils 579

Incubed Documentation, Release 2.3

put

adds values.
This function will be called from the JNI-Iterface.
Internal use only!

public void put(int key, Object val);

arguments:

int key | the hash of the key

Object | val | the value object

getLong

returns the property as long
public 1ong getLong(String key);

arguments:

’ String \ key \ the propertyName

returns: 1ong : the long value

getBiglinteger

returns the property as Biglnteger
public BigInteger getBiglnteger(St ring key);

arguments:

| string | key | the propertyName

returns: BigInteger : the Biglnteger value

getStringArray

returns the property as StringArray
public String[] getStringArray(String key);

arguments:

’ String \ key \ the propertyName

returns: String[] : the array or null

580

Chapter 13. API Reference Java

Incubed Documentation, Release 2.3

getString

returns the property as String or in case of a number as hexstring.
public St ring getString(St ring key);

arguments:

’ String \ key \ the propertyName

returns: String : the hexstring

toString

public St ring toString();

hashCode

public int hashCode();

equals

public boolean equals(Ob ject obj);

arguments:

’ Object ‘ obj ‘

asStringArray

casts the object to a String[]
public static String[] asStringArray(Object o);

arguments:
Object n

asBiglinteger

public static BigInteger asBiglnteger(Ob ject o);

arguments:

[Ob3ect [o]

13.9. Package in3.utils 581

Incubed Documentation, Release 2.3

asLong

public static 1ong asLong(Ob ject o);

arguments:
Object n

asint

public static int asInt(Ob ject o);

arguments:
Object n

asString

public static St ring asString(Object o0);

arguments:
[Object [o |

todson

public static String toJson(Object ob);

arguments:

’Object \Ob

|

appendKey

public static void appendKey(StringBuilder sb, String key, Object value);

arguments:
StringBuilder | sb
String key
Object value

13.9.4 class Signature

getMessage

public St ring getMessage();

582

Chapter 13. API Reference Java

Incubed Documentation, Release 2.3

getMessageHash

public St ring getMessageHash();

getSignature

public St ring getSignature();

getR

public String getR();

getS

public String getS();

getV

public 1ong getV();

13.9.5 class TempStorageProvider

a simple Storage Provider storing the cache in the temp-folder.

getltem

returns a item from cache ()

public byte [] getltem(St ring key);

arguments:

| string | key | the key for the item
returns: byte [] : the bytes or null if not found.
setltem

stores a item in the cache.
public void setltem(String key, byte [] content);

arguments:

String | key the key for the item

byte[] | content | the value to store

13.9. Package in3.utils

583

Incubed Documentation, Release 2.3

clear
clear the cache.

public boolean clear();
13.9.6 enum SignatureType

The enum type contains the following values:

eth_sign | 0
raw 1
hash 2

13.9.7 interface Signer

a Interface responsible for signing data or transactions.

prepareTransaction

optiional method which allows to change the transaction-data before sending it.
This can be used for redirecting it through a multisig.
public TransactionRequest prepareTransaction(IN3 in3, TransactionRequest tX);

arguments:

IN3 in3
TransactionRequest | tx

canSign

returns true if the account is supported (or unlocked)
public boolean canSign(St ring address);

arguments:

| string | address

sign

signing of the raw data.
public String sign(String data, St ring address);

arguments:

String | data
String | address

584 Chapter 13. API Reference Java

Incubed Documentation, Release 2.3

13.9.8 interface StorageProvider

Provider methods to cache data.

These data could be nodelists, contract codes or validator changes.
getltem

returns a item from cache ()
public byte [] getltem(St ring key);

arguments:

| String [key | the key for the item

returns: byte [] : the bytes or null if not found.

setltem

stores a item in the cache.
public void setltem(String key, byte [] content);

arguments:

String | key the key for the item

byte[] | content | the value to store

clear

clear the cache.

public boolean clear();

13.9. Package in3.utils

585

Incubed Documentation, Release 2.3

586 Chapter 13. API Reference Java

cHAPTER 14

APl Reference Dotnet

Dotnet bindings and library for in3. Go to our readthedocs page for more on usage.

This library is based on the C version of Incubed.

14.1 Runtimes

Since this is built on top of the native library, it is limited to the followin runtimes (RID)
* 0sx-x64
* linux-x86
¢ linux-x64
* win-x64
¢ linux-arm64

For more information, see Rid Catalog.

14.2 Quickstart

14.2.1 Install with nuget

’dotnet add package Blockchains.In3

587

https://in3.readthedocs.io/en/develop/api-dotnet.html
http://github.com/slockit/in3-c
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog

Incubed Documentation, Release 2.3

14.3 Examples

14.3.1 CallSmartContractFunction

source : in3-c/dotnet/Examples/CallSmartContractFunction//CallSmartContractFunction

using System;

using System.Numerics;

using System.Threading.Tasks;
using In3;

using In3.Configuration;
using In3.Ethl;

using In3.Utils;

namespace CallSmartContractFunction
{
public class Program
{
public static async Task Main ()
{
// Set it to mainnet
IN3 mainnetClient = IN3.ForChain(Chain.Mainnet);
ClientConfiguration cfg = mainnetClient.Configuration;
cfg.Proof = Proof.Standard;

string contractAddress = "0x2736D225£85740£42D17987100dc8d58e9%e16252";
// Create the query transaction
TransactionRequest serverCountQuery = new TransactionRequest ();

serverCountQuery.To = contractAddress;

// Define the function and the parameters to query the total in3 servers

serverCountQuery.Function = "totalServers () :uint256";

serverCountQuery.Params = new object[0];

string[] serverCountResult = (string[])await mainnetClient.Ethl.
—Call (serverCountQuery, BlockParameter.Latest);

BigInteger servers = DataTypeConverter.

—HexStringToBigint (serverCountResult [0]);

for (int i = 0; 1 < servers; i++)

{
TransactionRequest serverDetailQuery = new TransactionRequest () ;
serverDetailQuery.To = contractAddress;

// Define the function and the parameters to query the in3 servers

—detail

serverDetailQuery.Function = "servers (uint256) : (string,address,uint32,
—uint256,uint256,address)";

serverDetailQuery.Params = new object[] { i }; // index of the server

— (uint256) as per solidity function signature

string[] serverDetailResult = (string[])await mainnetClient.Ethl.
—Call (serverDetailQuery, BlockParameter.Latest);
Console.Out.WriteLine ($"Server url: {serverDetailResult[0]}");

(continues on next page)

588 Chapter 14. API Reference Dotnet

https://github.com/slockit/in3-c/blob/master/dotnet/Examples/CallSmartContractFunction//CallSmartContractFunction/Program.cs

Incubed Documentation, Release 2.3

(continued from previous page)

14.3.2 ConnectToEthereum

source : in3-c/dotnet/Examples/ConnectToEthereum//ConnectToEthereum

using System;

using System.Numerics;

using System.Threading.Tasks;
using In3;

namespace ConnectToEthereum
{
class Program
{
static async Task Main ()
{
Console.Out.WriteLine ("Ethereum Main Network");
IN3 mainnetClient = IN3.ForChain (Chain.Mainnet);
BigInteger mainnetLatest = await mainnetClient.Ethl.BlockNumber () ;
BigInteger mainnetCurrentGasPrice = await mainnetClient.Ethl.
—GetGasPrice () ;
Console.Out.WriteLine ($"Latest Block Number: {mainnetLatest}");
Console.Out.WriteLine ($"Gas Price: {mainnetCurrentGasPrice} Wei");

Console.Out.WriteLine ("Ethereum Kovan Test Network");

IN3 kovanClient = IN3.ForChain (Chain.Kovan);

BigInteger kovanlLatest = await kovanClient.Ethl.BlockNumber () ;
BigInteger kovanCurrentGasPrice = await kovanClient.Ethl.GetGasPrice();
Console.Out.WriteLine ($"Latest Block Number: {kovanLatest}");
Console.Out.WritelLine ($"Gas Price: {kovanCurrentGasPrice} Wei'");

Console.Out.WritelLine ("Ethereum Goerli Test Network");

IN3 goerliClient = IN3.ForChain (Chain.Goerli);

BigInteger goerlilatest = await goerliClient.Ethl.BlockNumber () ;
BigInteger clientCurrentGasPrice = await goerliClient.Ethl.GetGasPrice();
Console.Out.WriteLine ($"Latest Block Number: {goerlilatest}");
Console.Out.WriteLine ($"Gas Price: {clientCurrentGasPrice} Wei");

14.3.3 EnsResolver

source : in3-c/dotnet/Examples/EnsResolver//EnsResolver

using System;
using System.Threading.Tasks;
using In3;

namespace EnsResolver

{

(continues on next page)

14.3. Examples 589

https://github.com/slockit/in3-c/blob/master/dotnet/Examples/ConnectToEthereum//ConnectToEthereum/Program.cs
https://github.com/slockit/in3-c/blob/master/dotnet/Examples/EnsResolver//EnsResolver/Program.cs

Incubed Documentation, Release 2.3

(continued from previous page)

public class Program

{

static async Task Main ()

{
IN3 in3 = IN3.ForChain(Chain.Mainnet);

string cryptoKittiesDomain = "cryptokitties.eth";
string resolver = await in3.Ethl.Ens (cryptoKittiesDomain, ENSParameter.

—Resolver) ;
string owner = await in3.Ethl.Ens(cryptoKittiesDomain, ENSParameter.

—Owner) ;

Console.Out.WriteLine ($"The owner of {cryptoKittiesDomain} is {owner},
—resolver is {resolver}.");

}

14.3.4 Ipfs

source : in3-c/dotnet/Examples/Ipfs//Ipfs

using System;

using System.Text;

using System.Threading.Tasks;
using In3;

namespace Ipfs
{
class Program
{
static async Task Main ()
{
// Content to be stored
string toStore = "LOREM_IPSUM";

// Connect to ipfs.
IN3 ipfsClient = IN3.ForChain(Chain.Ipfs);

// Store the hash since it will be needed to fetch the content back.
string hash = await ipfsClient.Ipfs.Put (toStore);

//

byte[] storedBytes = await ipfsClient.Ipfs.Get (hash);

string storedStging = Encoding.UTF8.GetString(storedBytes, 0, storedBytes.
—Length) ;

Console.Out.WriteLine ($"The stored string is: {storedStging}");

14.3.5 Logs

source : in3-c/dotnet/Examples/Logs//Logs

590 Chapter 14. API Reference Dotnet

https://github.com/slockit/in3-c/blob/master/dotnet/Examples/Ipfs//Ipfs/Program.cs
https://github.com/slockit/in3-c/blob/master/dotnet/Examples/Logs//Logs/Program.cs

Incubed Documentation, Release 2.3

using System;

using System.Threading;

using System.Threading.Tasks;
using In3;

using In3.Ethl;

namespace Logs
{
class Program
{
static async Task Main()
{
// Define an upper limit for poll since we dont want our application,
—potentially running forever.
int maxIterations = 500;
int oneSecond = 1000; // in ms

// Connect to mainnet.
IN3 mainnetClient = IN3.ForChain(Chain.Mainnet);

// Create a filter object pointing, in this case, to an "eventful"
—contract address.

LogFilter tetherUsFilter = new LogFilter {Address =
—"0xdAC17F958D2ee523a2206206994597C13D831ec7"};

// Create the filter to be polled for logs.
long filterId = await mainnetClient.Ethl.NewLogFilter (tetherUsFilter);

// Loop to initiate the poll for the logs.
for (int i1 = 0; i < maxIterations; i++)
{
// Query for the log events since the creation of the filter or the
—previous poll (this method in NOT idempotent as it retrieves a diff).
Log[] tetherlLogs = await mainnetClient.Ethl.
—GetFilterChangesFromLogs (filterId);
if (tetherLogs.Length > 0)
{

—

Console.Out.WritelLine ("Logs found: " + tetherLogs.Length);
break;

// Wait before next query.
Thread.Sleep (oneSecond) ;

14.3.6 SendTransaction

source : in3-c/dotnet/Examples/SendTransaction//SendTransaction

using System;

using System.Threading;

using System.Threading.Tasks;
using In3;

(continues on next page)

14.3. Examples 591

https://github.com/slockit/in3-c/blob/master/dotnet/Examples/SendTransaction//SendTransaction/Program.cs

Incubed Documentation, Release 2.3

(continued from previous page)

using In3.Crypto;
using In3.Ethl;

namespace SendTransaction

{

public class Program

{

static async Task Main ()

{
IN3 goerliClient = IN3.ForChain (Chain.Goerli);
string myPrivateKey =
—"0x0829B3C639A3A8F2226C8057F100128D4F7AE8102C92048BA6DE38CF4AD3BC6OF1";
string receivingAddress = "Ox6FA33809667A99A805b610C49EE2042863b1bb83";

// Get the wallet, which is the default signer.
SimpleWallet myAccountWallet = (SimpleWallet)goerliClient.Signer;

string myAccount = myAccountWallet.AddRawKey (myPrivateKey) ;

// Create the transaction request

TransactionRequest transferWei = new TransactionRequest ();
transferWei.To = receivingAddress;

transferWei.From = myAccount;

transferWei.Value = 300;

// Get the current gas prices

long currentGasPrice = await goerliClient.Ethl.GetGasPrice();
transferWei.GasPrice = currentGasPrice;
long estimatedSpentGas = await goerliClient.Ethl.EstimateGas (transferWei,

—BlockParameter.Latest);
Console.Out.WriteLine ($"Estimated gas to spend: {estimatedSpentGas}");

string transactionHash = await goerliClient.Ethl.
—SendTransaction (transferWei) ;

Console.Out.WriteLine ($"Transaction {transactionHash} sent.");

Thread.Sleep (30000);

TransactionReceipt receipt = await goerliClient.Ethl.
—GetTransactionReceipt (transactionHash) ;

Console.Out.WriteLine ($"Transaction {transactionHash} mined on block
—{receipt.BlockNumber}.");

}

14.3.7 Build Examples

To setup and run the example projects, simply run on the respective project folder:

dotnet run

To build all of them, on the solution folder, run:

592 Chapter 14. API Reference Dotnet

Incubed Documentation, Release 2.3

’ dotnet build

14.4 Index

e Account

Address
PublicKey

GetBlockBytes(blockHash)
GetBlockHeader(blockHash)
GetBlockHeaderBytes(blockHash)
GetBlockWithTxData(blockHash)
GetBlockWithTxlds(blockHash)

GetTransaction(txid)

GetTransactionBytes(txid)
DecryptKey(pk,passphrase)
EcRecover(signedData,signature,signatureType)
Pk2Address(pk)

Pk2Public(pk)

Sha3(data)

SignData(msg,pk,sigType)
AbiDecode(signature,encodedData)
AbiEncode(signature,args)

BlockNumber()

Call(request,blockNumber)
ChecksumAddress(address,shouldUseChainld)
Ens(name,type)

EstimateGas(request,blockNumber)
GetBalance(address,blockNumber)
GetBlockByHash(blockHash,shouldIncludeTransactions)
GetBlockByNumber(blockNumber, shouldIncludeTransactions)
GetBlockTransactionCountByHash(blockHash)
GetBlockTransactionCountByNumber(blockNumber)

14.4. Index

593

Incubed Documentation, Release 2.3

GetChainld()

GetCode(address,blockNumber)
GetFilterChangesFromLogs(filterld)
GetFilterLogs(filterld)

GetGasPrice()

GetLogs(filter)
GetStorageAt(address,position,blockNumber)
GetTransactionByBlockHashAndIndex(blockHash,index)
GetTransactionByBlockNumberAndIndex(blockNumber,index)
GetTransactionByHash(transactionHash)
GetTransactionCount(address,blockNumber)
GetTransactionReceipt(transactionHash)
GetUncleByBlockNumberAndIndex(blockNumber,position)
GetUncleCountByBlockHash(blockHash)
GetUncleCountByBlockNumber(blockNumber)
NewBlockFilter()

NewLogFilter(filter)
SendRawTransaction(transactionData)
SendTransaction(tx)

UninstallFilter(filterld)

Get(multihash)

Put(content)

Put(content)

* BaseConfiguration

e Block

Author
Difficulty
ExtraData
GasLimit
Hash
LogsBloom
MixHash
Nonce
Number
ParentHash

ReceiptsRoot

594

Chapter 14. API Reference Dotnet

Incubed Documentation, Release 2.3

Sha3Uncles

Size

StateRoot
Timestamp
TotalDifficulty
TransactionsRoot

Uncles

e BlockHeader

Bits
Chainwork
Confirmations
Difficulty
Hash

Height
Mediantime
Merkleroot
NTx
Nextblockhash
Nonce
Previousblockhash
Time

Version

VersionHex

e BlockParameter

Earliest

Latest

e Block‘l

Size
Tx
Weight

e Chain

Btc
Evan
Ewc

Goerli
Ipfs

14.4. Index

595

Incubed Documentation, Release 2.3

Kovan

Local

Mainnet

Multichain

Tobalaba

- Volta

* ChainConfiguration

— #ctor(chain,clientConfiguration)

— Contract

— NeedsUpdate

Registryld
WhiteList

* ClientConfiguration

— BootWeights

— ChainsConfiguration

— Finality

— IncludeCode
— KeepIn3

— MaxAttempts
— MinDeposit
— NodeLimit

— NodeProps
— Proof

— ReplaceLatestBlock

— RequestCount

- Rpc

— SignatureCount

— Timeout
— UseHttp

e Context

— #ctor(ctx,nativeClient)

— CreateNativeCtx(nativeln3Ptrrpc)

— Dispose()

NodesConfiguration

WhiteListContract

AutoUpdateList

596

Chapter 14. API Reference Dotnet

Incubed Documentation, Release 2.3

Execute()
FromRpc(wrapper,rpc)
GetErrorMessage()
GetLastWaiting()
GetResponse()
GetType()
HandleRequest()
HandleSign()

IsValid()
ReportError()

* DataTypeConverter

HexStringToBigint(source)

* DefaultTransport

#ctor()
Handle(url,payload)

o ENSParameter

Addr
Hash
Owner

Resolver

#ctor(chainld)
Btc
Configuration
Crypto

Ethl

Ipfs

Signer
Storage
Transport
Finalize()
ForChain(chain)

SendRpc(method,args,in3)

* InMemoryStorage

#ctor()
Clear()

14.4. Index

597

Incubed Documentation, Release 2.3

— Getltem(key)

— Setltem(key,content)

— Address
— BlockHash
— BlockNumber
— Data
— Logindex
— Removed
— Topics
— TransactionHash
— TransactionIndex
- Type
* LogFilter
— #ctor()
Address
BlockHash

FromBlock
ToBlock

— Topics
* NodeConfiguration

#ctor(config)
Address

— Props

- Url
e Proof

— Full

— None

— Standard
* Props
NodePropArchive

NodePropBinary

NodePropData

NodePropHttp

— NodePropMinblockheight

— NodePropMultichain

598

Chapter 14. API Reference Dotnet

Incubed Documentation, Release 2.3

— NodePropOnion
— NodePropProof
— NodePropSigner
— NodePropStats
* RpcException
* ScriptPubKey
— Addresses
— Asm

— Hex

ReqSigs
- Type
* ScriptSig
— Asm
— Hex
» SignatureType
— EthSign
— Hash
- Raw
 SignedData

— Message

MessageHash
- R
-S

Signature
-V
» Signer
— CanSign(account)
— PrepareTransaction()
— Sign(data,account)

o SimpleWallet

#ctor(in3)

AddRawKey(privateKey)

CanSign(address)

PrepareTransaction(tx)

Sign(data,address)

» Storage

14.4. Index 599

Incubed Documentation, Release 2.3

— Setltem(key,content)

Clear()
Getltem(key)

e Transaction

e Transaction

Blockhash
Blocktime
Confirmations
Hash

Hex
Locktime
Size

Time

Txid
Version
Vin

Vout

Vsize
Weight
BlockHash
BlockNumber
Chainld
Creates
From

Gas
GasPrice
Hash
Input
Nonce
PublicKey
R

Raw

S
StandardV
To

Transactionlndex

600

Chapter 14. API Reference Dotnet

Incubed Documentation, Release 2.3

-V
— Value
e TransactionBlock
— Transactions
 TransactionHashBlock
— Transactions

* Transactionlnput

ScriptSig

Sequence
- Txid

Txinwitness

- Yout
* TransactionOutput
- N
— ScriptPubKey
— Value
* TransactionReceipt
— BlockHash
— BlockNumber
— ContractAddress
— From
— GasUsed
- Logs
— LogsBloom
— Root
— Status
- To
— TransactionHash
— TransactionIndex
» TransactionRequest
— Data

— From

Function
- Gas
— GasPrice

— Nonce

14.4. Index 601

Incubed Documentation, Release 2.3

— Params

- To

- Value
* Transport

— Handle(url,payload)

14.4.1 Account type

In3.Crypto

Composite entity that holds address and public key. It represents and Ethereum acount. Entity returned from EcRe-
cover.

Address property

The address.

PublicKey property

The public key.

14.4.2 Api type

In3.Btc

API for handling BitCoin data. Use it when connected to Bfc.

14.4.3 Api type

In3.Crypto

Class that exposes utility methods for cryptographic utilities. Relies on /N3 functionality.

14.4.4 Api type

In3.Ethl

Module based on Ethereum’s api and web3. Works as a general parent for all Ethereum-specific operations.

14.4.5 Api type

In3.Ipfs

API for ipfs realted methods. To be used along with Ipfs on IN3. Ipfs stands for and is a peer-to-peer hypermedia
protocol designed to make the web faster, safer, and more open.

602 Chapter 14. API Reference Dotnet

Incubed Documentation, Release 2.3

GetBlockBytes(blockHash) method

Retrieves the serialized block in bytes.

Returns

The bytes of the block.

Parameters

» System.String blockHash - The hash of the Block.

Example

byte[] blockBytes = in3.Btc.GetBlockBytes (
—"000000000000000000064ba7512ecc70cabd7edl7e31c06£2205d5ecdadded22") ;

GetBlockHeader(blockHash) method

Retrieves the blockheader.

Returns

The Block header.

Parameters

¢ System.String blockHash - The hash of the Block.

Example

BlockHeader header = in3.Btc.GetBlockHeader (
—"0000000000000000000cd3c5d7638014e78a5fba33be5fa5chbl0ef9£03d99%9e60") ;

GetBlockHeaderBytes(blockHash) method

Retrieves the byte array representing teh serialized blockheader data.

Returns

The Block header in bytes.

14.4. Index

603

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

Incubed Documentation, Release 2.3

Parameters

e System.String blockHash - The hash of the Block.

Example

byte[] header = in3.Btc.GetBlockHeaderBytes (
—"0000000000000000000cd3c5d7638014e78a5fba33be5fabchbl0ef9£03d99%9e60") ;

GetBlockWithTxData(blockHash) method

Retrieves the block including the full transaction data. Use GetBlockWithTxlIds for only the transaction ids.

Returns

The block of type Block‘l.

Parameters

» System.String blockHash - The hash of the Block.

Example

Block{Transaction} block = in3.Btc.GetBlockWithTxData (
—"000000000000000000064ba7512ecc70cabd7edl7e31c06f2205d5ecdadded22") ;
Transaction tl = block.Tx[0];

GetBlockWithTxlds(blockHash) method

Retrieves the block including only transaction ids. Use GetBlockWithTxData for the full transaction data.

Returns

The block of type Block‘I.

Parameters

» System.String blockHash - The hash of the Block.

Example

Block{string} block = in3.Btc.GetBlockWithTxIds (
—"000000000000000000064ba7512ecc70cabd7edl7e31c06£2205d5ecdadded22") ;
string tl = block.Tx[0];

604 Chapter 14. API Reference Dotnet

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

Incubed Documentation, Release 2.3

GetTransaction(txid) method

Retrieves the transaction and returns the data as json.

Returns

The transaction object.

Parameters

¢ System.String txid - The transaction Id.

Example

Transaction desiredTransaction = 1in3.Btc.GetTransaction (
—"1427¢7d1698e61afe061950226f1¢c149990b8clelbl57320b0cd4acf7deb5605d") ;

GetTransactionBytes(ixid) method

Retrieves the serialized transaction (bytes).

Returns

The byte array for the Transaction.

Parameters

e System.String txid - The transaction Id.

Example

byte[] serializedTransaction = in3.Btc.GetTransactionBytes (
—"1427c¢7d1698e61afe061950226£1c149990b8clelbl57320b0cdact7deb5605d");

DecryptKey(pk,passphrase) method

Decryot an encrypted private key.

Returns

Decrypted key.

14.4. Index 605

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

Incubed Documentation, Release 2.3

Parameters

e System.String pk - Private key.

* System.String passphrase - Passphrase whose pk.

EcRecover(signedData,signature,signatureType) method
Recovers the account associated with the signed data.
Returns

The account.

Parameters

e System.String signedData - Data that was signed with.
e System.String signature - The signature.

e In3.Crypto.SignatureType signatureType - One of SignatureType.

Pk2Address(pk) method

Derives an address from the given private (pk) key using SHA-3 algorithm.

Returns

The address.

Parameters

» System.String pk - Private key.

Pk2Public(pk) method

Derives public key from the given private (pk) key using SHA-3 algorithm.

Returns

The public key.

Parameters

» System.String pk - Private key.

606 Chapter 14. API Reference Dotnet

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

Incubed Documentation, Release 2.3

Sha3(data) method
Hash the input data using sha3 algorithm.
Returns

Hashed output.

Parameters
» System.String data - Content to be hashed.
SignData(msg,pk,sigType) method
Signs the data msg with a given private key. Refer to SignedData for more information.
Returns

The signed data.

Parameters

e System.String msg - Data to be signed.
e System.String pk - Private key.
* In3.Crypto.SignatureType sigType - Type of signature, one of SignatureType.

AbiDecode(signature,encodedData) method

ABI decoder. Used to parse rpc responses from the EVM. Based on the Solidity specification .

Returns

The decoded argugments for the function call given the encded data.

Parameters

» System.String signature - Function signature i.e. or . In case of the latter, the function signature will be ignored
and only the return types will be parsed.

» System.String encodedData - Abi encoded values. Usually the string returned from a rpc to the EVM.
AbiEncode(signature,args) method
ABI encoder. Used to serialize a rpc to the EVM. Based on the Solidity specification . Note: Parameters refers to

the list of variables in a method declaration. Arguments are the actual values that are passed in when the method is
invoked. When you invoke a method, the arguments used must match the declaration’s parameters in type and order.

14.4. Index 607

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

Incubed Documentation, Release 2.3

Returns

The encoded data.

Parameters

e System.String signature - Function signature, with parameters. i.e. , can contain the return types but will be
ignored.

» System.Object[] args - Function parameters, in the same order as in passed on to .

BlockNumber() method

Returns the number of the most recent block the in3 network can collect signatures to verify. Can be changed by
ReplaceLatestBlock. If you need the very latest block, change SignatureCount to 0.

Returns

The number of the block.

Parameters

This method has no parameters.

Call(request,blockNumber) method

Calls a smart-contract method. Will be executed locally by Incubed’s EVM or signed and sent over to save the
state changes. Check https://ethereum.stackexchange.com/questions/3514/how-to-call-a-contract-method-using-the-
eth-call-json-rpc-api for more.

Returns

Ddecoded result. If only one return value is expected the Object will be returned, if not an array of objects will be the
result.

Parameters

e In3.Ethl.TransactionRequest request - The transaction request to be processed.
» System.Numerics.BigInteger blockNumber - Block number or Latest or Earliest.
ChecksumAddress(address,shouldUseChainld) method

Will convert an upper or lowercase Ethereum address to a checksum address, that uses case to encode values. See
EIP55.

608 Chapter 14. API Reference Dotnet

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Object%5B%5D
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Numerics.BigInteger
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-55

Incubed Documentation, Release 2.3

Returns

EIP-55 compliant, mixed-case address.

Parameters
e System.String address - Ethereum address.

e System.Nullable{System.Boolean} shouldUseChainld - If t rue, the chain id is integrated as well. Default
being false.

Ens(name,type) method
Resolves ENS domain name.
Returns

The resolved entity for the domain.

Parameters

¢ System.String name - ENS domain name.

e In3.ENSParameter type - One of ENSParameter.

Remarks

The actual semantics of the returning value changes according to type.

EstimateGas(request,blockNumber) method
Gas estimation for transaction. Used to fill transaction.gas field. Check RawTransaction docs for more on gas.
Returns

Estimated gas in Wei.

Parameters

e In3.Ethl.TransactionRequest request - The transaction request whose cost will be estimated.

» System.Numerics.Biglnteger blockNumber - Block number or Latest or Earliest.

GetBalance(address,blockNumber) method

Returns the balance of the account of given address.

14.4. Index 609

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Nullable
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Numerics.BigInteger

Incubed Documentation, Release 2.3

Returns

The current balance in wei.

Parameters

e System.String address - Address to check for balance.

e System.Numerics.Biglnteger blockNumber - Block number or Latest or Earliest.

GetBlockByHash(blockHash,shouldIincludeTransactions) method

Blocks can be identified by root hash of the block merkle tree (this), or sequential number in which it was mined
GetBlockByNumber.

Returns

The Block of the requested (if exists).

Parameters

¢ System.String blockHash - Desired block hash.

* System.Boolean shouldIncludeTransactions - If true, returns the full transaction objects, otherwise only its
hashes. The default value is false.

Remarks

Returning Block must be cast to TransactionBlock or TransactionHashBlock to access the transaction data.

GetBlockByNumber(blockNumber,shouldincludeTransactions) method

Blocks can be identified by sequential number in which it was mined, or root hash of the block merkle tree GetBlock-
ByHash.

Returns

The Block of the requested (if exists).

Parameters

e System.Numerics.Biglnteger blockNumber - Desired block number or Latest or Earliest.

¢ System.Boolean shouldIncludeTransactions - If t rue, returns the full transaction objects, otherwise only its
hashes. The default value is t rue.

610 Chapter 14. API Reference Dotnet

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Numerics.BigInteger
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Boolean
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Numerics.BigInteger
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Boolean

Incubed Documentation, Release 2.3

Example

TransactionBlock latest = (TransactionBlock) _client.Ethl.
—GetBlockByNumber (BlockParameter.Latest, true);
TransactionHashBlock earliest = (TransactionHashBlock) _client.Ethl.

—GetBlockByNumber (BlockParameter.Earliest, false);

Remarks

Returning Block must be cast to TransactionBlock or TransactionHashBlock to access the transaction data.

GetBlockTransactionCountByHash(blockHash) method

The total transactions on a block. See also GetBlockTransactionCountByNumber.

Returns

The number (count) of Transaction.

Parameters

¢ System.String blockHash - Desired block hash.

GetBlockTransactionCountByNumber(blockNumber) method

The total transactions on a block. See also GetBlockTransactionCountByHash.

Returns

The number (count) of Transaction.

Parameters

» System.Numerics.BigInteger blockNumber - Block number or Latest or Earliest.

GetChainld() method

Get the Chain which the client is currently connected to.

Returns

The Chain.

14.4. Index 611

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Numerics.BigInteger

Incubed Documentation, Release 2.3

Parameters

This method has no parameters.

GetCode(address,blockNumber) method
Smart-Contract bytecode in hexadecimal. If the account is a simple wallet the function will return ‘0x’.
Returns

Smart-Contract bytecode in hexadecimal.

Parameters

» System.String address - Ethereum address.

e System.Numerics.BigInteger blockNumber - Block number or Latest or Earliest.

GetFilterChangesFromLogs(filterld) method
Retrieve the logs for a certain filter. Logs marks changes of state on the chan for events. Equivalent to GetFilterLogs.
Returns

Array of logs which occurred since last poll.

Parameters

 System.Int64 filterId - Id returned during the filter creation.

Remarks

Since the return is the since last poll, executing this multiple times changes the state making this a “non-idempotent”
getter.

GetFilterLogs(filterld) method

Retrieve the logs for a certain filter. Logs marks changes of state on the blockchain for events. Equivalent to GetFil-
terChangesFromLogs.

Returns

Array of logs which occurred since last poll.

612 Chapter 14. API Reference Dotnet

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Numerics.BigInteger
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Int64

Incubed Documentation, Release 2.3

Parameters

e System.Int64 filterId - Id returned during the filter creation.

Remarks

Since the return is the Log [] since last poll, executing this multiple times changes the state making this a “non-
idempotent” getter.

GetGasPrice() method
The current gas price in Wei (1 ETH equals 1000000000000000000 Wei).
Returns

The gas price.

Parameters

This method has no parameters.

GetLogs(filter) method

Retrieve the logs for a certain filter. Logs marks changes of state on the blockchain for events. Unlike GetFilter-
ChangesFromLogs or GetFilterLogs this is made to be used in a non-incremental manner (aka no poll) and will return
the Logs that satisfy the filter condition.

Returns

Logs that satisfy the filter.

Parameters

e In3.Ethl.LogFilter filter - Filter conditions.

GetStorageAt(address,position,blockNumber) method

Stored value in designed position at a given address. Storage can be used to store a smart contract state, constructor
or just any data. Each contract consists of a EVM bytecode handling the execution and a storage to save the state of
the contract.

Returns

Stored value in designed position.

14.4. Index 613

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Int64

Incubed Documentation, Release 2.3

Parameters

e System.String address - Ethereum account address.
e System.Numerics.BigInteger position - Position index, 0x0 up to 100.

» System.Numerics.BigInteger blockNumber - Block number or Latest or Earliest.

GetTransactionByBlockHashAndIndex(blockHash,index) method

Transactions can be identified by root hash of the transaction merkle tree (this) or by its position in the block transac-
tions merkle tree. Every transaction hash is unique for the whole chain. Collision could in theory happen, chances are
67148E-63%. See also GetTransactionByBlockNumberAndIndex.

Returns

The Transaction (if it exists).

Parameters

e System.String blockHash - Desired block hash.

e System.Int32 index - The index of the Transaction in a Block

GetTransactionByBlockNumberAndindex(blockNumber,index) method

Transactions can be identified by root hash of the transaction merkle tree (this) or by its position in the block transac-
tions merkle tree. Every transaction hash is unique for the whole chain. Collision could in theory happen, chances are
67148E-63%.

Returns

The Transaction (if it exists).

Parameters

» System.Numerics.BigInteger blockNumber - Block number or Latest or Earliest.

e System.Int32 index - The index of the Transaction in a Block

GetTransactionByHash(transactionHash) method

Transactions can be identified by root hash of the transaction merkle tree (this) or by its position in the block transac-
tions merkle tree. Every transaction hash is unique for the whole chain. Collision could in theory happen, chances are
67148E-63%.

Returns

The Transaction (if it exists).

614 Chapter 14. API Reference Dotnet

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Numerics.BigInteger
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Numerics.BigInteger
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Int32
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Numerics.BigInteger
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Int32

Incubed Documentation, Release 2.3

Parameters

e System.String transactionHash - Desired transaction hash.

GetTransactionCount(address,blockNumber) method

Number of transactions mined from this address. Used to set transaction nonce. Nonce is a value that will make a
transaction fail in case it is different from (transaction count + 1). It exists to mitigate replay attacks.

Returns

Number of transactions mined from this address.

Parameters

» System.String address - Ethereum account address.

¢ System.Numerics.Biglnteger blockNumber - Block number or Latest or Earliest.

GetTransactionReceipt(transactionHash) method

After a transaction is received the by the client, it returns the transaction hash. With it, it is possible to gather the
receipt, once a miner has mined and it is part of an acknowledged block. Because how it is possible, in distributed
systems, that data is asymmetric in different parts of the system, the transaction is only “final” once a certain number
of blocks was mined after it, and still it can be possible that the transaction is discarded after some time. But, in general
terms, it is accepted that after 6 to 8 blocks from latest, that it is very likely that the transaction will stay in the chain.

Returns

The mined transaction data including event logs.

Parameters

¢ System.String transactionHash - Desired transaction hash.

GetUncleByBlockNumberAndindex(blockNumber,position) method

Retrieve the of uncle of a block for the given blockNumber and a position. Uncle blocks are valid blocks and are
mined in a genuine manner, but get rejected from the main blockchain.

Returns

The uncle block.

14.4. Index 615

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Numerics.BigInteger
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

Incubed Documentation, Release 2.3

Parameters

» System.Numerics.BigInteger blockNumber - Block number or Latest or Earliest.

* System.Int32 position - Position of the block.

GetUncleCountByBlockHash(blockHash) method

Retrieve the total of uncles of a block for the given blockHash. Uncle blocks are valid blocks and are mined in a
genuine manner, but get rejected from the main blockchain. See GetUncleCountByBlockNumber.

Returns

The number of uncles in a block.

Parameters

¢ System.String blockHash - Desired block hash.

GetUncleCountByBlockNumber(blockNumber) method

Retrieve the total of uncles of a block for the given b1 ockNumber. Uncle blocks are valid and are mined in a genuine
manner, but get rejected from the main blockchain. See GetUncleCountByBlockHash.

Returns

The number of uncles in a block.

Parameters

» System.Numerics.BigInteger blockNumber - Block number or Latest or Earliest.

NewBlockFilter() method

Creates a filter in the node, to notify when a new block arrives. To check if the state has changed, call GetFilter-
ChangesFromLogs. Filters are event catchers running on the Ethereum Client. Incubed has a client-side implementa-
tion. An event will be stored in case it is within to and from blocks, or in the block of blockhash, contains a transaction
to the designed address, and has a word listed on topics.

Returns

The filter id.

Parameters

This method has no parameters.

616 Chapter 14. API Reference Dotnet

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Numerics.BigInteger
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Int32
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Numerics.BigInteger

Incubed Documentation, Release 2.3

Remarks

Use the returned filter id to perform other filter operations.

NewLogFilter(filter) method

Creates a filter object, based on filter options, to notify when the state changes (logs). To check if the state has changed,
call GetFilterChangesFromLogs. Filters are event catchers running on the Ethereum Client. Incubed has a client-side
implementation. An event will be stored in case it is within to and from blocks, or in the block of blockhash, contains
a transaction to the designed address, and has a word listed on topics.

Returns

The filter id.

Parameters

e In3.Ethl.LogFilter filter - Model that holds the data for the filter creation.

Remarks

Use the returned filter id to perform other filter operations.
SendRawTransaction(transactionData) method
Sends a signed and encoded transaction.

Returns

Transaction hash, used to get the receipt and check if the transaction was mined.

Parameters

e System.String transactionData - Signed keccak hash of the serialized transaction.

Remarks

Client will add the other required fields, gas and chaind id.

SendTransaction(tx) method

Signs and sends the assigned transaction. The Signer used to sign the transaction is the one set by Signer. Transactions
change the state of an account, just the balance, or additionally, the storage and the code. Every transaction has a cost,
gas, paid in Wei. The transaction gas is calculated over estimated gas times the gas cost, plus an additional miner fee,
if the sender wants to be sure that the transaction will be mined in the latest block.

14.4. Index 617

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

Incubed Documentation, Release 2.3

Returns

Transaction hash, used to get the receipt and check if the transaction was mined.

Parameters

 In3.Ethl.TransactionRequest tx - All information needed to perform a transaction.

Example

SimpleWallet wallet = (SimpleWallet) client.Signer;
TransactionRequest tx = new TransactionRequest () ;
tx.From = wallet.AddRawKey (pk);;

tx.To = "0x3940256B93c4BEOB1d5931A6A036608c25706B0c";
tx.Gas = 21000;

tx.Value = 100000000;
client.Ethl.SendTransaction (tx);

UninstallFilter(filterld) method

Uninstalls a previously created filter.

Returns

The result of the operation, t rue on success or false on failure.

Parameters

e System.Int64 filterId - The filter id returned by NewBlockFilter.

Get(multihash) method

Returns the content associated with specified multihash on success OR on error.

Returns

The content that was stored by Put or Put.

Parameters

¢ System.String multihash - The multihash.

Put(content) method

Stores content on ipfs.

618 Chapter 14. API Reference Dotnet

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Int64
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

Incubed Documentation, Release 2.3

Returns

The multihash.

Parameters

» System.String content - The content that will be stored via ipfs.
Put(content) method
Stores content on ipfs. The content is encoded as base64 before storing.
Returns

The multihash.

Parameters

» System.Byte[] content - The content that will be stored via ipfs.

14.4.6 BaseConfiguration type

In3.Configuration

Base class for all configuration classes.

14.4.7 Block type

In3.Ethl

Class that represents as Ethereum block.
Author property

The miner of the block.

Difficulty property

Dificulty of the block.

ExtraData property

Extra data.

GasLimit property

Gas limit.

14.4. Index 619

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Byte%5B%5D

Incubed Documentation, Release 2.3

Hash property

The block hash.

LogsBloom property

The logsBloom data of the block.

MixHash property

The mix hash of the block. (only valid of proof of work).

Nonce property

The nonce.

Number property

The index of the block.

ParentHash property

The parent block ‘s hash.

ReceiptsRoot property

The roothash of the merkletree containing all transaction receipts of the block.

Sha3Uncles property

The roothash of the merkletree containing all uncles of the block.

Size property

Size of the block.

StateRoot property

The roothash of the merkletree containing the complete state.

Timestamp property

Epoch timestamp when the block was created.

TotalDifficulty property

Total Difficulty as a sum of all difficulties starting from genesis.

620 Chapter 14. API Reference Dotnet

Incubed Documentation, Release 2.3

TransactionsRoot property

The roothash of the merkletree containing all transaction of the block.

Uncles property

List of uncle hashes.

14.4.8 BlockHeader type

In3.Btc
A Block header.

Bits property

Bits (target) for the block as hex.

Chainwork property

Total amount of work since genesis.

Confirmations property

Number of confirmations or blocks mined on top of the containing block.

Difficulty property

Difficulty of the block.

Hash property

The hash of the blockheader.

Height property

Block number.

Mediantime property

Unix timestamp in seconds since 1970.

Merkleroot property

Merkle root of the trie of all transactions in the block.

14.4. Index

621

Incubed Documentation, Release 2.3

NTX property

Number of transactions in the block.

Nextblockhash property

Hash of the next blockheader.

Nonce property

Nonce-field of the block.

Previousblockhash property

Hash of the parent blockheader.

Time property

Unix timestamp in seconds since 1970.

Version property

Used version.

VersionHex property

Version as hex.

14.4.9 BlockParameter type

In3

Enum-like class that defines constants to be used with Api.

Earliest property

Genesis block.

Latest property
Constant associated with the latest mined block in the chain.
Remarks

While the parameter itself is constant the current “latest” block changes everytime a new block is mined. The result of
the operations are also related to ReplacelLatestBlock on ClientConfiguration.

622 Chapter 14. API Reference Dotnet

Incubed Documentation, Release 2.3

14.4.10 Block‘1 type

In3.Btc
A Block.

Size property

Size of this block in bytes.

TX property

Transactions or Transaction ids of a block. GetBlockWithTxData or GetBlockWithTxIds.

Weight property

Weight of this block in bytes.

14.4.11 Chain type

In3

Represents the multiple chains supported by Incubed.

Btc constants

Bitcoin chain.

Evan constants

Evan testnet.

Ewc constants

Ewf chain.

Goerli constants

Goerli testnet.

Ipfs constants

Ipfs (InterPlanetary File System).

Kovan constants

Kovan testnet.

14.4. Index

623

Incubed Documentation, Release 2.3

Local constants

Local client.

Mainnet constants

Ethereum mainnet.

Multichain constants

Support for multiple chains, a client can then switch between different chains (but consumes more memory).

Tobalaba constants

Tobalaba testnet.

Volta constants

Volta testnet.

14.4.12 ChainConfiguration type

In3.Configuration

Class that represents part of the configuration to be applied on the IN3 (in particular to each chain). This is a child of
ClientConfiguration and have many NodeConfiguration.

#ctor(chain,clientConfiguration) constructor
Constructor.
Parameters

* [n3.Chain chain - One of Chain. The chain that this configuration is related to.

e In3.Configuration.ClientConfiguration clientConfiguration - The configuration for the client whose the chain
configuration belongs to.

Example

ChainConfiguration goerliConfiguration = new ChainConfiguration(Chain.Goerli,
—~in3Client.Configuration);

Contract property

Incubed registry contract from which the list was taken.

624 Chapter 14. API Reference Dotnet

Incubed Documentation, Release 2.3

NeedsUpdate property

Preemptively update the node list.

NodesConfiguration property

Getter for the list of elements that represent the configuration for each node.

Remarks

This is a read-only property. To add configuration for nodes, Use NodeConfiguration constructor.

Registryld property

Uuid of this incubed network. one chain could contain more than one incubed networks.

WhiteList property

Node addresses that constitute the white list of nodes.

WhiteListContract property

Address of whiteList contract.

14.4.13 ClientConfiguration type

In3.Configuration

Class that represents the configuration to be applied on /N3. Due to the 1-to-1 relationship with the client, this class
should never be instantiated. To obtain a reference of the client configuration use Configuration instead.

Remarks

Use in conjunction with ChainConfiguration and NodeConfiguration.

AutoUpdateList property

If t rue the nodelist will be automatically updated. False may compromise data security.

BootWeights property

if true, the first request (updating the nodelist) will also fetch the current health status and use it for blacklisting
unhealthy nodes. This is used only if no nodelist is availabkle from cache.

ChainsConfiguration property

Configuration for the chains. Read-only attribute.

14.4. Index 625

Incubed Documentation, Release 2.3

Finality property

Remarks

Beware that the semantics of the values change greatly from chain to chain. The value of 8 would mean 8 blocks
mined on top of the requested one while with the POW algorithm while, for POA, it would mean 8% of validators.

IncludeCode property

Code is included when sending eth_call-requests.

Keepln3 property

Tthe in3-section (custom node on the RPC call) with the proof will also returned.

MaxAttempts property

Maximum times the client will retry to contact a certain node.

MinDeposit property

Only nodes owning at least this amount will be chosen to sign responses to your requests.

NodeLimit property

Limit nodes stored in the client.

NodeProps property

Props define the capabilities of the nodes. Accepts a combination of values.

Example

clientConfiguration.NodeProps = Props.NodePropProof | Props.NodePropArchive;

Proof property

One of Proof. Full gets the whole block Patricia-Merkle-Tree, Standard only verifies the specific tree branch concern-
ing the request, None only verifies the root hashes, like a light-client does.

ReplaceLatestBlock property

Distance considered safe, consensus wise, from the very latest block. Higher values exponentially increases state
finality, and therefore data security, as well guaranteeded responses from in3 nodes.

626 Chapter 14. API Reference Dotnet

Incubed Documentation, Release 2.3

RequestCount property

Useful when SignatureCount is less then 1. The client will check for consensus in responses.

Rpc property

Setup an custom rpc source for requests by setting chain to Local and proof to None.

SignatureCount property

Node signatures attesting the response to your request. Will send a separate request for each.
Example

When set to 3, 3 nodes will have to sign the response.

Timeout property

Milliseconds before a request times out.

UseHttp property

Disable ssl on the Http connection.

14.4.14 Context type

In3.Context

Acts as the main orchestrator for the execution of an rpc. Holds a reference to the native context (ctx) and wraps
behavior around it.

#ctor(ctx,nativeClient) constructor
Standard constructor, private so people use FromRpc.
Parameters

e System.IntPtr etx - The native rpc context.

* In3.Native.NativeClient nativeClient - Object that encapsulates the native client.

CreateNativeCtx(nativeln3Ptr,rpc) method

Method to manage the creation of the native ctx request.

14.4. Index 627

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.IntPtr

Incubed Documentation, Release 2.3

Returns

Native rpc pointer

Parameters

¢ System.IntPtr nativeIn3Ptr - Native client pointer.

» System.String rpe - The rpc request

Exceptions

| Name | Description |

| In3.Exceptions.RpcException | |

Dispose() method

Destructor method for the native ctx encapsulated by the Context object.

Parameters

This method has no parameters.

Execute() method

Proxy to in3_ctx_execute, every invocation generates a new state.

Returns

The state as computed by in3_ctx_execute.

Parameters

This method has no parameters.

FromRpc(wrapper,rpc) method

Factory-like method to build a Context object from an rpc request.

Returns

An instance of context.

628 Chapter 14. API Reference Dotnet

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.IntPtr
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

Incubed Documentation, Release 2.3

Parameters

* In3.Native.NativeClient wrapper - The object that encapsulates the native client pointer.

e System.String rpe - The rpc request

GetErrorMessage() method

Retrieve the error result on the context.

Returns

A string describing the encountered error.

Parameters

This method has no parameters.

GetLastWaiting() method

Method responsible to fetch the pending context references in the current context.

Returns

A context object.

Parameters

This method has no parameters.

GetResponse() method

Method to get the consolidated response of a request.

Returns

The final result.

Parameters

This method has no parameters.

GetType() method

Method to get the consolidated response of a request.

14.4. Index 629

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

Incubed Documentation, Release 2.3

Returns

The final result.

Parameters

This method has no parameters.

HandleRequest() method

Handle rpc request in an asynchronous manner.

Parameters

This method has no parameters.

HandleSign() method

Handle signing request in an asynchronous manner.

Parameters

This method has no parameters.

IsValid() method

Conditional to verify if the encapsulated pointer actually points to something.

Returns

if its valid, false if it is not.

Parameters

This method has no parameters.

ReportError() method

Setter for the error on the current context. Proxies it to the native context.

Parameters

This method has no parameters.

630 Chapter 14. API Reference Dotnet

Incubed Documentation, Release 2.3

14.4.15 DataTypeConverter type

In3.Utils

General util class for conversion between blockchain types.

HexStringToBigint(source) method

Converts a zero-prefixed hex (e.g.: 0x05) to Biglnteger

Returns

The number representation of source.
Parameters
* System.String source - The hex number string.

14.4.16 DefaultTransport type

In3.Transport

Basic implementation for synchronous http transport for Incubed client.

#ctor() constructor

Standard construction.

Parameters

This constructor has no parameters.

Handle(url,payload) method

Method that handles, sychronously the http requests.

Returns

The http json response.

Parameters

» System.String url - The url of the node.

e System.String payload - Json for the body of the POST request to the node.

14.4. Index 631

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Numerics.BigInteger
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

Incubed Documentation, Release 2.3

14.4.17 ENSParameter type

In3

Defines the kind of entity associated with the ENS Resolved. Used along with Ens.
Addr property

Address.

Hash property

Hash.

Owner property

Owner.

Resolver property

Resolver.

14.4.18 IN3 type

In3

Incubed network client. Connect to the blockchain via a list of bootnodes, then gets the latest list of nodes in the
network and ask a certain number of the to sign the block header of given list, putting their deposit at stake. Once with
the latest list at hand, the client can request any other on-chain information using the same scheme.

#ctor(chainld) constructor
Standard constructor, use ForChain instead.
Parameters

¢ In3.Chain chainld - The chainld to connect to.

Btc property

Gets Api object.

Configuration property

Gets ClientConfiguration object. Any changes in the object will be automaticaly applied to the client before each
method invocation.

632 Chapter 14. API Reference Dotnet

Incubed Documentation, Release 2.3

Crypto property

Gets Api object.

Eth1 property

Gets Api object.

Ipfs property

Gets Api object.

Signer property

Get or Sets Signer object. If not set SimpleWallet will be used.

Storage property

Get or Sets Srorage object. If not set InMemoryStorage will be used.

Transport property

Gets or sets Transport object. If not set DefaultTransport will be used.

Finalize() method

Finalizer for the client.

Parameters

This method has no parameters.

ForChain(chain) method

Creates a new instance of IN3.

Returns

An Incubed instance.

Parameters

e In3.Chain chain - Chain that Incubed will connect to.

14.4. Index 633

Incubed Documentation, Release 2.3

Example

IN3 client = IN3.ForChain(Chain.Mainnet);

SendRpc(method,args,in3) method
Method used to communicate with the client. In general, its preferably to use the APL
Returns

The result of the Rpc operation as JSON.

Parameters

e System.String method - Rpc method.
* System.Object[] args - Arguments to the operation.

 System.Collections.Generic.Dictionary { System.String,System.Object} in3 - Internal parameters to be repassed
to the server or to change the client behavior.

14.4.19 InMemoryStorage type

In3.Storage

Default implementation of Storage. It caches all cacheable data in memory.

#ctor() constructor

Standard constructor.

Parameters

This constructor has no parameters.

Clear() method

Empty the in-memory cache.

Returns

Result for the clear operation.

Parameters

This method has no parameters.

634 Chapter 14. API Reference Dotnet

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Object%5B%5D
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Collections.Generic.Dictionary

Incubed Documentation, Release 2.3

Getltem(key) method

Fetches the data from memory.

Returns

The cached value as abyte[].

Parameters

» System.String key - Key
Setltem(key,content) method
Stores a value in memory for a given key.
Parameters

* System.String Key - A unique identifier for the data that is being cached.

» System.Byte[] content - The value that is being cached.

14.4.20 Log type

In3.Ethl

Logs marks changes of state on the blockchain for events. The Log is a data object with information from logs.

Address property

Address from which this log originated.

BlockHash property

Hash of the block this log was in. null when its pending log.

BlockNumber property

Number of the block this log was in.

Data property

Data associated with the log.

Logindex property

Index position in the block.

14.4. Index 635

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Byte%5B%5D

Incubed Documentation, Release 2.3

Removed property

Flags log removal (due to chain reorganization).

Topics property

Array of 0 to 4 32 Bytes DATA of indexed log arguments. (In solidity: The first topic is the hash of the signature of
the event (e.g. Deposit(address,bytes32,uint256)), except you declared the event with the anonymous specifier).

TransactionHash property

Hash of the transactions this log was created from. null when its pending log.

Transactionlndex property

index position log was created from.

Type property

Address from which this log originated.

14.4.21 LogFilter type

In3.Ethl

Filter configuration for search logs. To be used along with the Api filter and methods.

#ctor() constructor

Standard constructor.

Parameters

This constructor has no parameters.

Address property

Address for the filter.

BlockHash property

Blcok hash of the filtered blocks.

Remarks

If present, FromBlock and ToBlock will be ignored.

636

Chapter 14. API Reference Dotnet

Incubed Documentation, Release 2.3

FromBlock property

Starting block for the filter.

ToBlock property

End block for the filter.

Topics property

Array of 32 Bytes Data topics. Topics are order-dependent. It’s possible to pass in null to match any topic, or a
subarray of multiple topics of which one should be matching.

14.4.22 NodeConfiguration type

In3.Configuration

Class that represents part of the configuration to be applied on the IN3 (in particular to each boot node). This is a child
of ChainConfiguration.

#ctor(config) constructor

Constructor for the node configuration.

Parameters

* In3.Configuration.ChainConfiguration config - The ChainConfiguration of which this node belongs to.

Example

NodeConfiguration myDeployedNode = new NodeConfiguration (mainnetChainConfiguration);

Address property

Address of the node, which is the public address it is signing with.

Props property

Props define the capabilities of the node. Accepts a combination of values.

Example

nodeConfiguration.Props = Props.NodePropProof | Props.NodePropArchive;

14.4. Index 637

Incubed Documentation, Release 2.3

Url property

Url of the bootnode which the client can connect to.

14.4.23 Proof type

In3.Configuration

Alias for verification levels. Verification is done by calculating Ethereum Trie states requested by the Incubed network
ans signed as proofs of a certain state.

Full property

All fields will be validated (including uncles).

None property

No Verification.

Standard property

Standard Verification of the important properties.

14.4.24 Props type

In3.Configuration

Enum that defines the capabilities an incubed node.

NodePropArchive constants

filter out non-archive supporting nodes.

NodePropBinary constants

filter out nodes that don’t support binary encoding.

NodePropData constants

filter out non-data provider nodes.

NodePropHttp constants

filter out non-http nodes.

NodePropMinblockheight constants

filter out nodes that will sign blocks with lower min block height than specified.

638 Chapter 14. API Reference Dotnet

Incubed Documentation, Release 2.3

NodePropMultichain constants

filter out nodes other then which have capability of the same RPC endpoint may also accept requests for different
chains.

NodePropOnion constants

filter out non-onion nodes.

NodePropProof constants

filter out nodes which are providing no proof.

NodePropSigner constants

filter out non-signer nodes.

NodePropStats constants

filter out nodes that do not provide stats.

14.4.25 RpcException type

In3.Exceptions

Custom Exception to be thrown during the

14.4.26 ScriptPubKey type

In3.Btc

Script on a transaction output.

Addresses property

List of addresses.

Asm property

The asm data,

Hex property

The raw hex data.

ReqSigs property

The required sigs.

14.4. Index 639

Incubed Documentation, Release 2.3

Type property
The type.
Example
pubkeyhash

14.4.27 ScriptSig type

In3.Btc

Script on a transaction input.

Asm property

The asm data.

Hex property

The raw hex data.

14.4.28 SignatureType type

In3.Crypto

Group of constants to be used along with the methods of Api.

EthSign property

For hashes of the RLP prefixed.

Hash property

For data that was hashed and then signed.

Raw property

For data that was signed directly.

14.4.29 SignedData type

In3.Crypto
Output of SignData.

640

Chapter 14. API Reference Dotnet

Incubed Documentation, Release 2.3

Message property

Signed message.

MessageHash property

Hash of (Message.

R property

Part of the ECDSA signature.

S property

Part of the ECDSA signature.

Signature property

ECDSA calculated 1, s, and parity v, concatenated.

V property

27+ (R % 2).

14.4.30 Signer type

In3.Crypto

Minimum interface to be implemented by a kind of signer. Used by SendTransaction. Set it with Signer.

CanSign(account) method

Queries the Signer if it can sign for a certain key.

Returns

true if it can sign, false if it cant.

Parameters

* System.String account - The account derived from the private key used to sign transactions.

Remarks

This method is invoked internaly by SendTransaction using From and will throw a SystemException in case
false is returned.

14.4. Index 641

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

Incubed Documentation, Release 2.3

PrepareTransaction() method

Optional method which allows to change the transaction-data before sending it. This can be used for redirecting it
through a multisig. Invoked just before sending a transaction through SendTransaction.

Returns

Modified transaction request.

Parameters
This method has no parameters.

Sign(data,account) method

Signs the transaction data with the private key associated with the invoked account. Both arguments are automaticaly
passed by Incubed client base on TransactionRequest data during a SendTransaction.

Returns

The signed transaction data.

Parameters

» System.String data - Data to be signed.

e System.String account - The account that will sign the transaction.

14.4.31 SimpleWallet type

In3.Crypto

Default implementation of the Signer. Works as an orchestration of the in order to manage multiple accounts.

#ctor(in3) constructor

Basic constructor.

Parameters

e n3.IN3in3 - A client instance.

AddRawKey(privateKey) method

Adds a private key to be managed by the wallet and sign transactions.

642 Chapter 14. API Reference Dotnet

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

Incubed Documentation, Release 2.3

Returns

The address derived from the privateKey

Parameters

» System.String privateKey - The private key to be stored by the wallet.

CanSign(address) method

Check if this address is managed by this wallet.

Returns

true if the address is managed by this wallter, false if not.

Parameters

» System.String address - The address. Value returned by AddRawKey.

PrepareTransaction(ix) method

Identity function-like method.

Returns

tx

Parameters

 In3.Ethl.TransactionRequest tx - A transaction object.

Sign(data,address) method

Signs the transaction data by invoking SignData.

Returns

Signed transaction data.

Parameters

e System.String data - Data to be signed.

» System.String address - Address managed by the wallet, see AddRawKey

14.4. Index

643

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

Incubed Documentation, Release 2.3

14.4.32 Storage type

In3.Storage

Provider methods to cache data. These data could be nodelists, contract codes or validator changes. Any form of cache

should implement Storage and be set with Storage.

Clear() method

Clear the cache.

Returns

The result of the operation: t rue for success and false for failure.

Parameters

This method has no parameters.

Getltem(key) method

returns a item from cache.

Returns

The bytes or null if not found.

Parameters

» System.String key - The key for the item.

Setltem(key,content) method

Stores an item to cache.

Parameters

e System.String key - The key for the item.

* System.Byte[] content - The value to store.

14.4.33 Transaction type

In3.Btc

A BitCoin Transaction.

644

Chapter 14. API Reference Dotnet

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Byte%5B%5D

Incubed Documentation, Release 2.3

14.4.34 Transaction type

In3.Ethl

Class representing a transaction that was accepted by the Ethereum chain.
Blockhash property

The block hash of the block containing this transaction.

Blocktime property

The block time in seconds since epoch (Jan 1 1970 GMT).

Confirmations property

The confirmations.

Hash property

The transaction hash (differs from txid for witness transactions).

Hex property

The hex representation of raw data.

Locktime property

The locktime.

Size property

The serialized transaction size.

Time property

The transaction time in seconds since epoch (Jan 1 1970 GMT).

Txid property

Transaction Id.

Version property

The version.

14.4. Index 645

Incubed Documentation, Release 2.3

Vin property

The transaction inputs.

Vout property

The transaction outputs.

Vsize property

The virtual transaction size (differs from size for witness transactions).

Weight property

The transaction’s weight (between vsize4-3 and vsize4).

BlockHash property

Hash of the block that this transaction belongs to.

BlockNumber property

Number of the block that this transaction belongs to.

Chainld property

Chain id that this transaction belongs to.

Creates property

Address of the deployed contract (if successfull).

From property

Address whose private key signed this transaction with.

Gas property

Gas for the transaction.

GasPrice property

Gas price (in wei) for each unit of gas.

Hash property

Transaction hash.

646

Chapter 14. API Reference Dotnet

Incubed Documentation, Release 2.3

Input property

Transaction data.

Nonce property

Nonce for this transaction.

PublicKey property

Public key.

R property

Part of the transaction signature.

Raw property

Transaction as rlp encoded data.

S property

Part of the transaction signature.

StandardV property

Part of the transaction signature. V is parity set by v =27 + (r % 2).

To property

To address of the transaction.

Transactionlndex property

Transaction index.

V property

The StandardV plus the chain.

Value property

Value of the transaction.

14.4. Index

647

Incubed Documentation, Release 2.3

14.4.35 TransactionBlock type

In3.Eth1

Class that holds a block with its full transaction array: Transaction.

Transactions property
Array with the full transactions containing on this block.
Remarks

Returned when shouldIncludeTransactions on Api get block methods are set to t rue.

14.4.36 TransactionHashBlock type

In3.Ethl

Class that holds a block with its transaction hash array.

Transactions property
Array with the full transactions containing on this block.
Remarks

Returned when shouldIncludeTransactions on Api get block methods are set to false.

14.4.37 Transactionlnput type
In3.Btc

Input of a transaction.

ScriptSig property

The script.

Sequence property

The script sequence number.

Txid property

The transaction id.

648 Chapter 14. API Reference Dotnet

Incubed Documentation, Release 2.3

Txinwitness property

Hex-encoded witness data (if any).

Yout property

The index of the transactionoutput.

14.4.38 TransactionOutput type
In3.Btc

Output of a transaction.

N property

The index in the transaction.

ScriptPubKey property

The script of the transaction.

Value property

The value in bitcoins.

14.4.39 TransactionReceipt type

In3.Eth1

Class that represents a transaction receipt. See GetTransactionReceipt.

BlockHash property

Hash of the block with the transaction which this receipt is associated with.

BlockNumber property

Number of the block with the transaction which this receipt is associated with.

ContractAddress property

Address of the smart contract invoked in the transaction (if any).

From property

Address of the account that signed the transaction.

14.4. Index 649

Incubed Documentation, Release 2.3

GasUsed property

Gas used on this transaction.

Logs property

Logs/events for this transaction.

LogsBloom property

A bloom filter of logs/events generated by contracts during transaction execution. Used to efficiently rule out transac-
tions without expected logs.

Root property

Merkle root of the state trie after the transaction has been executed (optional after Byzantium hard fork EIP609).

Status property

Status of the transaction.

To property

Address whose value will be transfered to.

TransactionHash property

Hash of the transaction.

Transactionlndex property

Number of the transaction on the block.

14.4.40 TransactionRequest type

In3.Ethl

Class that holds the state for the transaction request to be submited via SendTransaction.
Data property

Data of the transaction (in the case of a smart contract deployment for exemple).

From property

Address derivated from the private key that will sign the transaction. See Signer.

650 Chapter 14. API Reference Dotnet

Incubed Documentation, Release 2.3

Function property

Function of the smart contract to be invoked.

Gas property

Gas cost for the transaction. Can be estimated via EstimateGas.

GasPrice property

Gas price (in wei). Can be obtained via GetGasPrice.

Nonce property

Nonce of the transaction.

Params property

Array of parameters for the function (in the same order of its signature), see Function

To property

Address to whom the transaction value will be transfered to or the smart contract address whose function will be
invoked.

Value property

Value of the transaction.

14.4.41 Transport type

In3.Transport

Minimum interface for a custom transport. Transport is a mean of communication with the Incubed server.

Handle(url,payload) method

Method to be implemented that will handle the requests to the server. This method may be called once for each url on
each batch of requests.

Returns

The rpc response.

14.4. Index 651

Incubed Documentation, Release 2.3

Parameters

e System.String url - Url of the node.

» System.String payload - Content for the RPC request.

652 Chapter 14. API Reference Dotnet

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

cHAPTER 15

API Reference Rust

15.1 IN3 Rust API features:

¢ Cross-platform support tested with cross-rs.
» Unsafe code is isolated to a small subset of the API and should not be required for most use cases.

* The C sources are bundled with the crate and we leverage the rust-bindgen and cmake-rs projects to auto-
generate bindings.

* Leak-free verified with Valgrind-memcheck.
e Well-documented API support for Ethereum, Bitcoin, and IPFS.
» Customizable storage, transport, and signing.

e All of IN3’s verification capabilities with examples and much more!

15.2 Quickstart

15.2.1 Add in3 to Cargo manifest

Add IN3 and futures_executor (or just any executor of your choice) to your cargo manifest. The in3-rs API is asyn-
chronous and Rust doesn’t have any built-in executors so we need to choose one, and we decided futures_executor is
a very good option as it is lightweight and practical to use.

[package]

name = "in3-tutorial"

version = "0.0.1"

authors = ["reader@medium.com"]
edition = "2018"

[dependencies]

(continues on next page)

653

Incubed Documentation, Release 2.3

(continued from previous page)

in3 = "1.0.0"
futures-executor = "0.3.5"

Let’s begin with the ‘hello-world’” equivalent of the Ethereum JSON-RPC API - eth_blockNumber. This call returns
the number of the most recent block in the blockchain. Here’s the complete program:

use in3::ethl;
use in3::prelude::x;

fn main() —-> In3Result<()> {
let client = Client::new(chain::MAINNET) ;
let mut eth_api = ethl::Api::new(client);

let number = futures_executor::block_on(eth_api.block_number())?;
println! ("Latest block number => {:?}", number);
Ok (())

Now, let’s go through this program line-by-line. We start by creating a JSON-RPC capable Incubed Client instance
for the Ethereum mainnet chain.

’let client = Client::new(chain: :MAINNET) ;

This client is then used to instantiate an Ethereum Api instance which implements the Ethereum JSON-RPC API spec.

’let mut eth_api = ethl::Api::new(client);

From here, getting the latest block number is as simple as calling the block_number() function on the Ethereum Api
instance. As specified before, we need to use futures_executor::block_on to run the future returned by block_number()
to completion on the current thread.

let number = futures_executor::block_on(eth_api.block_number()) ?;

A complete list of supported functions can be found on the in3-rs crate documentation page at docs.rs.

15.2.2 Get an Ethereum block by number

use async_std::task;
use in3::prelude::x*;

fn main () {

// configure client and API

let mut eth_api = Api::new(Client::new(chain::MAINNET));

// get latest block

let block: Block = block_on(eth_api.get_block_by_number (BlockNumber: :Latest,
—~false)) ?;

println! ("Block => {:?}", block);

15.2.3 An Ethereum contract call

In this case, we are reading the number of nodes that are registered in the IN3 network deployed on the Ethereum
Mainnet at 0x2736D225£85740£42D17987100dc8d58e9e16252

654 Chapter 15. API Reference Rust

Incubed Documentation, Release 2.3

use async_std::task;
use in3::prelude::x*;
fn main () {
// configure client and API
let mut eth_api = Api::new(Client::new(chain::MAINNET));
// Setup Incubed contract address
let contract: Address =
serde_Jjson::from_str (r#""0x2736D225f85740£42D17987100dc8d58e9e16252""4#) .
—unwrap(); // cannot fail
// Instantiate an abi encoder for the contract call
let mut abi = abi::In3EthAbi::new();

// Setup the signature to call in this case we are calling totalServers () :uint256
—from in3-nodes contract

let params = task::block_on(abi.encode ("totalServers () :uint256", serde_json::json!
= ([1)))

.expect ("failed to ABI encode params");
// Setup the transaction with contract and signature data
let txn = CallTransaction {
to: Some (contract),
data: Some (params),
..Default::default ()
}i
// Execute asynchronous api call.
let output: Bytes =
task::block_on(eth_api.call (txn, BlockNumber::Latest)) .expect ("ETH call failed
—");
// Decode the Bytes output and get the result
let output =
task::block_on (abi.decode ("uint256", output)) .expect ("failed to ABI decode

—output") ;

let total_servers: U256 = serde_json::from_value (output) .unwrap(); // cannot fail,
—if ABI decode succeeds
println! ("{:?}", total_servers);

15.2.4 Store a string in IPFS

IPFS is a protocol and peer-to-peer network for storing and sharing data in a distributed file system.

fn main () {

let mut ipfs_api = Api::new(Client::new(chain::IPFS));

// put® is an asynchrous request (due to the internal C library). Therefore to,
—block execution

//we use async_std's block_on function

match task::block_on(ipfs_api.put ("incubed meets rust".as_bytes().into())) {
Ok (res) => println! ("The hash is {:?}", res),
Err(err) => println! ("Failed with error: {}", err),

15.2.5 Ready-To-Run Example

Head over to our sample project on GitHub or simply run:

15.2. Quickstart 655

Incubed Documentation, Release 2.3

$ git clone https://github.com/hu55alnl/in3-examples.rs
$ cd in3-examples.rs
$ cargo run

15.3 Crate

In3 crate can be found in crates.io/crates/in3

15.4 Api Documentation

Api reference information can be found in docs.rs/in3/0.0.2/in3

656 Chapter 15. API Reference Rust

https://crates.io/crates/in3
https://docs.rs/in3/0.0.2/in3

cHAPTER 16

API| Reference CMD

Incubed can be used as a command-line utility or as a tool in Bash scripts. This tool will execute a JSON-RPC request
and write the result to standard output.

16.1 Usage

in3 [options] method [arguments]

-¢, -chain The chain to use currently:
mainnet Mainnet
kovan Kovan testnet
tobalaba EWF testchain
goerli Goerli testchain using Clique
btc Bitcoin (still experimental)
local Use the local client on http://localhost:8545

RPCURL If any other RPC-URL is passed as chain name, this is
used but without verification

-p, -proof Specifies the verification level:
none No proof
standard Standard verification (default)
full Full verification

-np Short for -p none.

-s, -signs Number of signatures to use when verifying.

657

http://localhost:8545

Incubed Documentation, Release 2.3

-b, -block The block number to use when making calls. Could be either 1atest (default),
earliest, or a hex number.

-1, -latest replaces latest with latest BlockNumber - the number of blocks given.

-pk The path to the private key as keystore file.

-pwd Password to unlock the key. (Warning: since the passphrase must be kept private,

make sure that this key may not appear in the bash_history)
-to The target address of the call.

-st, -sigtype the type of the signature data : eth_sign (use the prefix and hash it), raw (hash
the raw data), hash (use the already hashed data). Default: raw

-port specifies the port to run incubed as a server. Opening port 8545 may replace a
local parity or geth client.

-d, -data The data for a transaction.

This can be a file path, a Ox-hexvalue, or — to read it from standard input. If
a method signature is given with the data, they will be combined and used as
constructor arguments when deploying.

-gas The gas limit to use when sending transactions (default: 100000).

-value The value to send when conducting a transaction. Can be a hex value or a
float/integer with the suffix eth or wei like 1. 8eth (default: 0).

-w, -wait If given, eth_sendTransaction or eth_sendRawTransaction will
not only return the transaction hash after sending but also wait until the trans-
action is mined and returned to the transaction receipt.

-json If given, the result will be returned as JSON, which is especially important for
eth_call, which results in complex structres.

-hex If given, the result will be returned as hex.

-debug If given, Incubed will output debug information when executing.

-q quiet. no warnings or log to stderr.

-ri Reads the response from standard input instead of sending the request, allowing

for offline use cases.

-ro Writes the raw response from the node to standard output.

16.2 Install

16.2.1 From Binaries

You can download the from the latest release-page:

https://github.com/slockit/in3-c/releases

These release files contain the sources, precompiled libraries and executables, headerfiles and documentation.

16.2.2 From Package Managers

We currently support

658 Chapter 16. API Reference CMD

https://github.com/slockit/in3-c/releases

Incubed Documentation, Release 2.3

Ubuntu Launchpad (Linux)

Installs libs and binaries on IoT devices or Linux-Systems

Add the slock.it ppa to your system
sudo add-apt-repository ppa:devops—-slock-it/in3

install the commandline tool in3
apt—-get install in3

install shared and static 1libs and header files
apt-get install in3-dev

Brew (MacOS)

This is the easiest way to install it on your mac using brew

Add a brew tap
brew tap slockit/in3

install all binaries and libraries
brew install in3

16.2.3 From Sources

Before building, make sure you have these components installed:

* CMake (should be installed as part of the build-essential: apt—get install build-essential)

e libcurl (for Ubuntu, use either sudo apt-get install libcurl4-gnutls-dev or apt-get

install libcurl4d-openssl-dev)

¢ If libcurl cannot be found, Conan is used to fetch and build curl

clone the sources
git clone https://github.com/slockit/in3-c.git

create build-folder
cd in3-c
mkdir build && cd build

configure and build
cmake -DCMAKE_BUILD_TYPE=Release .. && make 1in3

install
sudo make install

When building from source, CMake accepts the flags which help to optimize. For more details just look at the CMake-

Options .

16.2.4 From Docker

Incubed can be run as docker container. For this pull the container:

16.2. Install

659

api-c.html#cmake-options
api-c.html#cmake-options

Incubed Documentation, Release 2.3

run a simple statement
docker run slockit/in3:latest eth_blockNumber

to start it as a server
docker run -p 8545:8545 slockit/in3:latest —-port 8545

mount the cache in order to cache nodelists, validatorlists and contract code.
docker run -v $(pwd)/cache:/root/.in3 -p 8545:8545 slockit/in3:latest —-port 8545

16.3 Environment Variables

The following environment variables may be used to define defaults:

IN3_PK The raw private key used for signing. This should be used with caution, since all subprocesses have access
to it!

IN3_CHAIN The chain to use (default: mainnet) (same as -c). If a URL is passed, this server will be used instead.

16.4 Methods

As methods, the following can be used:
<JSON-RPC>-method All officially supported JSON-RPC methods may be used.

send <signature> ...args Based on the -to, —value, and —pk, a transaction is built, signed, and sent. If there
is another argument after send, this would be taken as a function signature of the smart contract followed by
optional arguments of the function.

Send some ETH (requires setting the IN3 PK-variable before).

in3 send -to 0x1234556 -value 0.5eth

Send a text to a function.

in3 -to 0x5a0b54d5dcl7e0aadc383d2db43b0a0d3e029c4c -gas 1000000 send
—"registerServer (string,uint256)" "https://in3.slock.it/kovanl" OxFF

sign <data> signs the data and returns the signature (65byte as hex). Use the -sigtype to specify the creation of the
hash.

call <signature>...args eth_call to call a function. After the call argument, the function signature and its
arguments must follow.

in3_nodeList Returns the NodeList of the Incubed NodeRegistry as JSON.

in3_sign <blocknumber> Requests a node to sign. To specify the signer, you need to pass the URL like this:

Send a text to a function.
in3 in3_sign -c https://in3.slock.it/mainnet/nd-1 6000000

in3_stats Returns the stats of a node. Unless you specify the node with —c <rpcurl>, it will pick a random node.
abi_encode <signature> ...args Encodes the arguments as described in the method signature using ABI encoding.
abi_decode <signature> data Decodes the data based on the signature.

pk2address <privatekey> Extracts the public address from a private key.

pk2public <privatekey> Extracts the public key from a private key.

660 Chapter 16. API Reference CMD

https://github.com/ethereum/wiki/wiki/JSON-RPC#json-rpc-methods

Incubed Documentation, Release 2.3

ecrecover <msg> <signature> Extracts the address and public key from a signature.
createkey Generates a random raw private key.

key <keyfile> Reads the private key from JSON keystore file from the first argument and returns the private key. This
may ask the user to enter the passphrase (unless provided with —pwd). To unlock the key to reuse it within the
shell, you can set the environment variable like this:

’export IN3_PK="in3 keystore mykeyfile.json’

if no method is passed, this tool will read json-rpc-requests from stdin and response on stdout until stdin is closed.

’echo '"{"method":"eth_blockNumber", "params":[]}' | in3 -g -c goerli

This can also be used process to communicate with by startiing a in3-process and send rpc-comands through stdin and
read the responses from stout. if multiple requests are passed in the input stream, they will executed in the same order.
The result will be terminated by a newline-character.

16.5 Running as Server

While you can use in3 to execute a request, return a result and quit, you can also start it as a server using the specified
port (—-port 8545) to serve RPC-requests. Thiss way you can replace your local parity or geth with a incubed
client. All Dapps can then connect to http://localhost:8545.

starts a server at the standard port for kovan.
in3 -c kovan -port 8545

16.6 Cache

Even though Incubed does not need a configuration or setup and runs completely statelessly, caching already verified
data can boost the performance. That’s why in3 uses a cache to store.

NodeLists List of all nodes as verified from the registry.

Reputations Holding the score for each node to improve weights for honest nodes.

Code For eth_call, Incubed needs the code of the contract, but this can be taken from a cache if possible.
Validators For PoA changes, the validators and their changes over time will be stored.

By default, Incubed will use ~/ . in3 as a folder to cache data.

If you run the docker container, you need to mount /root/.in3 in to persist the cache.

16.7 Signing

While Incubed itself uses an abstract definition for signing, at the moment, the command-line utility only supports raw
private keys. There are two ways you can specify the private keys that Incubed should use to sign transactions:

1. Use the environment variable IN3_PK. This makes it easier to run multiple transaction.

Warning: Since the key is stored in an envirmoent variable all subpoccess have access to this. That’s why
this method is potentially unsafe.

16.5. Running as Server 661

http://localhost:8545

Incubed Documentation, Release 2.3

#!/bin/sh

reads the key from the keyfile and asks the user for the passphrase.
IN3_PK = "in3 key my_keyfile.json’

you can can now use this private keys since it is stored in a enviroment-
—variable

in3 -to 0x27a37al1210df14f7e058393d026e2fb53b7cf8cl -value 3.5eth -wait send
in3 -to 0x5a0b54d5dcl7e0aadc383d2db43b0a0d3e029c4c -gas 1000000 send
—"registerServer (string,uint256)" "https://in3.slock.it/kovanl" OxFF

2. Use the —pk option

This option takes the path to the keystore-file and will ask the user to unlock as needed. It will not store the
unlocked key anywhere.

in3 -pk my_keyfile.json —-to 0x27a37a1210df14f7e058393d026e2fb53b7cf8cl -value,,
—200eth -wait send

16.8 Autocompletion

If you want autocompletion, simply add these lines to your .bashrc or .bash_profile:

_IN3_WORDS="1in3 autocompletelist’
complete -W "S$_IN3_WORDS" in3

16.9 Function Signatures

When using send or call, the next optional parameter is the function signature. This signature describes not only
the name of the function to call but also the types of arguments and return values.

In general, the signature is built by simply removing all names and only holding onto the types:

<FUNCTION_NAME> (<ARGUMENT_TYPES>) : (<RETURN_TYPES>)

It is important to mention that the type names must always be the full Solidity names. Most Solidity functions use
aliases. They would need to be replaced with the full type name.

e.g.,uint ->uint256

16.10 Examples

16.10.1 Getting the Current Block

On a command line:
in3 eth_blockNumber
> 8035324

For a different chain:
in3 —-c kovan eth_blockNumber

(continues on next page)

662 Chapter 16. API Reference CMD

Incubed Documentation, Release 2.3

(continued from previous page)

> 11834906

Getting it as hex:
in3 —-c kovan —-hex eth_blockNumber
> 0xb49625

As part of shell script:
BLOCK_NUMBER="1in3 eth_blockNumber"

16.10.2 Using jq to Filter JSON

Get the timestamp of the latest block:
in3 eth_getBlockByNumber latest false | jg -r .timestamp
> 0x5d162a47

Get the first transaction of the last block:

in3 eth_getBlockByNumber latest true | jg '.transactions[O0]'

> A

"blockHash": "Oxed4edd75bf43cd8e334ca756c4df1605d8056974e2575£5ea835038c6d724abl4",

"blockNumber": "Ox7ac96d",

"chainId": "Ox1",

"condition": null,

"creates": null,

"from": "0x91fdebe2elb68da999cb7d634£fe693359659d967",
"gas": "0x5208",

"gasPrice": "Oxba43b7400",

"hash": "0x4b0£fe62b30780d089a3318£f0e5e71£2b905d62111ad4effed8992fcfdal36b1l97£f",

llinput": "Oxll,
"nonce": "0x8b7",
"publicKey":

—"0x17£6413717c1l2dab2£0d4£4a033b77b4252204bfed4ae229a608ed724292d7172a19758e84110a2a926

"
",

"r": "0x1d04ee9%9e31727824al19a4fcd0c29c0babdd74a2£f25c701bd5fdabbf5542c014c",

"raw":

—"0xf86e8208b7850bad43b7400825208947fb38d6a092bbdd476e80£00800b03c3f1b2d332883aefa89df4

"
",

"s": "0x43£8df6cl71e51bf05036c8£e8d978e182316785d0aace8ecc56d2addl57a635",

"standardv": "Ox1",

"to": "O0x7fb38d6a092bbdd476e80£00800b03c3f1b2d332",
"transactionIndex": "0xO0",

"y": "0Ox26",

"value": "Ox3aefa89df48ed400"

16.10.3 Calling a Function of a Smart Contract

Without arguments:
in3 -to 0x2736D225£85740£42D17987100dc8d58e9e16252 call
> 5

With arguments returning an array of values:
in3 —-to 0x2736D225£85740£42D17987100dc8d58e9e16252 call
—address,uint256,uint256,uint256, address)" 1

"totalServers () :uint256"

"servers (uint256) : (string,

(continues on next page)

16.10. Examples

663

42457c351£80:

ed4008026a01

Incubed Documentation, Release 2.3

(continued from previous page)

https://in3.slock.it/mainnet/nd-1
0x784bfa9%ebl82c3a02dbeb5285e3dba%92d717e07a
65535

65535

0
0x00

vV V.V V V V

With arguments returning an array of values as JSON:

in3 -to 0x2736D225£85740£42D17987100dc8d58e9e16252 —-json call

—"servers (uint256) : (string, address,uint256,uint256,uint256, address)" 1

> ["https://in3.slock.it/mainnet/nd-4", "Oxbc0eal09c1651a3d5d40bacb4356fb59159a99564",
S"OxfEfE", "OxEEEET, "Ox00", "0x00™]

16.10.4 Sending a Transaction

Sends a transaction to a register server function and signs it with the private key,
—given

in3 -pk mykeyfile.json -to 0x27a37al1210df14£f7e058393d026e2fb53b7cf8cl -—gas 1000000
—send "registerServer (string,uint256)" "https://in3.slock.it/kovanl" OxFF

16.10.5 Deploying a Contract

Compiling the Solidity code, filtering the binary, and sending it as a transaction,
—returning the txhash:

solc —--bin ServerRegistry.sol | in3 -gas 5000000 -pk my_private_key.json -d - send

If you want the address, you would need to wait until the text is mined before,,
—obtaining the receipt:

solc —-bin ServerRegistry.sol | in3 —-gas 5000000 -pk my_private_key.json -d - -wait_
—~send | jg -r .contractAddress

664 Chapter 16. API Reference CMD

cHAPTER 17

APl Reference Node/Server

The term in3-server and in3-node are used interchangeably.

Nodes are the backend of Incubed. Each node serves RPC requests to Incubed clients. The node itself runs like a proxy
for an Ethereum client (Geth, Parity, etc.), but instead of simply passing the raw response, it will add the required proof
needed by the client to verify the response.

To run such a node, you need to have an Ethereum client running where you want to forward the request to. At the
moment, the minimum requirement is that this client needs to support eth_getProof (see http://eips.ethereum.org/
EIPS/eip-1186).

You can create your own docker compose file/docker command using our command line descriptions below. But you
can also use our tool in3-server-setup to help you through the process.

17.1 Command-line Arguments

--autoRegistry-capabilities-multiChain If true, this node is able to deliver multiple chains.
--autoRegistry-capabilities-proof If true, this node is able to deliver proofs.
--autoRegistry-capacity Max number of parallel requests.

--autoRegistry-deposit The deposit you want to store.

--autoRegistry-depositUnit Unit of the deposit value.

--autoRegistry-url The public URL to reach this node.

--cache Cache Merkle tries.

--chain Chainld.

--clientKeys A comma-separated list of client keys to use for simulating clients for the watch-
dog.

--db-database Name of the database.

--db-host Db-host (default: local host).

665

http://eips.ethereum.org/EIPS/eip-1186
http://eips.ethereum.org/EIPS/eip-1186

Incubed Documentation, Release 2.3

--db-password
--db-user
--defaultChain
--freeScore
--handler
--help

--id

--ipfsUrl
--logging-colors
--logging-file
--logging-host
--logging-level
--logging-name
--logging-type

--maxThreads

Password for db-access.

Username for the db.

The default chainld in case the request does not contain one.
The score for requests without a valid signature.

The implementation used to handle the calls.

Output usage information.

An identifier used in log files for reading the configuration from the database.
The URL of the IPFES client.

If true, colors will be used.

The path to the log file.

The host for custom logging.

Log level.

The name of the provider.

The module of the provider.

The maximal number of threads running parallel to the processes.

--maxPointsPerMinute The Score for one client able to use within one minute, which is used as DOS-

--maxBlocksSigned

--maxSignatures

--minBlockHeight

--persistentFile

--privateKey

Protection.

The max number of blocks signed per in3_sign-request

The max number of signatures to sign per request

The minimal block height needed to sign.

The file name of the file keeping track of the last handled blockNumber.
The path to the keystore-file for the signer key used to sign blockhashes.

--privateKeyPassphrase The password used to decrypt the private key.

--profile-comment

--profile-icon
--profile-name
--profile-noStats

--profile-url

Comments for the node.

URL to an icon or logo of a company offering this node.
Name of the node or company.

If active, the stats will not be shown (default: false).

URL of the website of the company.

--profile-prometheus URL of the prometheus gateway to report stats

--registry
--registryRPC
--rpcUrl

--startBlock

--timeout

The address of the server registry used to update the NodeList.
The URL of the client in case the registry is not on the same chain.

The URL of the client. User can specify multiple clients for higher security and
data availability. If multiple URLs are used server will check block hash on
all RPC clients before signing. Also server will only switch to another node
when any request will fail on previous. Format for using multple clients is:
—rpcUrl=http://rpcl.com —rpcUrl=http://rpc2.com

BlockNumber to start watching the registry.

Number of milliseconds needed to wait before a request times out.

666

Chapter 17. API Reference Node/Server

Incubed Documentation, Release 2.3

--version Output of the version number.
--watchInterval The number of seconds before a new event.

--watchdogInterval Average time between sending requests to the same node. O turns it off (default).

17.2 in3-server-setup tool

The in3-server-setup tool can be found both [online](https://in3-setup.slock.it) and on [DockerHub](https://hub.docker.
com/r/slockit/in3-server-setup). The DockerHub version can be used to avoid relying on our online service, a full
source will be released soon.

The tool can be used to generate the private key as well as the docker-compose file for use on the server.

Note: The below guide is a basic example of how to setup and in3 node, no assurances are made as to the security of
the setup. Please take measures to protect your private key and server.

Setting up a server on AWS:
1. Create an account on AWS and create a new EC2 instance
2. Save the key and SSH into the machine with “ssh -i "SSH_KEY.pem" user@IP’

3. Install docker and docker-compose on the EC2 instance ' apt-get install docker
docker-compose”

4. Use scp to transfer the docker-compose file and private key, "scp —i "SSH_KEY" FILE
user@IP:."

5. Run the Ethereum client, for example parity and allow it to sync
6. Once the client is synced, run the docker-compose file with * docker—compose up"’

7. Test the in3 node by making a request to the address

curl -X POST -H 'Content-Type:application/json' \
-—data '{"id":1,"Jsonrpc":"2.0", "method":"in3_nodeList", \
"params":[],"in3":{"version": "0x2","chainId":"0x1","verification":"proof
S"EETA

<MY_NODE_URL>

8. Consider using tools such as AWS Shield to protect your server from DOS attacks

17.3 Registering Your Own Incubed Node

If you want to participate in this network and register a node, you need to send a transaction to the registry contract,
calling registerServer(string _url, uint _props).

To run an Incubed node, you simply use docker-compose:

First run partiy, and allow the client to sync:

version: '2'
services:
incubed-parity:
image: parity:latest # Parity image with_,
—the proof function implemented.
command:

(continues on next page)

17.2. in3-server-setup tool 667

https://in3-setup.slock.it
https://hub.docker.com/r/slockit/in3-server-setup
https://hub.docker.com/r/slockit/in3-server-setup

Incubed Documentation, Release 2.3

(continued from previous page)

- ——auto-update=none # Do not_,
—automatically update the client.

- ——pruning=archive

— ——pruning-memory=30000 # Limit storage.

- ——Jjsonrpc-experimental # Currently still,,
—needed until EIP 1186 is finalized.

Then

run in3 with the below docker-compose file:

version: '2'
services:
incubed-server:
image: slockit/in3-server:latest

volumes:

- SPWD/keys:/secure # Directory,,
—where the private key 1s stored.

ports:

- 8500:8500/tcp # Open the port,,
—~8500 to be accessed by the public.

command :

- —-privateKey=/secure/myKey. json # Internal path,,
—to the key.

- —--privateKeyPassphrase=dummy # Passphrase to,
—unlock the key.

- ——-chain=0x1 # Chain (Kovan).

- ——rpcUrl=http://incubed-parity:8545 # URL of the,,

—Kovan client.
- —-registry=0xFdb0eA8ABO08212A1fFfDB35aFacf37C3857083ca # URL of the,
—Incubed registry.

- ——autoRegistry-url=http://in3.server:8500 # Check or,
—register this node for this URL.
- ——autoRegistry-deposit=2 # Deposit to,,

—use when registering.

668

Chapter 17. API Reference Node/Server

cHAPTER 18

API Reference Solidity

This page contains a list of function for the registry contracts.

18.1 NodeRegistryData functions

18.1.1 adminRemoveNodeFromRegistry

Removes an in3-node from the nodeList
Development notice:

* only callable by the NodeRegistryLogic-contract
Parameters:

e _signer address: the signer

18.1.2 adminSetLogic

Sets the new Logic-contract as owner of the contract.
Development notice:
* only callable by the current Logic-contract / owner
* the 0x00-address as owner is not supported
Return Parameters:

¢ true when successful

669

Incubed Documentation, Release 2.3

18.1.3 adminSetNodeDeposit

Sets the deposit of an existing in3-node
Development notice:
* only callable by the NodeRegistryLogic-contract
* used to remove the deposit of a node after he had been convicted
Parameters:
» _signer address: the signer of the in3-node
e _newDeposit uint: the new deposit
Return Parameters:

¢ true when successful

18.1.4 adminSetStage

Sets the stage of a signer
Development notice:
* only callable by the current Logic-contract / owner
Parameters:
e _signer address: the signer of the in3-node
* stage uint: the new stage
Return Parameters:

¢ true when successful

18.1.5 adminSetSupportedToken

Sets a new erc20-token as supported token for the in3-nodes.
Development notice:

* only callable by the NodeRegistryLogic-contract
Parameters:

» _newToken address: the address of the new supported token
Return Parameters:

¢ true when successful

18.1.6 adminSetTimeout

Sets the new timeout until the deposit of a node can be accessed after he was unregistered.
Development notice:
* only callable by the NodeRegistryLogic-contract

Parameters:

670 Chapter 18. API Reference Solidity

Incubed Documentation, Release 2.3

e newTimeout uint: the new timeout
Return Parameters:

¢ true when successful

18.1.7 adminTransferDeposit

Transfers a certain amount of ERC20-tokens to the provided address
Development notice:

* only callable by the NodeRegistryLogic-contract

* reverts when the transfer failed
Parameters:

* _to address: the address to receive the tokens

e _amount: uint: the amount of tokens to be transferred
Return Parameters:

¢ true when successful

18.1.8 setConvict

Writes a value to te convictMapping to be used later for revealConvict in the logic contract.
Development notice:

* only callable by the NodeRegistryLogic-contract
Parameters:

¢ _hash bytes32: the data to be written

e _caller address: the address for that called convict in the logic-contract
Development notice:

* only callable by the NodeRegistryLogic-contract

18.1.9 registerNodeFor

Registers a new node in the nodeList
Development notice:
* only callable by the NodeRegistryLogic-contract
Parameters:
e _url string: the url of the in3-node
e _props uint192: the properties of the in3-node
» _signer address: the signer address
e _weight uit 64: the weight

e _owner address: the address of the owner

18.1. NodeRegistryData functions 671

Incubed Documentation, Release 2.3

e _deposit uint: the deposit in erc20 tokens
e _stage uint: the stage the in3-node should have
Return Parameters:

¢ true when successful

18.1.10 transferOwnership

Transfers the ownership of an active in3-node
Development notice:

* only callable by the NodeRegistryLogic-contract
Parameters:

e _signer address: the signer of the in3-node

e newOwner address: the address of the new owner
Return Parameters:

¢ true when successful

18.1.11 unregisteringNode

Removes a node from the nodeList
Development notice:
* only callable by the NodeRegistryLogic-contract
e calls _unregisterNodeInternal ()
Parameters:
* _signer address: the signer of the in3-node
Return Parameters:

¢ true when successful

18.1.12 updateNode

Updates an existing in3-node
Development notice:
* only callable by the NodeRegistryLogic-contract
* reverts when the an updated url already exists
Parameters:
e _signer address: the signer of the in3-node
e _url string: the new url
e _props uint192 the new properties

e _weight uint 64 the new weight

672 Chapter 18

. API Reference Solidity

Incubed Documentation, Release 2.3

e _deposit uint the new deposit
Return Parameters:

¢ true when successful

18.1.13 getin3Nodelnformation

Returns the In3Node-struct of a certain index
Parameters:

* index uint: the index-position in the nodes-array
Return Parameters:

¢ the In3Node-struct

18.1.14 getSignerinformation

Returns the SignerInformation of a signer
Parameters:
e _signer address: the signer

Return Parameters: the SignerInformation of a signer

18.1.15 totalNodes

Returns the length of the nodeList

Return Parameters: The length of the nodeList

18.1.16 adminSetSignerinfo

Sets the SignerInformation-struct for a signer
Development notice:
* only callable by the NodeRegistryLogic-contract
* gets used for updating the information after returning the deposit
Parameters:
e _signer address: the signer
e _si: SignerInformation the struct to be set
Return Parameters:

¢ true when successful

18.1. NodeRegistryData functions

673

Incubed Documentation, Release 2.3

18.2 NodeRegistryLogic functions

18.2.1 activateNewLogic

Applies a new update to the logic-contract by setting the pending NodeRegistryLogic-contract as owner to the
NodeRegistryData-conract

Development notice:

* Only callable after 47 days have passed since the latest update has been proposed

18.2.2 adminRemoveNodeFromRegistry

Removes an malicious in3-node from the nodeList
Development notice:

* only callable by the admin of the smart contract

* only callable in the 1st year after deployment

* ony usable on registered in3-nodes
Parameters:

* _signer address: the malicious signer

18.2.3 adminUpdateLogic

Proposes an update to the logic contract which can only be applied after 47 days. This will allow all nodes that don’t
approve the update to unregister from the registry

Development notice:

* only callable by the admin of the smart contract

¢ does not allow for the 0x0-address to be set as new logic
Parameters:

» _newLogic address: the malicious signer

18.2.4 convict

Must be called before revealConvict and commits a blocknumber and a hash.
Development notice:

e The v,r,s parameters are from the signature of the wrong blockhash that the node provided
Parameters:

e _hashbytes32: keccak256 (wrong blockhash, msg.sender, v, r, s);usedto preventfron-
trunning.

674 Chapter 18. API Reference Solidity

Incubed Documentation, Release 2.3

18.2.5 registerNode

Registers a new node with the sender as owner
Development notice:
 will call the registerNodelnteral function

* the amount of _deposit token have be approved by the signer in order for them to be transferred by the logic
contract

Parameters:
e _url string: the url of the node, has to be unique
* _props uint 64: properties of the node
e _weight uint 64: how many requests per second the node is able to handle

e _deposit uint: amount of supported ERC20 tokens as deposit

18.2.6 registerNodeFor

Registers a new node as a owner using a different signer address*
Development notice:

e will revert when a wrong signature has been provided which is calculated by the hash of the url, properties,
weight and the owner in order to prove that the owner has control over the signer-address he has to sign a
message

 will call the registerNodelnteral function

¢ the amount of _deposit token have be approved by the in3-node-owner in order for them to be transferred by
the logic contract

Parameters:
e _url string: the url of the node, has to be unique
e _props uint 64: properties of the node
* _signer address: the signer of the in3-node
e _weight uint 64: how many requests per second the node is able to handle
e _depositAmount uint: the amount of supported ERC20 tokens as deposit
e _vuint8: v of the signed message
* _rbytes32: rof the signed message

* _sbytes32: s of the signed message

18.2.7 returnDeposit

Returns the deposit after a node has been removed and it’s timeout is over.
Development notice:

* reverts if the deposit is still locked

* reverts when there is nothing to transfer

¢ reverts when not the owner of the former in3-node

18.2. NodeRegistryLogic functions 675

Incubed Documentation, Release 2.3

Parameters:

e _signer address: the signer-address of a former in3-node

18.2.8 revealConvict
Reveals the wrongly provided blockhash, so that the node-owner will lose its deposit while the sender will get half of
the deposit
Development notice:

* reverts when the wrong convict hash (see convict-function) is used

* reverts when the _signer did not sign the block

* reverts when trying to reveal immediately after calling convict

e reverts when trying to convict someone with a correct blockhash

« reverts if a block with that number cannot be found in either the latest 256 blocks or the blockhash registry
Parameters:

» _signer address: the address that signed the wrong blockhash

» _blockhash bytes32: the wrongly provided blockhash

e _blockNumber uint: number of the wrongly provided blockhash

e _vuint8: v of the signature

* _rbytes32: rof the signature

* _sbytes32: s of the signature

18.2.9 transferOwnership

Changes the ownership of an in3-node.
Development notice:
* reverts when the sender is not the current owner
* reverts when trying to pass ownership to 0x0
* reverts when trying to change ownership of an inactive node
Parameters:
» _signer address: the signer-address of the in3-node, used as an identifier

¢ newOwner address: the new owner

18.2.10 unregisteringNode
A node owner can unregister a node, removing it from the nodeList. Doing so will also lock his deposit for the timeout
of the node.
Development notice:
* reverts when not called by the owner of the node

* reverts when the provided address is not an in3-signer

676 Chapter 18. API Reference Solidity

Incubed Documentation, Release 2.3

¢ reverts when node is not active
Parameters:

» _signer address: the signer of the in3-node

18.2.11 updateNode

Updates a node by changing its props
Development notice:
« if there is an additional deposit the owner has to approve the tokenTransfer before
* reverts when trying to change the url to an already existing one
* reverts when the signer does not own a node
* reverts when the sender is not the owner of the node
Parameters:
» _signer address: the signer-address of the in3-node, used as an identifier
e _url string: the url, will be changed if different from the current one
* _props uint 64: the new properties, will be changed if different from the current one
e _weight uint 64: the amount of requests per second the node is able to handle

 _additionalDeposit uint: additional deposit in supported erc20 tokens

18.2.12 maxDepositFirstYear

Returns the current maximum amount of deposit allowed for registering or updating a node
Return Parameters:

e uint the maximum amount of tokens

18.2.13 minDeposit

Returns the current minimal amount of deposit required for registering a new node
Return Parameters:

e uint the minimal amount of tokens needed for registering a new node

18.2.14 supportedToken

Returns the current supported ERC20 token-address
Return Parameters:

* address the address of the currently supported erc20 token

18.2. NodeRegistryLogic functions

677

Incubed Documentation, Release 2.3

18.3 BlockHashRegistry functions

18.3.1 searchForAvailableBlock

Searches for an already existing snapshot
Parameters:
o _startNumber uint: the blocknumber to start searching
e _numBlocks uint: the number of blocks to search for
Return Parameters:

* uint returns a blocknumber when a snapshot had been found. It will return O if no blocknumber was found.

18.3.2 recreateBlockheaders

Starts with a given blocknumber and its header and tries to recreate a (reverse) chain of blocks. If this has been
successful the last blockhash of the header will be added to the smart. contract. It will be checked whether the
provided chain is correct by using the reCalculateBlockheaders function.

Development notice:
* only usable when the given blocknumber is already in the smart contract
» function is public due to the usage of a dynamic bytes array (not yet supported for external functions)
* reverts when the chain of headers is incorrect
* reverts when there is not parent block already stored in the contract
Parameters:
e _blockNumber uint: the block number to start recreation from

e _blockheaders bytes []: array with serialized blockheaders in reverse order (youngest -> oldest) => (e.g. 100,
99, 98)

18.3.3 saveBlockNumber

Stores a certain blockhash to the state
Development notice:

* reverts if the block can’t be found inside the evm
Parameters:

e _blockNumber uint: the blocknumber to be stored

18.3.4 snapshot

Stores the currentBlock-1 in the smart contract

678 Chapter 18. API Reference Solidity

Incubed Documentation, Release 2.3

18.3.5 getRlpUint

Returns the value from the rlp encoded data
Development notice: *This function is limited to only value up to 32 bytes length!
Parameters:
e _data bytes: the rlp encoded data
e _offset uint: the offset
Return Parameters:

¢ value uint the value

18.3.6 getParentAndBlockhash

Returns the blockhash and the parent blockhash from the provided blockheader
Parameters:

» _blockheader bytes: a serialized (rlp-encoded) blockheader
Return Parameters:

 parentHash bytes32

e bhash bytes32

18.3.7 reCalculateBlockheaders
Starts with a given blockhash and its header and tries to recreate a (reverse) chain of blocks. The array of the block-
headers have to be in reverse order (e.g. [100,99,98,97]).
Parameters:
* _blockheaders bytes []: array with serialized blockheaders in reverse order, i.e. from youngest to oldest

* _bHash bytes32: blockhash of the 1st element of the _blockheaders-array

18.3. BlockHashRegistry functions 679

Incubed Documentation, Release 2.3

680 Chapter 18. API Reference Solidity

cHAPTER 19

Concept

To enable smart devices of the internet of things to be connected to the Ethereum blockchain, an Ethereum client needs
to run on this hardware. The same applies to other blockchains, whether based on Ethereum or not. While current
notebooks or desktop computers with a broadband Internet connection are able to run a full node without any problems,
smaller devices such as tablets and smartphones with less powerful hardware or more restricted Internet connection
are capable of running a light node. However, many [oT devices are severely limited in terms of computing capacity,
connectivity and often also power supply. Connecting an IoT device to a remote node enables even low-performance
devices to be connected to blockchain. By using distinct remote nodes, the advantages of a decentralized network are
undermined without being forced to trust single players or there is a risk of malfunction or attack because there is a
single point of failure.

With the presented Trustless Incentivized Remote Node Network, in short INCUBED, it will be possible to establish a
decentralized and secure network of remote nodes, which enables trustworthy and fast access to blockchain for a large
number of low-performance IoT devices.

19.1 Situation

The number of IoT devices is increasing rapidly. This opens up many new possibilities for equipping these devices
with payment or sharing functionality. While desktop computers can run an Ethereum full client without any problems,
small devices are limited in terms of computing power, available memory, Internet connectivity and bandwidth. The
development of Ethereum light clients has significantly contributed to the connection of smaller devices with the
blockchain. Devices like smartphones or computers like Raspberry PI or Samsung Artik 5/7/10 are able to run light
clients. However, the requirements regarding the mentioned resources and the available power supply are not met by
a large number of IoT devices.

One option is to run the client on an external server, which is then used by the device as a remote client. However,
central advantages of the blockchain technology - decentralization rather than having to trust individual players - are
lost this way. There is also a risk that the service will fail due to the failure of individual nodes.

A possible solution for this may be a decentralized network of remote-nodes (netservice nodes) combined with a
protocol to secure access.

681

Incubed Documentation, Release 2.3

19.2 Low-Performance Hardware

There are several classes of IoT devices, for which running a full or light client is somehow problematic and a INNN
can be a real benefit or even a job enabler:

* Devices with insufficient calculation power or memory space

Today, the majority of IoT devices do not have processors capable of running a full client or a light client. To
run such a client, the computer needs to be able to synchronize the blockchain and calculate the state (or at least
the needed part thereof).

¢ Devices with insufficient power supply

If devices are mobile (for instance a bike lock or an environment sensor) and rely on a battery for power supply,
running a full or a light light, which needs to be constantly synchronized, is not possible.

* Devices which are not permanently connected to the Internet

Devices which are not permantently connected to the Internet, also have trouble running a full or a light client
as these clients need to be in sync before they can be used.

19.3 Scalability

One of the most important topics discussed regarding blockchain technology is scalability. Of course, a working
INCUBED does not solve the scaling problems that more transactions can be executed per second. However, it does
contribute to providing access to the Ethereum network for devices that could not be integrated into existing clients
(full client, light client) due to their lack of performance or availability of a continuous Internet connection with
sufficient bandwidth.

19.4 Use Cases

With the following use cases, some realistic scenarios should be designed in which the use of INCUBED will be at
least useful. These use cases are intended as real-life relevant examples only to envision the potential of this technology
but are by no means a somehow complete list of possible applications.

19.4.1 Publicly Accessible Environment Sensor

Description

An environment sensor, which measures some air quality characteristics, is installed in the city of Stuttgart. All
measuring data is stored locally and can be accessed via the Internet by paying a small fee. Also a hash of the current
data set is published to the public Ethereum blockchain to validate the integrity of the data.

The computational power of the control unit is restricted to collecting the measuring data from the sensors and storing
these data to the local storage. It is able to encrypt or cryptographically sign messages. As this sensor is one of thou-
sands throughout Europe, the energy consumption must be as low as possible. A special low-performance hardware is
installed. An Internet connection is provided, but the available bandwidth is not sufficient to synchrone a blockchain
client.

682 Chapter 19. Concept

Incubed Documentation, Release 2.3

Blockchain Integration

The connection to the blockchain is only needed if someone requests the data and sends the validation hash code to
the smart contract.

The installed hardware (available computational power) and the requirement to minimize energy consumption disable
the installation and operation of a light client without installing addition hardware (like a Samsung Artik 7) as PBCD
(Physical Blockchain Connection Device/Ethereum computer). Also, the available Internet bandwidth would need to
be enhanced to be able to synchronize properly with the blockchain.

Using a netservice-client connected to the INCUBED can be realized using the existing hardware and Internet connec-
tion. No additional hardware or Internet bandwidth is needed. The netservice-client connects to the INCUBED only
to send signed messages, to trigger transactions or to request information from the blockchain.

19.4.2 Smart Bike Lock

Description

A smart bike lock which enables sharing is installed on an e-bike. It is able to connect to the Internet to check if renting
is allowed and the current user is authorized to open the lock.

The computational power of the control unit is restricted to the control of the lock. Because the energy is provided
by the e-bike’s battery, the controller runs only when needed in order to save energy. For this reason, it is also not
possible to maintain a permanent Internet connection.

Blockchain Integration

Running a light-client on such a platform would consume far too much energy, but even synchronizing the client only
when needed would take too much time and require an Internet connection with the corresponding bandwidth, which
is not always the case. With a netservice-client running on the lock, a secure connection to the blockchain can be
established at the required times, even if the Internet connection only allows limited bandwidth. In times when there
is no rental process in action, neither computing power is needed nor data is transferred.

19.4.3 Smart Home - Smart Thermostat
Description

With smart home devices it is possible to realize new business models, e. g. for the energy supply. With smart
thermostats it is possible to bill heating energy pay-per-use. During operation, the thermostat must only be connected
to the blockchain if there is a heating requirement and a demand exists. Then the thermostat must check whether the
user is authorized and then also perform the transactions for payment.

Blockchain Integration

Similar to the cycle lock application, a thermostat does not need to be permanently connected to the blockchain to
keep a client in sync. Furthermore, its hardware is not able to run a full or light client. Here, too, it makes sense to use
a netservice-client. Such a client can be developed especially for this hardware.

19.4. Use Cases 683

Incubed Documentation, Release 2.3

19.4.4 Smartphone App

Description

The range of smartphone apps that can or should be connected to the blockchain is widely diversified. These can be
any apps with payment functions, apps that use blockchain as a notary service, apps that control or lend IoT devices,
apps that visualize data from the blockchain, and much more.

Often these apps only need sporadic access to the blockchain. Due to the limited battery power and limited data
volume, neither a full client nor a light client is really suitable for such applications, as these clients require a permanent
connection to keep the blockchain up-to-date.

Blockchain Integration

In order to minimize energy consumption and the amount of data to be transferred, it makes sense to implement
smartphone applications that do not necessarily require a permanent connection to the Internet and thus also to the
blockchain with a netservice-client. This makes it possible to dispense with a centralized remote server solution, but
only have access to the blockchain when it is needed without having to wait long before the client is synchronized.

19.4.5 Advantages

As has already been pointed out in the use cases, there are various advantages that speak in favor of using INCUBED:
* Devices with low computing power can communicate with the blockchain.
* Devices with a poor Internet connection or limited bandwidth can communicate with the blockchain.
 Devices with a limited power supply can be integrated.
* Itis a decentralized solution that does not require a central service provider for remote nodes.
* A remote node does not need to be trusted, as there is a verification facility.
» Existing centralized remote services can be easily integrated.

* Net service clients for special and proprietary hardware can be implemented independently of current Ethereum
developments.

19.4.6 Challenges

Of course, there are several challenges that need to be solved in order to implement a working INCUBED.

Security

The biggest challenge for a decentralized and trust-free system is to ensure that one can make sure that the information
supplied is actually correct. If a full client runs on a device and is synchronized with the network, it can check the
correctness itself. A light client can also check if the block headers match, but does not have the transactions available
and requires a connection to a full client for this information. A remote client that communicates with a full client via
the REST API has no direct way to verify that the answer is correct. In a decentralized network of netservice-nodes
whose trustworthiness is not known, a way to be certain with a high probability that the answer is correct is required.
The INCUBED system provides the nodes that supply the information with additional nodes that serve as validators.

684 Chapter 19. Concept

Incubed Documentation, Release 2.3

Business models

In order to provide an incentive to provide nodes for a decentralized solution, any transaction or query that passes
through such a node would have to be remunerated with an additional fee for the operator of the node. However, this
would further increase the transaction costs, which are already a real problem for micro-payments. However, there are
also numerous non-monetary incentives that encourage participation in this infrastructure.

19.5 Architecture

19.5.1 Overview

An INCUBED network consists of several components:

1. The INCUBED registry (later called registry). This is a Smart Contract deployed on the Ethereum Main-Net
where all nodes that want to participate in the network must register and, if desired, store a security deposit.

2. The INCUBED or Netservice node (later called node), which are also full nodes for the blockchain. The nodes
act as information providers and validators.

3. The INCUBED or Netservice clients (later called client), which are installed e.g. in the IoT devices.

4. Watchdogs who as autonomous authorities (bots) ensure that misbehavior of nodes is uncovered and punished.

Initialization of a Client

Each client gets an initial list of boot nodes by default. Before its first “real” communication with the network, the
current list of nodes must be queried as they are registered in the registry (see section [subsec:IN3-Registry-Smart-
Contract]). Initially, this can only be done using an invalidated query (see figure [fig:unvalidated request]). In order to
have the maximum possible security, this query can and should be made to several or even all boot nodes in order to
obtain a valid list with great certainty.

This list must be updated at regular intervals to ensure that the current network is always available.

Unvalidated Requests / Transactions

Unvalidated queries and transactions are performed by the client by selecting one or more nodes from the registry and
sending them the request (see figure [fig:unvalidated request]). Although the responses cannot be verified directly, the
option to send the request to multiple nodes in parallel remains. The returned results can then be checked for consis-
tency by the client. Assuming that the majority will deliver the correct result (or execute the transaction correctly),
this will at least increase the likelihood of receiving the correct response (Proof of Majority).

There are other requests too that can only be returned as an unverified response. This could be the case, for example:
 Current block number (the node may not have synchronized the latest block yet or may be in a micro fork,...)
* Information from a block that has not yet been finalized
* Gas price

The multiple parallel query of several nodes and the verification of the results according to the majority principle is a
standard functionality of the client. With the number of nodes requested in parallel, a suitable compromise must be
made between increased data traffic, effort for processing the data (comparison) and higher security.

The selection of the nodes to be queried must be made at random. In particular, successive queries should always be
sent to different nodes. This way it is not possible, or at least only very difficult, for a possibly misbehaving node
to send specific incorrect answers to a certain client, since it cannot be foreseen at any time that the same client will

19.5. Architecture 685

Incubed Documentation, Release 2.3

also send a follow-up query to the same node, for example, and thus the danger is high that the misbehavior will be
uncovered.

In the case of a misbehavior, the client can blacklist this node or at least reduce the internal rating of this node.
However, inconsistent responses can also be provided unintentionally by a node, i.e. without the intention of spreading
false information. This can happen, for example, if the node has not yet synchronized the current block or is running
on a micro fork. These possibilities must therefore always be taken into consideration when the client “reacts” to such
a response.

An unvalidated answer will be returned unsigned. Thus, it is not possible to punish the sender in case of an incorrect
response, except that the client can blacklist or downgrade the sender in the above-mentioned form.

Validated Requests

The second form of queries are validated requests. The nodes must be able to provide various verification options
and proofs in addition to the result of the request. With validated requests, it is possible to achieve a similar level
of security with an INCUBED client as with a light or even full client, without having to blindly trust a centralized
middleman (as is the case with a remote client). Depending on the security requirements and the available resources
(e.g. computing power), different validations and proofs are possible.

_
|_
>)
=21 IN IN 5
|
- :
— o00
—
)
N |58
:
o0o

As with an invalidated query, the node to be queried should be selected randomly. However, there are various criteria,
such as the deposited security deposit, reliability and performance from previous requests, etc., which can or must also
be included in the selection.

Call Parameter
A validated request consists of the parts:
* Actual request
* List of validators
* Proof request
* List of already known validations and proofs (optional).
Return values
The return depends on the request:
* The requested information (signed by the node)

¢ The signed answers of the validators (block hash) - 1 or more

686 Chapter 19. Concept

Incubed Documentation, Release 2.3

¢ The Merkle Proof
¢ Request for a payment.
Validation

Validation refers to the checking of a block hash by one or more additional nodes. A client cannot perform this check
on its own. To check the credibility of a node (information provider), the block hash it returns is checked by one or
more independent nodes (validators). If a validator node can detect the malfunction of the originally requested node
(delivery of an incorrect block), it can receive its security deposit and the compromised node is removed from the
registry. The same applies to a validator node.

Since the network connection and bandwidth of a node is often better than that of a client, and the number of client
requests should be as small as possible, the validation requests are sent from the requested node (information provider)
to the validators. These return the signed answer, so that there is no possibility for the information provider to manipu-
late the answer. Since the selection of nodes to act as validators is made only by the client, a potentially malfunctioning
node cannot influence it or select a validator to participate in a conspiracy with it.

If the selected validator is not available or does not respond, the client can specify several validators in the request,
which are then contacted instead of the failed node. For example, if multiple nodes are involved in a conspiracy, the
requested misbehaving node could only send the validation requests to the nodes that support the wrong response.

Proof

The validators only confirm that the block hash of the block from which the requested information originates is correct.
The consistency of the returned response cannot be checked in this way.

Optionally, this information can be checked directly by the client. However, this is obligatory, but considerably
increases safety. On the other hand, more information has to be transferred and a computationally complex check has
to be performed by the client.

When a proof is requested, the node provides the Merkle Tree of the response so that the client can calculate and check
the Merkle Root for the result itself.

Payment and Incentives

As an incentive system for the return of verified responses, the node can request a payment. For this, however, the
node must guarantee with its security deposit that the answer is correct.

There are two strong incentives for the node to provide the correct response with high performance since it loses its
deposit when a validator (wrong block hash) detects misbehavior and is eliminated from the registry, and receives a
reward for this if it provides a correct response.

If a client refuses payment after receiving the correctly validated information which it requested, it can be blacklisted
or downgraded by the node so that it will no longer receive responses to its requests.

If a node refuses to provide the information for no reason, it is blacklisted by the client in return or is at least down-
graded in rating, which means that it may no longer receive any requests and therefore no remuneration in the future.

If the client detects that the Merkle Proof is not correct (although the validated block hash is correct), it cannot attack
the node’s deposit but has the option to blacklist or downgrade the node to no longer ask it. A node caught this way of
misbehavior does not receive any more requests and therefore cannot make any profits.

The security deposit of the node has a decisive influence on how much trust is placed in it. When selecting the node,
a client chooses those nodes that have a corresponding deposit (stake), depending on the security requirements (e.g.
high value of a transaction). Conversely, nodes with a high deposit will also charge higher fees, so that a market with
supply and demand for different security requirements will develop.

19.5. Architecture 687

Incubed Documentation, Release 2.3

REQUEST + VALIDATORREQUEST + PROOFREQUEST + KNOWN PROOFS
INj ;5 SIGNED ANSWER, PAYMENT DEMAND, (PROOF), (VALIDATION)

CLIENT

E

<)
NODE

SEND PROOF AND BLOCK
VALIDATION REQUEST

N

NODE

g1

19.5.2 IN3-Registry Smart Contract

Each client is able to fetch the complete list including the deposit and other information from the contract, which is
required in order to operate. The client must update the list of nodes logged into the registry during initialization
and regularly during operation to notice changes (e.g. if a node is removed from the registry intentionally or due to
misbehavior detected).

In order to maintain a list of network nodes offering INCUBED-services a smart contract IN3Registry in the Ethereum
Main-Net is deployed. This contract is used to manage ownership and deposit for each node.

contract ServerRegistry {

/// server has been registered or updated its registry props or deposit
event LogServerRegistered(string url, uint props, address owner, uint deposit);

/// a caller requested to unregister a server.
event LogServerUnregisterRequested(string url, address owner, address caller);

/// the owner canceled the unregister—-proccess
event LogServerUnregisterCanceled(string url, address owner);

/// a Server was convicted
event LogServerConvicted(string url, address owner);

/// a Server is removed
event LogServerRemoved (string url, address owner);

struct In3Server {
string url; // the url of the server
address owner; // the owner, which is also the key to sign blockhashes
uint deposit; // stored deposit
uint props; // a list of properties—flags representing the capabilities of_
—the server

// unregister state
uintl128 unregisterTime; // earliest timestamp in to to call unregister
uint128 unregisterDeposit; // Deposit for unregistering

(continues on next page)

688 Chapter 19. Concept

Incubed Documentation, Release 2.3

(continued from previous page)

address unregisterCaller; // address of the caller requesting the unregister
/// server 1list of incubed nodes
In3Server([] public servers;

/// length of the serverlist
function totalServers () public view returns (uint) ;

/// register a new Server with the sender as owner
function registerServer (string _url, uint _props) public payable;

/// updates a Server by adding the msg.value to the deposit and setting the props,
function updateServer (uint _serverIndex, uint _props) public payable;
/// this should be called before unregistering a server.

/// there are 2 use cases:
/// a) the owner wants to stop offering the service and remove the server.

/) in this case he has to wait for one hour before actually removing the_
—server.
/7 This is needed in order to give others a chance to convict it in case this,

—server signs wrong hashes
/// b) anybody can request to remove a server because it has been inactive.

/// in this case he needs to pay a small deposit, which he will lose

// if the owner become active again

// or the caller will receive 20% of the deposit in case the owner does not,
—react.

function requestUnregisteringServer (uint _serverIndex) payable public;

/// this function must be called by the caller of the requestUnregisteringServer—
—function after 28 days

/// 1f the owner did not cancel, the caller will receive 20% of the server,
—deposit + his own deposit.

/// the owner will receive 80% of the server deposit before the server will be_
—removed.

function confirmUnregisteringServer (uint _serverIndex) public ;

/// this function must be called by the owner to cancel the unregister-process.

/// 1f the caller is not the owner, then he will also get the deposit paid by the,
—caller.

function cancelUnregisteringServer (uint _serverIndex) public;

/// convicts a server that signed a wrong blockhash
function convict (uint _serverIndex, bytes32 _blockhash, uint _blocknumber, uint8 _
—Vv, bytes32 _r, bytes32 _s) public ;

To register, the owner of the node needs to provide the following data:

 props : a bitmask holding properties like.

url : the public url of the server.

msg.value : the value sent during this transaction is stored as deposit in the contract.

msg.sender : the sender of the transaction is set as owner of the node and therefore able to manage it at any

19.5. Architecture 689

Incubed Documentation, Release 2.3

given time.

Deposit
The deposit is an important incentive for the secure operation of the INCUBED network. The risk of losing the deposit
if misconduct is detected motivates the nodes to provide correct and verifiable answers.

The amount of the deposit can be part of the decision criterion for the clients when selecting the node for a request.
The “value” of the request can therefore influence the selection of the node (as information provider). For example, a
request that is associated with a high value may not be sent to a node that has a very low deposit. On the other hand,
for a request for a dashboard, which only provides an overview of some information, the size of the deposit may play
a subordinate role.

19.5.3 Netservice-Node
The net service node (short: node) is the communication interface for the client to the blockchain client. It can be
implemented as a separate application or as an integrated module of a blockchain client (such as Geth or Parity).
Nodes must provide two different services:

* Information Provider

e Validator.

Information Provider

A client directly addresses a node (information provider) to retrieve the desired information. Similar to a remote client,
the node interacts with the blockchain via its blockchain client and returns the information to the requesting client.
Furthermore, the node (information provider) provides the information the client needs to verify the result of the query
(validation and proof). For the service, it can request payment when it returns a validated response.

690 Chapter 19. Concept

Incubed Documentation, Release 2.3

SMART CONTRACT

IncubedRegistry : : 2

/ Request Merkle-Tree
7 Transaction Hash
Payment Result

probabilistic pooled payment

N

NETSERVICE-CLIENT Ceeee—o)

If an information provider is found to return incorrect information as a validated response, it loses its deposit and is
removed from the registry. It can be transferred by a validator or watchdog.

Validator

The second service that a node has to provide is validation. When a client submits a validated request to the information
provider, it also specifies the node(s) that are designated as validators. Each node that is logged on to the registry must
also accept the task as validator.

If a validator is found to return false information as validation, it loses its deposit and is removed from the registry. It
can be transferred by another validator or a watchdog.

Watchdog

Watchdogs are independent bots whose random validators logged in to the registry are checked by specific queries
to detect misbehavior. In order to provide an incentive for validator activity, watchdogs can also deliberately pretend
misbehavior and thus give the validator the opportunity to claim the security deposit.

19.5. Architecture 691

Incubed Documentation, Release 2.3

19.5.4 Netservice-Client

The netservice client (short client) is the instance running on the device that needs the connection to the blockchain. It
communicates with the nodes of the INCUBED network via a REST APL

The client can decide autonomously whether it wants to request an unvalidated or a validated answer (see section. ..).
In addition to communicating with the nodes, the client has the ability to verify the responses by evaluating the majority
(unvalidated request) or validations and proofs (validated requests).

The client receives the list of available nodes of the INCUBED network from the registry and ensures that this list
is always kept up-to-date. Based on the list, the client also manages a local reputation system of nodes to take into
account performance, reliability, trustworthiness and security when selecting a node.

A client can communicate with different blockchains at the same time. In the registry, nodes of different blockchains
(identified by their ID) are registered so that the client can and must filter the list to identify the nodes that can process
(and validate, if necessary) its request.

Local Reputation System

The local reputations system aims to support the selection of a node.

The reputation system is also the only way for a client to blacklist nodes that are unreliable or classified as fraudulent.
This can happen, for example, in the case of an unvalidated query if the results of a node do not match those of the
majority, or in the case of validated queries, if the validation is correct but the proof is incorrect.

Performance-Weighting

In order to balance the network, each client may weight each node by:

max(lg(deposit),1)
max(avgResponseTime,100)

weight =

Based on the weight of each node a random node is chosen for each request. While the deposit is read by the contract,
the avgResponseTime is managed by the client himself. The does so by measuring the time between request and
response and calculate the average (in ms) within the last 24 hours. This way the load is balanced and faster servers
will get more traffic.

19.5.5 Payment / Incentives

To build an incentive-based network, it is necessary to have appropriate technologies to process payments. The pay-
ments to be made in INCUBED (e.g. as a fee for a validated answer) are, without exception micro payments (other
than the deposit of the deposit, which is part of the registration of a node and which is not mentioned here, however).
When designing a suitable payment solution, it must therefore be ensured that a reasonable balance is always found
between the actual fee, transaction costs and transaction times.

Direct Transaction Payment

Direct payment by transaction is of course possible, but this is not possible due to the high transaction costs. Exceptions
to this could be transactions with a high value, so that corresponding transaction costs would be acceptable.

However, such payments are not practical for general use.

692 Chapter 19. Concept

Incubed Documentation, Release 2.3

State Channels

State channels are well-suited for the processing of micropayments. A decisive point of the protocol is that the node
must always be selected randomly (albeit weighted according to further criteria). However, it is not practical for a
client to open a separate state channel (including deposit) with each potential node that it wants to use for a request. To
establish a suitable micropayment system based on state channels, a state channel network such as Raiden is required.
If enough partners are interconnected in such a network and a path can be found between two partners, payments can
also be exchanged between these participants.

Probabilistic Payment

Another way of making small payments is probabilistic micropayments. The idea is based on issuing probabilistic
lottery tickets instead of very small direct payments, which, with a certain probability, promise to pay out a higher
amount. The probability distribution is adjusted so that the expected value corresponds to the payment to be made.

For a probabilistic payment, an amount corresponding to the value of the lottery ticket is deposited. Instead of direct
payment, tickets are now issued that have a high likelihood of winning. If a ticket is not a winning ticket, it expires and
does not entitle the recipient to receive a payment. Winning tickets, on the other hand, entitle the recipient to receive
the full value of the ticket.

Since this value is so high that a transaction is worthwhile, the ticket can be redeemed in exchange for a payment.

Probabilistic payments are particularly suitable for combining a continuous, preferably evenly distributed flow of small
payments into individual larger payments (e.g. for streaming data).

Similar to state channels, a type of payment channel is created between two partners (with an appropriate deposit).

For the application in the INCUBED protocol, it is not practical to establish individual probabilistic payment channels
between each client and requested node, since on the one hand the prerequisite of a continuous and evenly distributed
payment stream is not given and, on the other hand, payments may be very irregularly required (e.g. if a client only
rarely sends queries).

The analog to a state channel network is pooled probabilistic payments. Payers can be pooled and recipients can also
be connected in a pool, or both.

19.6 Scaling

The interface between client and node is independent of the blockchain with which the node communicates. This
allows a client to communicate with multiple blockchains / networks simultaneously as long as suitable nodes are
registered in the registry.

For example, a payment transaction can take place on the Ethereum Mainnet and access authorization can be triggered
in a special application chain.

19.6.1 Multi Chain Support

Each node may support one or more network or chains. The supported list can be read by filtering the list of all servers
in the contract.

The Chainld refers to a list based on EIP-155. The Chainlds defined there will be extended by enabling even custom
chains to register a new chainld.

19.6. Scaling 693

Incubed Documentation, Release 2.3

19.6.2 Conclusion

INCUBED establishes a decentralized network of validatable remote nodes, which enables IoT devices in particular
to gain secure and reliable access to the blockchain. The demands on the client’s computing and storage capacity can
be reduced to a minimum, as can the requirements on connectivity and network traffic.

INCUBED also provides a platform for scaling by allowing multiple blockchains to be accessed in parallel from the
same client. Although INCUBED is designed in the first instance for the Ethereum network (and other chains using
the Ethereum protocol), in principle other networks and blockchains can also be integrated, as long as it is possible to
realize a node that can work as information provider (incl. proof) and validator.

694 Chapter 19. Concept

cHAPTER 20

Ethereum

20.1 Blockheader Verification

Since all proofs always include the blockheader it is crucial to verify the correctness of these data as well. But verifica-
tion depends on the consensus of the underlying blockchain. (For details, see Ethereum Verification and MerkleProof.)

695

Incubed Documentation, Release 2.3

Proof or Work Proof of Authority Proof of Stake
Client Client Client
A
rfseggfse response response
+ gi e + proof + proof header
h ega oy + header + header
Node B Node Node Node (Validator)
sign
Node A Node C

20.2 Proof of Work

Currently, the public chain uses proof of work. This makes it very hard to verify the header since anybody can produce
such a header. So the only way to verify that the block in question is an accepted block is to let registered nodes sign
the blockhash. If they are wrong, they lose their previously stored deposit. For the client, this means that the required
security depends on the deposit stored by the nodes.

This is why a client may be configured to require multiple signatures and even a minimal deposit:

client.sendRPC('eth_getBalance', [account, 'latest'], chain, {
minDeposit: web3.utils.toWei (10, "ether'),
signatureCount: 3

1)

The minDeposit lets the client preselect only nodes with at least that much deposit. The signatureCount asks
for multiple signatures and so increases the security.

Since most clients are small devices with limited bandwith, the client is not asking for the signatures directly from
the nodes but, rather, chooses one node and lets this node run a subrequest to get the signatures. This means not only
fewer requests for the clients but also that at least one node checks the signatures and “convicts” another if it lied.

696 Chapter 20. Ethereum

Incubed Documentation, Release 2.3

20.3 Proof of Authority

The good thing about proof of authority is that there is already a signature included in the blockheader. So if we know
who is allowed to sign a block, we do not need an additional blockhash signed. The only critical information we rely
on is the list of validators.

Currently, there are two consensus algorithms:

20.3.1 Aura

Aura is only used by Parity, and there are two ways to configure it:

« static list of nodes (like the Kovan network): in this case, the validatorlist is included in the chain-spec and
cannot change, which makes it very easy for a client to verify blockheaders.

* validator contract: a contract that offers the function getvValidators (). Depending on the chain, this
contract may contain rules that define how validators may change. But this flexibility comes with a price. It
makes it harder for a client to find a secure way to detect validator changes. This is why the proof for such a
contract depends on the rules laid out in the contract and is chain-specific.

20.3.2 Clique

Clique is a protocol developed by the Geth team and is now also supported by Parity (see Gorli testnet).

Instead of relying on a contract, Clique defines a protocol of how validator nodes may change. All votes are done
directly in the blockheader. This makes it easier to prove since it does not rely on any contract.

The Incubed nodes will check all the blocks for votes and create a validatorlist that defines the validatorset
for any given blockNumber. This also includes the proof in form of all blockheaders that either voted the new node
in or out. This way, the client can ask for the list and automatically update the internal list after it has verified each
blockheader and vote. Even though malicious nodes cannot forge the signatures of a validator, they may skip votes in
the validatorlist. This is why a validatorlist update should always be done by running multiple requests and merging
them together.

20.4 Ethereum Verification

The Incubed is also often called Minimal Verifying Client because it may not sync, but still is able to verify all
incoming data. This is possible since ethereum is based on a technology allowing to verify almost any value.

Our goal was to verify at least all standard eth_ . . . rpc methods as described in the Specification.

In order to prove something, you always need a starting value. In our case this is the BlockHash. Why do we use
the BlockHash? If you know the BlockHash of a block, you can easily verify the full BlockHeader. And since the
BlockHeader contains the stateRoot, transationRoot and receiptRoot, these can be verified as well. And the rest will
simply depend on them.

There is also another reason why the BlockHash is so important. This is the only value you are able to access from
within a SmartContract, because the evm supports a OpCode (BLOCKHASH), which allows you to read the last 256
Blockhashes, which gives us the chance to even verify the blockhash onchain.

Depending on the method, different proofs are needed, which are described in this document.
¢ Block Proof - verifies the content of the BlockHeader

 Transaction Proof - verifies the input data of a transaction

20.3. Proof of Authority 697

https://github.com/ethereum/wiki/wiki/JSON-RPC

Incubed Documentation, Release 2.3

* Receipt Proof - verifies the outcome of a transaction
e Log Proof - verifies the response of eth_getPastLogs
e Account Proof - verifies the state of an account

* Call Proof - verifies the result of a eth_call - response

20.4.1 BlockProof

BlockProofs are used whenever you want to read data of a Block and verify them. This would be:
¢ eth_getBlockTransactionCountByHash
* eth_getBlockTransactionCountByNumber
* eth_getBlockByHash
¢ eth_getBlockByNumber

The eth_getBlockBy. .. methods return the Block-Data. In this case all we need is somebody verifying the
blockhash, which is don by requiring somebody who stored a deposit and would lose it, to sign this blockhash.

The Verification is then simply by creating the blockhash and comparing this to the signed one.

The Blockhash is calculated by serializing the blockdata with rlp and hashing it:

blockHeader = rlp.encode ([
bytes32 (parentHash),

bytes32(sha3Uncles),
address (miner || coinbase),
bytes32(stateRoot),
bytes32(transactionsRoot),

bytes32(receiptsRoot || receiptRoot),
bytes256(logsBloom),

uint (difficulty),

uint (number),

uint (gasLimit),

uint (gasUsed),

uint (timestamp),

bytes (extrabata),

sealFields
? sealFields.map(rlp.decode)

[
bytes32(b.mixHash),
bytes8(b.nonce)

1)

For POA-Chains the blockheader will use the sealFields (instead of mixHash and nonce) which are already rlp-
encoded and should be added as raw data when using rlp.encode.

if (keccak256 (blockHeader) !== singedBlockHash)
throw new Error('Invalid Block"')

In case of the eth_getBlockTransactionCountBy. .. the proof contains the full blockHeader already ser-
ilalized + all transactionHashes. This is needed in order to verify them in a merkleTree and compare them with the
transactionRoot

698 Chapter 20. Ethereum

https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getblocktransactioncountbyhash
https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getblocktransactioncountbynumber
https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getblockbyhash
https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getblockbynumber
https://github.com/slockit/in3/blob/master/src/util/serialize.ts#L120
https://github.com/ethereum/wiki/wiki/RLP

Incubed Documentation, Release 2.3

20.4.2 Transaction Proof

TransactionProofs are used for the following transaction-methods:
* eth_getTransactionByHash
¢ eth_getTransactionByBlockHashAndIndex
¢ eth_getTransactionByBlockNumberAndIndex

In order to verify we need :

1. serialize the blockheader and compare the blockhash with the signed hash as well as with the blockHash and
number of the transaction. (See BlockProof)

2. serialize the transaction-data

transaction = rlp.encode ([
uint (tx.nonce),
uint (tx.gasPrice),
uint (tx.gas || tx.gasLimit),
address(tx.to),
uint (tx.value

)I
bytes (tx.input |
uint (tx.v),
uint (tx.r),
uint (tx.s)

| tx.data),

1. verify the merkleProof of the transaction with

verifyMerkleProof (
blockHeader.transactionRoot, /* root =/,
keccak256 (proof.txIndex), /+ key or path */
proof.merkleProof, /# serialized nodes starting with the root-node
transaction /+ expected value =/

*/

The Proof-Data will look like these:

{

"jsonrpc": "2.0",
"id": o6,
"result": {
"blockHash": "0xf1a2fd6a36f27950c78ce55901dc4e991d46590683cb8cb84804fa672bcal39sb",
"blockNumber": "Oxca",
"from": "0x7e5f4552091a69125d5dfcb7b8c2659029395bdf",
"gas": "0x55f0",
"gasPrice": "0x0",
"hash": "0xe9cl15c3b26342e3287bb069e433ded48ac3fadddd32a31b48e426d19d761d7e9b",
"input": "0x00",
"value": "0x3e8"
}I
"in3": {
"proof": {
"type": "transactionProof",
"block": "0xf901e6a040997a53895b48...", // serialized blockheader
"merkleProof": [/x serialized nodes starting with the root-node */

=" {8688

n
—

06008631661 366062555094205a05Ta795C0265 14163170 7a21 582 T 0UTTUOT{EontnUes On nexepage)

20.4. Ethereum Verification

699

67310342a£50:¢

https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_gettransactionbyhash
https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_gettransactionbyblockhashandindex
https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_gettransactionbyblocknumberandindex

Incubed Documentation, Release 2.3

(continued from previous page)

1,
"txIndex": 0,
"signatures": [...]

20.4.3 Receipt Proof

Proofs for the transactionReceipt are used for the following transaction-method:
* eth_getTransactionReceipt
In order to verify we need :

1. serialize the blockheader and compare the blockhash with the signed hash as well as with the blockHash and
number of the transaction. (See BlockProof)

2. serialize the transaction receipt

transactionReceipt = rlp.encode ([
uint (r.status || r.root),
uint (r.cumulativeGasUsed),
bytes256(r.logsBloom),
r.logs.map(l => [
address (1l.address),
l.topics.map(bytes32),
bytes(l.data)
1)

].slice(r.status === null && r.root === null 2 1 : 0))

1. verify the merkleProof of the transaction receipt with

verifyMerkleProof (
blockHeader.transactionReceiptRoot, /* root =/,
keccak256 (proof.txIndex), /# key or path =*/
proof.merkleProof, /x serialized nodes starting with the root-node */
transactionReceipt /x expected value #*/

1. Since the merkle-Proof is only proving the value for the given transactionIndex, we also need to prove that the
transactionIndex matches the transactionHash requested. This is done by adding another MerkleProof for the
Transaction itself as described in the Transaction Proof

20.4.4 Log Proof

Proofs for logs are only for the one rpc-method:
* eth_getLogs

Since logs or events are based on the TransactionReceipts, the only way to prove them is by proving the Transaction-
Receipt each event belongs to.

That’s why this proof needs to provide

e all blockheaders where these events occured

700 Chapter 20. Ethereum

https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_gettransactionreceipt
https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getlogs

Incubed Documentation, Release 2.3

* all TransactionReceipts + their MerkleProof of the logs
* all MerkleProofs for the transactions in order to prove the transactionIndex

The Proof data structure will look like this:

Proof {
type: 'logProof',
logProof: {
[blockNr: stringl: { // the blockNumber in hex as key
block : string // serialized blockheader
receipts: {
[txHash: stringl: { // the transactionHash as key
txIndex: number // transactionIndex within the block
txProof: string[] // the merkle Proof-Array for the transaction
proof: string[] // the merkle Proof-Array for the receipts

In order to verify we need :
1. deserialize each blockheader and compare the blockhash with the signed hashes. (See BlockProof)

2. for each blockheader we verify all receipts by using

verifyMerkleProof (
blockHeader.transactionReceiptRoot, /# root =/,
keccak256 (proof.txIndex), /* key or path x/
proof.merkleProof, /# serialized nodes starting with the root-node */
transactionReceipt /* expected value #*/

1. The resulting values are the receipts. For each log-entry, we are comparing the verified values of the receipt with
the returned logs to ensure that they are correct.

20.4.5 Account Proof

Prooving an account-value applies to these functions:
 eth_getBalance
* eth_getCode
¢ eth_getTransactionCount

* eth_getStorageAt

eth_getProof

For the Transaction or Block Proofs all needed data can be found in the block itself and retrieved through standard rpc
calls, but if we want to approve the values of an account, we need the MerkleTree of the state, which is not accessable
through the standard rpc. That’s why we have created a EIP to add this function and also implemented this in geth and

parity:
* parity (Status: pending pull request) - Docker

* geth (Status: pending pull request) - Docker

20.4. Ethereum Verification 701

https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getbalance
https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getcode
https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_gettransactioncount
https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getstorageat
https://github.com/ethereum/EIPs/issues/1186
https://github.com/paritytech/parity/pull/9001
https://hub.docker.com/r/slockit/parity-in3/tags/
https://github.com/ethereum/go-ethereum/pull/17737
https://hub.docker.com/r/slockit/geth-in3/tags/

Incubed Documentation, Release 2.3

This function accepts 3 parameter :
1. account - the address of the account to proof

2. storage - a array of storage-keys to include in the proof.

CEINT3 E

3. block - integer block number, or the string “latest”, “earliest” or “pending’

"jsonrpc": "2.0",

"id": 1,

"method": "eth_ getProof",
"params": [

"0x7F0d15C7FAae65896648C8273B6d7E43£58Fag842",
["Ox56e81fl171bcc55a6f£8345e692c0£86e5b48e01b996cadc001622fb5e363b421" 1,

"latest"

The result will look like this:

"jsonrpc": "2.0",
"result": {
"accountProof": |

"0x£f90211la...0701bc80O",
"0xf90211la...0d832380",
"0x£f9021la...5fb20c80",
"0x£f9021la...0675b80",
"0x£f90151a0...cal8080"

]l

"address": "0x7f0d15c7faae65896648c8273b6d7e43f58fag842",
"balance": "0x0",
"codeHash": "0xc5d2460186£f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470",
"nonce": "0Ox0",
"storageHash": "0x56e81f171bcc55a6f£8345e692c0£86e5b48e01b996cadc001622fb5e363b421
“*"l
"storageProof": |
{
"key": "0x56e81fl71bccb55a6f£8345e692c0£86e5b48e01b996cadc001622fb5e363b421",
"proof": [
"0xf9021la...0701bc80",
"0xf9021la...0d832380"
JI
"value": "Ox1"
}
]
}I
"id": 1

In order to run the verification the blockheader is needed as well.
The Verification of such a proof is done in the following steps:

1. serialize the blockheader and compare the blockhash with the signed hash as well as with the blockHash and
number of the transaction. (See BlockProof’)

2. Serialize the account, which holds the 4 values:

702 Chapter 20. Ethereum

Incubed Documentation, Release 2.3

account = rlp.encode ([
uint (nonce),
uint (balance),
bytes32(storageHash || ethUtil.KECCAK256_RLP),
bytes32(codeHash || ethUtil.KECCAK256_NULL)
1)

1. verify the merkle Proof for the account using the stateRoot of the blockHeader:

verifyMerkleProof (

block.stateRoot, // expected merkle root

util.keccak (accountProof.address), // path, which is the hashed address
accountProof.accountProof.map (bytes), // array of Buffer with the merkle-proof-data
isNotExistend (accountProof) ? null : serializeAccount (accountProof), // the expected,
—serialized account

In case the account does exist yet, (which is the case if none == startNonce and codeHash
== '0xc5d2460186£7233c927e7db2dcc703c0e500b653¢ca82273b7bfad8045d85a470"), the proof
may end with one of these nodes:

* the last node is a branch, where the child of the next step does not exist.
* the last node is a leaf with different relative key
Both would prove, that this key does not exist.

1. Verify each merkle Proof for the storage using the storageHash of the account:

verifyMerkleProof (
bytes32 (accountProof.storageHash), // the storageRoot of the account
util.keccak (bytes32(s.key)), // the path, which is the hash of the key
s.proof.map (bytes), // array of Buffer with the merkle-proof-data
s.value === '0x0' ? null : util.rlp.encode(s.value) // the expected value or none_
—to proof non-existence

))

20.4.6 Call Proof

Call Proofs are used whenever you are calling a read-only function of smart contract:
e eth_call

Verifying the result of a eth_call is alittle bit more complex. Because the response is a result of executing opcodes
in the vm. The only way to do so, is to reproduce it and execute the same code. That’s why a Call Proof needs to
provide all data used within the call. This means :

* all referred accounts including the code (if it is a contract), storageHash, nonce and balance.

* all storage keys, which are used (This can be found by tracing the transaction and collecting data based on th
SLOAD-opcode)

* all blockdata, which are referred at (besides the current one, also the BLOCKHASH-opcodes are referring to
former blocks)

For Verifying you need to follow these steps:
1. serialize all used blockheaders and compare the blockhash with the signed hashes. (See BlockProof)

2. Verify all used accounts and their storage as showed in Account Proof

20.4. Ethereum Verification 703

https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_call

Incubed Documentation, Release 2.3

3. create a new VM with a MerkleTree as state and fill in all used value in the state:

// create new state for a vm
const state = new Trie()
const vm = new VM({ state })

// fill in values
for (const adr of Object.keys (accounts)) {
const ac = accounts[adr]

// create an account-object
const account = new Account ([ac.nonce, ac.balance, ac.stateRoot, ac.codeHash])

// 1f we have a code, we will set the code
if (ac.code) account.setCode(state, bytes(ac.code))

// set all storage-values
for (const s of ac.storageProof)
account.setStorage(state, bytes32(s.key), rlp.encode(bytes32(s.value)))

// set the account data
state.put (address(adr), account.serialize())

// add listener on each step to make sure it uses only values found in the proof
vm.on('step', ev => {
if (ev.opcode.name === "'SLOAD') {
const contract = toHex(ev.address) // address of the current code
const storageKey = bytes32(ev.stack[ev.stack.length - 1]) // last element,,
—on the stack is the key
if (!getStorageValue (contract, storageKey))
throw new Error (incomplete data: missing key ${storageKey))

/// ... check other opcodes as well
1)

// create a transaction
const tx = new Transaction (txData)

// run it
const result = await vm.runTx({ tx, block: new Block ([block, [1, [11) })

// use the return value
return result.vm.return

In the future we will be using the same approach to verify calls with ewasm.

704 Chapter 20. Ethereum

https://github.com/ethereumjs/ethereumjs-vm

CHAPTER 21

Bitcoin

Bitcoin may be a complete different chain but there are ways to verify a Bitcoin block header within an Ethereum
Smart Contract and Bitcoin data in general on the client-side as well. This requires a little bit more effort but you can
use all the features of Incubed.

21.1 Concept

For the verification of Bitcoin we make use of the Simplified Payment Verification (SPV) proposed in the Bitcoin
paper by Satoshi Nakamoto.

It is possible to verify payments without running a full network node. A user only needs to keep a copy of
the block headers of the longest proof-of-work chain, which he can get by querying network nodes until
he’s convinced he has the longest chain, and obtain the Merkle branch linking the transaction to the block
it’s timestamped in. He can’t check the transaction for himself, but by linking it to a place in the chain,
he can see that a network node has accepted it, and blocks added after it further confirm the network has
accepted it. As such, the verification is reliable as long as honest nodes control the network, but is more
vulnerable if the network is overpowered by an attacker. While network nodes can verify transactions for
themselves, the simplified method can be fooled by an attacker’s fabricated transactions for as long as the
attacker can continue to overpower the network.

In contrast to SPV-clients an Incubed client does not keep a copy of all block headers, instead the client is stateless
and only requests required block headers. We are following a simple process: A client requests certain data, the server
sends a response with proof data in adition to the actual result, the client verifies the result by using the proof data. We
rely on the fact that it is extremly expensive to deliver a wrong block (wrong data) which still has following blocks
referring the wrong block (i.e. delivering a chain of fake-blocks). This does not really work for very old blocks. Beside
the very low difficulty at this time, the miner has many years of time to pre-mine a wrong chain of blocks. Therefore,
a different approach is required which will be explained here

705

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
bitcoin.html#id1

Incubed Documentation, Release 2.3

21.1.1 Bitcoin Block Header

Size Field Description

4 bytes Version A version number to track software/protocol upgrades

32 bytes | Parent Hash | A reference to the hash of the previous (parent) block in the chain

32 bytes | Merkle Root | A hash of the root of the merkle tree of this block’s transactions

4 bytes | Timestamp The approximate creation time of this block (seconds from Unix Epoch)
4 bytes Bits The Proof-of-Work algorithm difficulty target for this block

4 bytes | Nonce A counter used for the Proof-of-Work algorithm

21.1.2 Finality in Bitcoin

In terms of Bitcoin, finality is the assurance or guarantee that a block and its included transactions will not be revoked
once committed to the blockchain. Bitcoin uses a probabilistic finality in which the probability that a block will not
be reverted increases as the block sinks deeper into the chain. The deeper the block, the more likely that the fork
containing that block is the longest chain. After being 6 blocks deep into the Bitcoin blockchain it is very unlikely
(but not impossible) for that block to be reverted. (For more information see here)

21.1.3 Mining in Bitcoin

The process of trying to add a new block of transactions to the Bitcoin blockchain is called mining. Miners are
competing in a network-wide competition, each trying to find a new block faster than anyone else. The first miner
who finds a block broadcasts it across the network and other miners are adding it to their blockchain after verifying the
block. Miners restart the mining-process after a new block was added to the blockchain to build on top of this block.
As a result, the blockchain is constantly growing — one block every 10 minutes on average.

But how can miners find a block?

They start by filling a candidate block with transactions from their memory pool. Next they construct a block header
for this block, which is a summary of all the data in the block including a reference to a block that is already part of
the blockchain (known as the parent hash). Now the actual mining happens: miners put the block header through the
SHA256 hash function and hope that the resulting hash is below the current target. If this is not the case, miners keep
trying by incrementing a number in the block header resulting in a completely different hash. This process is referred
to as proof-of-work.

21.1.4 Difficulty Adjustment Period

This section is important to understand how the adjustment of the difficulty (and therefore the target) works. The
knowledge of this section serves as the basis for the remaining part.

The white paper of Bitcoin specifies the block time as 10 minutes. Due to the fact that Bitcoin is a decentralized
network that can be entered and exited by miners at any time, the computing power in the network constantly changes
depending on the number of miners and their computing power. In order to still achieve an average block time of 10
minutes a mechanism to adjust the difficulty of finding a block is required: the difficulty.

The adjustment of the difficulty happens every 2016 blocks - roughly every two weeks and (which is one epoch/period).
Since Bitcoin is a decentralized network there is no authority which adjusts the difficulty. Instead every miner calcu-
lates the expected time to mine 2016 blocks (20160 minutes) and compares it with the actual time it took to mine the
last 2016 blocks (using timestamps). The difficulty increases when the blocks were mined faster than expected and
vice versa. Although the computing power increased heavily since the introduction of Bitcoin in 2009 the average
block time is still 10 minutes due to this mechanism.

What is the difference between the difficulty and the target?

706 Chapter 21. Bitcoin

https://medium.com/mechanism-labs/finality-in-blockchain-consensus-d1f83c120a9a

Incubed Documentation, Release 2.3

The difficulty is a big number used for the adjustment process. The target is used for the mining process and for the
verification of a block hash. As mentioned above the hash of a block has to be smaller than the target to be accepted
across the network. The target can be calculated using the difficulty and the constant value targetmax:

target = targetmax / difficulty

targetmax = 0x00000000FFFF00

21.2 Security Calculation

How secure is the Incubed Bitcoin Verification?

21.2.1 Blocks Before 227,836 (BIP34)

The verification of blocks before BIP34 relies on checkpoints as explained here.

Although one checkpoint is only 12 bytes in total, it provides a security of 16 bytes because we know that the first 4
bytes are always zeros. An attacker has to test 2128 possibilities to (propably) find a hash whose leading 16 bytes are
equal to the checkpoint’s.

With a current total hash rate of 120 EH/s in the Bitcoin network:

27128 = 3.4 % 10738 possible hashes
3.4 « 107”38 H / 120 EH/s = 2,835,686,391,007,820,529 s

= 89,919,025,590 years

It would take up to 89,919,025,590 years if the whole bitcoin network with its total hash rate would try to find such a
hash.

Does the security increase if the requested block is further away from a checkpoint?

Slighlty - but actually not. The further away a requested block is from a checkpoint, the more proof-of-work has to be
done. Due to the low difficulty in the early days of Bitcoin this is not a problem with the today’s computing power.
Solving the proof-of-work does not really have to be taken into account - because this is “nothing” compared to the
many years to brute force a hash whose leading 16 bytes are equal to the checkpoint’s. Therefore, the security does
not really increase with a greater distance to a checkpoint.

21.2.2 Blocks After 227,836 (BIP34)

The highest risk is a situation, where a malicious node could provide a manipulated or fake block header (i.e. changing
the data to gain benefits) and finality block headers which fullfill the rules but are not actually valid (i.e. not part of
the longest chain / chain of fake-blocks). The client would trust this data in case he has no other information to check
against. The following calculation outlines the security (in terms of $) when the client is requesting one of the newer
blocks and 6 finality headers. This results in a total of 7 fake-blocks that an atacker has to calculate to fool the client.
The calculation is based on assumptions and averages.

Assume that the attacker has 10% of the total mining power. This would mean he needs around 100 minutes to mine
1 block (average block time of Bitcoin is 10 minutes) and around 700 minutes to mine 7 blocks. While mining fake-
blocks, the attacker loses his chance of earning block rewards. Assuming that we would have been able to mine 7
blocks, with a current block reward of 6.25 BTC and $11,400 per Bitcoin at the time of writing:

21.2. Security Calculation 707

bitcoin.hmtl#id1

Incubed Documentation, Release 2.3

7 % 6.25 BTC = 43.75 BTC

43.75 BTC % ($11,400 / 1 BTIC) = $498,750

Furthermore, the attacker needs to achieve 10% of the mining power. With a current total hash rate of 120 EH/s, this
would mean 12 EH/s. There are two options: buying the hardware or renting the mining power from others. A new
Antminer S9 with 16 TH/s can be bought for ~$100. This would mean an attacker has to pay $75,000,000 to buy so
many of these miners to reach 12 EH/s. The costs for electricity, storage room and cooling still needs to be added.

Hashing power can also be rented online. Obviously nobody is offering to lend 12 EH/s of hashing power — but for this
calculation we assume that an attacker is still able to rent this amount of hashing power. The website nicehash.com is
offering 1 PH/s for 0.0098 BTC (for 24 hours).

1 PH/s = 0.0098 BTC

12 EH/s = 117.6 BTC

Assuming it is possible to rent it for 700 minutes only (which would be 48.6% of one day).

117.6 BTC * 0.486 = 57.15 BTC

57.15 BTC = ($11,400 / 1 BTC) = $651,510

Total: $498,750 + $651,510 = $1,150,260

Therefore, 6 finality headers provide a security of estimated $1,150,260 in total.
What does that mean for the client?

A rental car is equipped with an Incubed client running on a microship to perform authorization checks and activate
the ignition if necessary. The car is its own owner and it has a Bitcoin address to receive payments to rent itself to
customers. Part of the authorization check is the verification of the existence and correctness of the payment (using
the Incubed client). Therefore, a customers sends the hash of the payment transaction to the car to be authorized in
case the transaction gets verified.

Assuming that a customer (Bob) runs a malicious Incubed node and the car randomly asks exactly this node for the
verification of the transaction. Bob could fool the car by creating a fake-transaction in a fake-block. To prove the
correctness of the fake-transaction, Bob needs to calculate a chain of fake-blocks as well (to prove the finality). In this
case the car would authorize Bob because it was able to verify the transaction, even though the transaction is fake.

Bob would be able to use the car without having to pay for it, but performing such an attack (calculate a wrong block
and 6 finality headers) is very expensive as shown above. And this is what is meant by security in terms of $ - fooling
the client in such a scenario is definitely not worth it (since paying the actual fees for the car would be a far less than
the cost of performing such an attack). Hence, Incubed clients can trust in the correctness of a transaction (with a high
probability) if the value is less than $1,150,260 and the server is able to provide 6 finality headers for the block that
transaction is included. The higher the number of finality blocks, the higher the security (i.e. the higher the costs for
an attack). The following figure shows the cost to mine n fake-blocks based on the numbers mentioned above.

708 Chapter 21. Bitcoin

https://shop.bitmain.com/product/detail?pid=00020200306153650096S2W5mY1i0661
https://www.nicehash.com/marketplace

Incubed Documentation, Release 2.3

$1.800.000,00

$1.600.000,00

5600.000,00

vvvvv

21.3 Proofs

21.3.1 Target Proof

Having a verified target on the client-side is important to verify the proof of work and therefore the data itself (assuming
that the data is correct when someone put a lot of work into it). Since the target is part of a block header (bit s-field)
we can verify the target by verifying the block header. This is a dilemma since we want to verify the target by verifying
the block header but we need a verified target to verify the block header (as shown in block proof). You will read about
two different options to verify a target.

Verification using finality headers

The client maintains a cache with the number of a difficulty adjustment period (dap) and the corresponding target -
which stays the same for the duration of one period. This cache was filled with default values at the time of the release
of the Bitcoin implementation. If a target is not yet part of the cache it needs to be verified first and added to the cache
afterwards.

How does the verification works?

We completely rely on the finality of a block. We can verify the target of a block (and therefore for a whole period) by
requesting a block header (getblockheader) and n-amount of finality headers. If we are able to prove the finality
using the finality proof we can consider the target as verified as mentioned earlier.

The client sets a limit in his configuration regarding the maximum change of the target from a verified one to the one
he wants to verify. The client will not trust the changes of the target when they are too big (i.e. greater than the limit).
In this case the client will use the proofTarget-method to verify the big changes in smaller steps.

Verification using signatures

Important: This concept is still in development and discussion and is not yet fully implemented.
This approach uses signatures of Incubed nodes to verify the target.

Since the target is part of the block header we just have to be very sure that the block header is correct - which leads
us to a correct target. The client fetches the node list and chooses n nodes which will provide signature. Afterwards he
sends a getblockheader-request (also containing the addresses of the selected nodes) to a random provider node.
This node asks the signatures nodes to sign his result (the block header). The response will include the block header
itself and all the signatures as well. The client can verify all signatures by using the node list and therefore verifying

21.3. Proofs 709

bitcoin.html#block-proof
bitcoin.html#finality-proof
rpc.html#btc_prooftarget

Incubed Documentation, Release 2.3

the actual result (a verified block header and therefore a verified target). The incentivation for the nodes to act honest
is their deposit which they will loose in case they act malicious. (see here for more details of this process)

The amount of signatures nodes n should be chosen with the Risk Calculation in mind.

21.3.2 Block Proof

Verifying a Bitcoin block is quite easy when you already have a verified block hash.

1. We take the first 80 bytes of the block data - which is the block header - and hash it with sha256 twice. Since
Bitcoin stores the hashes in little endian we have to reverse the order of the bytes afterwards:

// btc hash = shal256 (sha256 (data))
const hash(data: Buffer) => crypto.createHash('sha256") .update (crypto.createHash (
—'sha256") .update (data) .digest ()) .digest ()

const blockData:Buffer = ...
// take the first 80 bytes, hash them and reverse the order
const blockHash = hash(blockData.slice(0,80)) .reverse()

2. In order to check the proof of work in the block header we compare the target with the hash:

const target = Buffer.alloc(32)
// we take the first 3 bytes from the bits-field and use the 4th byte as exponent
blockData.copy (target, blockDatal[75]1-3,72,75);

// the hash must be lower than the target
if (target.reverse () .compare (blockHash) < 0)
throw new Error ('blockHash must be smaller than the target')

21.3.3 Finality Proof

Necessary data to perform this proof:

¢ Block header (block X)

* Finality block header (block X+1, ..., X+n)
The finality for block X can be proven as follows:

The proof data contains the block header of block X as well as n following block headers as finality headers. In Bitcoin
every block header includes a parentHash-field which contains the block hash of its predecessor. By checking this
linking the finality can be proven for block X. Meaning the block hash of block X is the parentHash of block X+1,
the hash of block X+1 is the parentHash of block X+2, and so on. If this linking correct until block X+n (i.e. the
last finality header) then block X can be considered as final (Hint: as mentioned above Bitcoin uses a probabilistic
finality, meaning a higher n increases the probability of being actual final).

Example

This example will use two finality headers to demonstrate the process:

Hash: 00000000000000000000140a7289f3aada855dfd23b0bb13bb5502b0ca60cdd7 (block #625000)
Finality Headers:

710 Chapter 21. Bitcoin

https://github.com/slockit/in3/blob/master/in3_image.png
Threat-Model-for-Incubed.html#risk-calculation
https://blockchair.com/bitcoin/block/625000

Incubed Documentation, Release 2.3

(1)
—00e00020d7cd60cab00255bb13bbb023£d5d85daaaf389720a140000000000000000000040273a5828953¢

(2) .

61554c98540f

—00e0f£7£c78d20fab2c28de35d00£f7ec5fb269a63d597146d9031000000000000000000052960bblaa3c23581lab3c233a2:

Hash (reversed): d7cd60cab00255bbl3bbb023£d5d85daaaf389720a1400000000000000000000
Parent Hash (1): d7cd60cab00255bbl3bbb023£d5d85daaaf389720a1400000000000000000000

Hash of (1): c78d20£fab2c28de35d00£7ec5fb269a63d597146d90310000000000000000000
Parent Hash (2): c78d20fab2c28de35d00£f7ec5fb269a63d597146d90310000000000000000000

21.3.4 Transaction Proof (Merkle Proof)

Necessary data to perform this proof:
* Block header
* Transaction
e Merkle proof (for this transaction)
¢ Index (of this transaction)

All transactions of a Bitcoin block are stored in a merkle tree. Every leaf node is labelled with with the hash of a
transaction, and every non-leaf node is labelled with the hash of the labels of its two child nodes. This results in one
single hash - the merkle root - which is part of the block header. Attempts to change or remove a leaf node after the
block was mined (i.e. changing or removing a transaction) will not be possible since this will cause changes in the
merkle root, thereby changes in the block header and therefore changes in the hash of this block. By checking the
block header against the block hash such an attempt will be discovered.

Having a verified block header and therefore a verified merkle root allows us to perform a merkle root proving the
existence and correctness of a certain transaction.

The following example explains a merkle proof (for more details see here):

Root |
HABCDEFGHIJKLMNOP |

-————

HABCDEFGH IJKLMNOP |

— o

Ha |1 HB || Hc |{ Ho {{ HE |} HF [Ha [HH L HE LMD Hv || AN || Ho |] Hp

In order to verify the existence and correctness of transaction [K] we use sha256 to hash [K] twice to obtain H(K).
For this example the merkle proof data will contain the hashes H(L), H(IJ), HMMNOP) and H(ABCDEFGH). These
hashes can be used to calculate the merkle root as shown in the picture. The hash of the next level can be calculated by
concatenating the two hashes of the level below and then hashing this hash with sha256 twice. The index determines
which of the hashes is on the right and which one on the left side for the concatenation (Hint: the placement is

21.3. Proofs 711

https://medium.com/crypto-0-nite/merkle-proofs-explained-6dd429623dc5

Incubed Documentation, Release 2.3

important, since swaped hashes will result in a completely different hash). When the calculated merkle root appears
to be equal to the one contained by the block header we’ve hence proven the existence and correctness of transaction
[K].

This can be done for every transaction of a block by simply hashing the transaction and then keep on hashing this
result with the next hash from the merkle proof data. The last hash must match the merkle root. (Hint: obviously the
merkle proof data will be different for different transactions).

21.3.5 Block Number Proof

Necessary data to perform this proof:
* Block header
¢ Coinbase transaction (first transaction of the block)
» Merkle proof (for the coinbase transaction)

In comparison to Ethereum there is no block number in a Bitcoin block header. Bitcoin uses the height of a block,
which is the number of predecessors. The genesis block is at height O since there are no predecessors (the block with
100 predecessors is at height 100). Therefore, you need to know the complete Bitcoin blockchain to verify the height
of a block (by counting the links back to the genesis block). Hence, actors that do not store the complete chain (like
an Incubed client) are not able to verify the height of a block. To change that Gavin Andresen proposed a change to
the Bitcoin protocol in 2012.

Bitcoin Improvement Proposal 34 (BIP-34) introduces an upgrade path for versioned transactions and
blocks. A unique value is added to newly produced coinbase transactions, and blocks are updated to ver-
sion 2. After block number 227,835 all blocks must include the block height in their coinbase transaction.

For all blocks after block number 227,835 the block number can be proven as follows:
1.) Extract block number out of the coinbase transaction

Coinbase transaction of block 624692

03348809041f4e8b5e7669702f7777772e6f6b65782€636f6d2ffab66d6db388905769d4e3720bleS908140+ea75l73ba3edf

Decode:

a) 03: first byte signals the length of the block number (push the following 3 bytes) b) 348809: the block number in
big endian (convert to little endian) ¢) 098834: the block number in little endian (convert to decimal) d) 624692:
the actual block number e) 041f4e. . . : the rest can be anything

2.) Prove the existence and correctness of the coinbase transaction

To trust the extracted block number it’s necessary to verify the existence and correctness of the coinbase transaction.
This can be done by performing a merkle proof using the provided block header and the merkle proof data.

Size of a block number proof
As mentioned above three things are required to perform this proof:
* block header (fixed size): 80 bytes

* coinbase transaction (variable size): 300 bytes on average (there are some extra ordinary large ones: e.g. of
block #376992 with 9,534 bytes)

* merkle proof (variable size): block limit of 1 MB, a maximum of approximately 3500 transactions in one block,
maximum of 12 hashes needed in the merkle proof = 12 * 32 bytes = 384 bytes

Conclusion: a block number proof will be 764 bytes on average (the size of this proof can be much smaller - but can
also be much bigger - depending on the size of the coinbase transaction and the total amount of transaction)

712 Chapter 21. Bitcoin

bitcoin.html#bitcoin-block-header
https://blockchair.com/bitcoin/transaction/02d8cdb103f50532e2f18d9d1f85c016468ee0294908d387e38f80b99410d893
bitcoin.html#transaction-proof-merkle-proof
https://blockchair.com/bitcoin/transaction/cbb4836f85b820af27ee3225cda308b0f185d3bdff5f1373d6e3a8aa4282fcdc

Incubed Documentation, Release 2.3

21.3.6 Blocks Before 227,836 (BIP34)

As mentioned in the introduction, relying on the finality does not really work for very old blocks (old in this context
always means before BIP34, block number < 227,836) due to the following problems:

* low difficulty The total hash rate of the bitcoin network was around 1-10 TH/s in 2011, whereas today the total
hash rate is around 130 EH/s and a single Antminer S9 is capable of running at 14 TH/s (which is more than
the total hash rate back in 2011). Therefore, an attacker can easily mine a chain of fake-blocks with today’s
computing power and finality blocks provide almost no security. See here for the evolution of the total hash rate.

» missing BIP34 The verification of the block number is an important part of the verification of bitcoin data in
general. Since the block number is not part of the block header in Bitcoin the client needs a different way to
verify the block number to make sure that a requested block X really is block X. For every block after block
number 227,835 the block number is part of the coinbase transaction due to BIP34. The verification described
in Block Number Proof obviosuly does not work for very old blocks (before the introduction of BIP34).

The verification of blocks before BIP34 relies on hard-coded checkpoints of hashes of bygone blocks on the client-
side. The server needs to provide the corresponding finality headers from a requested block up to the next checkpoint.
By checking the linking the client is able to verify the existence and correctness of the requested block. The only
way for an attacker to fool the client would be by finding a hash collision (find different inputs that produce the same
hash) of a certain checkpoint (the attacker could provide a chain of fake-blocks and the client accepts it because he
was able to verify the chain against a checkpoint). The client has the opportunity to decide whether he wants to verify
old blocks or not. By turning on this option the checkpoints will be included in the client and the server will provide
the corresponding finality headers in each request of old blocks.

Creation of the checkpoints

The reason why we need checkpoints is that it is not feasable for the client to save every single hash from the genesis
block up to the introduction of BIP34. The checkpoints are hashes of bygone blocks, and to save on space the
checkpoints have a distance X. The larger this distance is, the smaller is the amount of checkpoints and the larger is
the amount of necessary finality headers to reach a checkpoint (maximum X finality headers). Therefore, having a
large distance requires less storage space to save the checkpoints BUT the amount of finality headers per request will
be very big (resulting in a lot of data to transfer). The following graph should help to decide where the sweetspot is.

1207

Y801

401

) 4

21.3. Proofs 713

https://www.blockchain.com/charts/hash-rate
bitcoin.html#block-number-proof

Incubed Documentation, Release 2.3

y: size in kB

x: distance between checkpoints (blocks)

green: size of record of checkpoints

red: size of finality headers per request (maximum)

As you can see in the graph the distance of 200 is the sweetspot we were looking for. This means the record of
checkpoints includes the hash of every 200th block of the Bitcoin blockchain starting with block 200 (storing the
genesis block is not necessary since a checkpoint always has to be in the future of a requested block). It takes 32 bytes
to store a block hash. To save on space we decided to store the first 16 bytes only - and to save even more space we
removed the first 4 bytes of every hash because each hash started with at least 4 bytes of zeros (storing only 12 bytes is
still very secure). The record of checkpoints needs a total of 13680 bytes. Depending on the distance from a requested
block to the next checkpoint a response will include a maximum of 199 finality headers which is a total of around 76
kB.

Why is it necessary having checkpoints in the future (from the view of a requested block)? Why can a
checkpoint not be in past to have a maximum distance of 100 (either forwards or backwards to the next
checkpoint)?

Simple answer: Since the hash of block X-1 is part of block X (not not vice versa) checking the links backward does
not provide any security. An attacker can simply modify block X and refer to block X-1 (using the hash of block X-1
as the parent hash of block X). The attacker just have to solve the proof-of-work again for block X (which should not
be too hard with the today’s computing power and the low difficulty at that time). To verify that block X is correct the
client always needs a chain of blocks up to the next checkpoint.

21.4 Conviction

Important: This concept is still in development and discussion and is not yet fully implemented.

Just as the Incubed Client can ask for signed block hashes in Ethereum, he can do this in Bitcoin as well. The signed
payload from the node will have to contain these data:

bytes32 blockhash;
uint256 timestamp;
bytes32 registryIld;

Client requires a Signed Blockhash

and the Data Provider Node will ask the chosen node to sign.

The Data Provider Node (or Watchdog) will then check the signature

If the signed blockhash is wrong it will start the conviting process:

Convict with BlockHeaders

In order to convict, the Node needs to provide proof, which is the correct blockheader.

But since the BlockHeader does not contain the BlockNumber, we have to use the timestamp. So the correct block
as proof must have either the same timestamp or a the last block before the timestamp. Additionally the Node may
provide FinalityBlockHeaders. As many as possible, but at least one in order to prove, that the timestamp of the correct
block is the closest one.

The Registry Contract will then verify
* the Signature of the convited Node.

* the BlockHeaders gives as Proof

714 Chapter 21. Bitcoin

Incubed Documentation, Release 2.3

The Verification of the BlockHeader can be done directly in Solitidy, because the EVM offers a precompiled Contract
at address 0x2 : sha256, which is needed to calculate the Blockhash. With this in mind we can follow the steps as
described in Block Proof implemented in Solidity.

While doing so we need to add the difficulties of each block and store the last blockHash and the totalDifficulty
for later.

Challenge the longest chain
Now the convited Server has the chance to also deliver blockheaders to proof that he has signed the correct one.
The simple rule is:

If the other node (convited or convitor) is not able to add enough verified BlockHeaders with a higher
totalDifficulty within 1 hour, the other party can get the deposit and kick the malicious node out.

Even though this game could go for a while, if the convicted Node signed a hash, which is not part of the longest
chain, it will not be possible to create enough mining power to continue mining enough blocks to keep up with the
longest chain in the mainnet. Therefore he will most likely give up right after the first transaction.

21.4. Conviction 715

bitcoin.html#block-proof

Incubed Documentation, Release 2.3

716 Chapter 21. Bitcoin

CHAPTER 22

Incentivization

Important: This concept is still in development and discussion and is not yet fully implemented.

The original idea of blockchain is a permissionless peer-to-peer network in which anybody can participate if they run
a node and sync with other peers. Since this is still true, we know that such a node won’t run on a small IoT-device.

22.1 Decentralizing Access

This is why a lot of users try remote-nodes to serve their devices. However, this introduces a new single point of failure
and the risk of man-in-the-middle attacks.

So the first step is to decentralize remote nodes by sharing rpc-nodes with other apps.

centralized centralized per Dapp Incubed
infura A B C B A C
a b c a b c c a b

22.2 Incentivization for Nodes

In order to incentivize a node to serve requests to clients, there must be something to gain (payment) or to lose (access
to other nodes for its clients).

717

Incubed Documentation, Release 2.3

22.3 Connecting Clients and Server

As a simple rule, we can define this as:
The Incubed network will serve your client requests if you also run an honest node.

This requires a user to connect a client key (used to sign their requests) with a registered server. Clients are able to
share keys as long as the owner of the node is able to ensure their security. This makes it possible to use one key for
the same mobile app or device. The owner may also register as many keys as they want for their server or even change
them from time to time (as long as only one client key points to one server). The key is registered in a client-contract,
holding a mapping of the key to the server address.

ClientRegistry ServerRegistry

Server A
cap:10
http://rpc.s1 steie
Server A
Server B
cap:100

http://rpc.s2.. —» Server B

Server C

cap:20 Server C

http:/rpc.s3.. 7

22.4 Ensuring Client Access

Connecting a client key to a server does not mean the key relies on that server. Instead, the requests are simply served
in the same quality as the connected node serves other clients. This creates a very strong incentive to deliver to all
clients, because if a server node were offline or refused to deliver, eventually other nodes would deliver less or even
stop responding to requests coming from the connected clients.

718 Chapter 22. Incentivization

Incubed Documentation, Release 2.3

To actually find out which node delivers to clients, each server node uses one of the client keys to send test requests
and measure the availability based on verified responses.

Verifying Nodes

RS
7
v

The servers measure the Aqyailability by checking periodically (about every hour in order to make sure a malicious
server is not only responding to test requests). These requests may be sent through an anonymous network like tor.

E

Based on the long-term (>1 day) and short-term (<1 day) availibility, the score is calculated as:

A= R'r'eceived
Rsent

In order to balance long-term and short-term availability, each node measures both and calculates a factor for the score.
This factor should ensure that short-term avilability will not drop the score immediately, but keep it up for a while
before dropping. Long-term availibility will be rewarded by dropping the score slowly.

. Along +5- Ashort)10

A=1-(1
(6

* Ajong - The ratio between valid requests received and sent within the last month.

* Asnort - The ratio between valid requests received and sent within the last 24 hours.

22.4. Ensuring Client Access 719

Incubed Documentation, Release 2.3

Depending on the long-term availibility the disconnected node will lose its score over time.
The final score is then calulated:

A- Dweight . Cmaz
weight

score =

e A - The availibility of the node.

* weight - The weight of the incoming request from that server’s clients (see LoadBalancing).

* Cinae - The maximal number of open or parallel requests the server can handle (will be taken from the registry).
* Dyeight - The weight of the deposit of the node.

This score is then used as the priority for incoming requests. This is done by keeping track of the number of currently
open or serving requests. Whenever a new request comes in, the node does the following:

1. Checks the signature.
2. Calculates the score based on the score of the node it is connected to.

3. Accepts or rejects the request.

if (score < openRequests) reject()

720 Chapter 22. Incentivization

Incubed Documentation, Release 2.3

This way, nodes reject requests with a lower score when the load increases. For a client, this means if you have a low
score and the load in the network is high, your clients may get rejected often and will have to wait longer for responses.
If the node has a score of 0, they are blacklisted.

22.5 Deposit

Storing a high deposit brings more security to the network. This is important for proof-of-work chains. In order to
reflect the benefit in the score, the client multiplies it with the Dy,cignt (the deposit weight).

1
Dyeight = — b

]_ +e Davg

* D - The stored deposit of the node.
* Dgyg - The average deposit of all nodes.

A node without any deposit will only receive 26.8% of the max cap, while any node with an average deposit gets 88%
and above and quickly reaches 99%.

Pix)=1/(1+e”{1-3x))

—T1.25

T 0.73

—8,23

-8.25 8.25 8.5 8.79 1 1.25 1.5 1.79 | »
|

—T—=8.2%9

22.5. Deposit 721

Incubed Documentation, Release 2.3

22.6 LoadBalancing

In an optimal network, each server would handle an equal amount and all clients would have an equal share. In order
to prevent situations where 80% of the requests come from clients belonging to the same node, we need to decrease
the score for clients sending more requests than their shares. Thus, for each node the weight can be calculated by:

Zcz : Rn

iz(}
> R;-C,
i=0

* R,, - The number of requests served to one of the clients connected to the node.

weight,, =

n
o ZRi - The total number of requests served.
i=0

n
. ZCi - The total number of capacities of the registered servers.
i=0
e C, - The capacity of the registered node.

Each node will update the score and the weight for the other nodes after each check in order to prioritize incoming
requests.

The capacity of a node is the maximal number of parallel requests it can handle and is stored in the ServerRegistry.
This way, all clients know the cap and will weigh the nodes accordingly, which leads to stronger servers. A node
declaring a high capacity will gain a higher score, and its clients will receive more reliable responses. On the other
hand, if a node cannot deliver the load, it may lose its availability as well as its score.

22.7 Free Access

Each node may allow free access for clients without any signature. A special option ——freeScore=2 is used when
starting the server. For any client requests without a signature, this score is used. Setting this value to 0 would not
allow any free clients.

if (!signature) score = conf.freeScore

A low value for freeScore would serve requests only if the current load or the open requests are less than this number,
which would mean that getting a response from the network without signing may take longer as the client would have
to send a lot of requests until they are lucky enough to get a response if the load is high. Chances are higher if the load
is very low.

22.8 Convict

Even though servers are allowed to register without a deposit, convicting is still a hard punishment. In this case, the
server is not part of the registry anymore and all its connected clients are treated as not having a signature. The device
or app will likely stop working or be extremely slow (depending on the freeScore configured in all the nodes).

722 Chapter 22. Incentivization

Incubed Documentation, Release 2.3

22.9 Handling conflicts

In case of a conflict, each client now has at least one server it knows it can trust since it is run by the same owner. This
makes it impossible for attackers to use blacklist-attacks or other threats which can be solved by requiring a response
from the “home”-node.

22.10 Payment

Each registered node creates its own ecosystem with its own score. All the clients belonging to this ecosystem will be
served only as well as the score of the ecosystem allows. However, a good score can not only be achieved with a good
performance, but also by paying for it.

For all the payments, a special contract is created. Here, anybody can create their own ecosystem even without running
a node. Instead, they can pay for it. The payment will work as follows:

The user will choose a price and time range (these values can always be increased later). Depending on the price, they
also achieve voting power, thus creating a reputation for the registered nodes.

Each node is entitled to its portion of the balance in the payment contract, and can, at any given time, send a transaction
to extract its share. The share depends on the current reputation of the node.

weight,, - reputation,, - balanceiptq

ayment, =
bay " weighttotal

Why should a node treat a paying client better than others?

Because the higher the price a user paid, the higher the voting power, which they may use to upgrade or downgrade
the reputation of the node. This reputation will directly influence the payment to the node.

That’s why, for a node, the score of a client depends on what follows:

paid,. - requestsiotal

score, = .
requests; - paidiotar + 1

The score would be 1 if the payment a node receives has the same percentage of requests from an ecosystem as
the payment of the ecosystem represented relative to the total payment per month. So, paying a higher price would
increase its score.

22.11 Client Identification

As a requirement for identification, each client needs to generate a unique private key, which must never leave the
device.

In order to securely identify a client as belonging to an ecosystem, each request needs two signatures:

1. The Ecosystem-ProofThis proof consists of the following information:

proof = rlp.encode (

bytes32 (registry_id), // The unique ID of the registry.

address (client_address), // The public address of a client.

uint (ttl), // Unix timestamp when this proof expires.
bytes (signature) // The signature with the signer—key of the,

—ecosystem. The message hash is created by rlp.encode, the client_address, and_
—~the ttl.
)

22.9. Handling conflicts 723

Incubed Documentation, Release 2.3

For the client, this means they should always store such a proof on the device. If the ttl expires, they need to
renew it. If the ecosystem is a server, it may send a request to the server. If the ecosystem is a payer, this needs
to happen in a custom way.

The Client-ProofThis must be created for each request. Here the client will create a hash of the request (simply
by adding the method, params and a t imestamp-field) and sign this with its private key.

message_hash = keccack (
request .method
+ JSON.stringify (request.params)
+ request.timestamp

With each request, the client needs to send both proofs.

The server may cache the ecosystem-proof, but it needs to verify the client signature with each request, thus ensuring
the identity of the sending client.

724

Chapter 22. Incentivization

CHAPTER 23

Decentralizing Central Services

Important: This concept is still in early development, meaning it has not been implemented yet.

Many dApps still require some off-chain services, such as search services running on a server, which, of course, can be
seen as a single point of failure. To decentralize these dApp-specific services, they must fulfill the following criteria:

1. Stateless: Since requests may be sent to different servers, they cannot hold a user’s state, which would only be
available on one node.

2. Deterministic: All servers need to produce the exact same result.

If these requirements are met, the service can be registered, defining the server behavior in a docker image.

725

Incubed Documentation, Release 2.3

cloud

ServerA —— » Search

T

Server B Matrix

T

ServerC —— » Whisper

ServerRegistry

ServiceRegistry

Server A
offer Search
rewards slockit/search:latest
http://rpc.s1.. wasm
Server B Matrix
offer matrix/matrix:latest
rewards wasm
http://rpc.s2..
Whisper
Server C whisper:latest
offer wasm
rewards
http://rpc.s3..

726

Chapter 23. Decentralizing Central Services

Incubed Documentation, Release 2.3

23.1 Incentivization

Each server can define (1) a list of services to offer or (2) a list of services to reward.
The main idea is simply the following:
If you run my service, I will run yours.

Each server can specifiy which services we would like to see used. If another server offers them, we will also run at
least as many rewarded services as the other node.

23.2 Verification

Each service specifies a verifier, which is a Wasm module (specified through an IPFS hash). This Wasm offers two
functions:

function minRequests () :number

function verify (request:RPCRequest([], responses:RPCResponsel])

A minimal version could simply ensure that two requests were running and then compare them. If different, the Wasm
could check with the home server and “convict” the nodes.

23.2.1 Convicting

Convicting on chain cannot be done, but each server is able to verify the result and, if false, downgrade the score.

23.1. Incentivization 727

Incubed Documentation, Release 2.3

728 Chapter 23. Decentralizing Central Services

CHAPTER 24

Threat Model for Incubed

24.1 Registry Issues

24.1.1 Long Time Attack

Status: open

A client is offline for a long time and does not update the NodeList. During this time, a server is convicted and/or
removed from the list. The client may now send a request to this server, which means it cannot be convicted anymore
and the client has no way to know that.

Solutions:

CHR: I think that the fallback is often “out of service.” What will happen is that those random nodes (A,
C) will not respond. We (slock.it) could help them update the list in a centralized way.

But I think the best way is the following: Allow nodes to commit to stay in the registry for a fixed amount
of time. In that time, they cannot withdraw their funds. The client will most likely look for those first,
especially those who only occasionally need data from the chain.

SIM: Yes, this could help, but it only protects from regular unregistering. If you convict a server, then this
timeout does not help.

To remove this issue completely, you would need a trusted authority where you could update the NodeList
first. But for the 100% decentralized way, you can only reduce it by asking multiple servers. Since they
will also pass the latest block number when the NodeList changes, the client will find out that it needs
to update the NodeList, and by having multiple requests in parallel, it reduces the risk of relying on a
manipulated NodeList. The malicious server may return a correct NodeList for an older block when this
server was still valid and even receive signatures for this, but the server cannot do so for a newer block
number, which can only be found out by asking as many servers as needed.

Another point is that as long as the signature does not come from the same server, the DataProvider will
always check, so even if you request a signature from a server that is not part of the list anymore, the
DataProvider will reject this. To use this attack, both the DataProvider and the BlockHashSigner must
work together to provide a proof that matches the wrong blockhash.

729

Incubed Documentation, Release 2.3

CHR: Correct. I think the strategy for clients who have been offline for a while is to first get multiple
signed blockhashes from different sources (ideally from bootstrap nodes similar to light clients and then
ask for the current list). Actually, we could define the same bootstrap nodes as those currently hard-coded
in Parity and Geth.

24.1.2 Inactive Server Spam Attack

Status: partially solved

Everyone can register a lot of servers that don’t even exist or aren’t running. Somebody may even put in a decent
deposit. Of course, the client would try to find out whether these nodes were inactive. If an attacker were able to
onboard enough inactive servers, the chances for an Incubed client to find a working server would decrease.

Solutions:

1.

Static Min Deposit

There is a min deposit required to register a new node. Even though this may not entirely stop any attacker, but
it makes it expensive to register a high number of nodes.

Desicion :
Will be implemented in the first release, since it does not create new Riscs.
Unregister Key

At least in the beginning we may give us (for example for the first year) the right to remove inactive nodes.
While this goes against the principle of a fully decentralized system, it will help us to learn. If this key has a
timeout coded into the smart contract all users can rely on the fact that we will not be able to do this after one
year.

Desicion :

Will be implemented in the first release, at least as a workaround limited to one year.
Dynamic Min Deposit

To register a server, the owner has to pay a deposit calculated by the formula:

86400 - depOSitaverage

(tnow - tlastRegistered)

deposit i =

To avoid some exploitation of the formula, the deposit_average gets capped at 50 Ether. This means that
the maximum deposit_min calculated by this formula is about 4.3 million Ether when trying to register two
servers within one block. In the first year, there will also be an enforced deposit limit of 50 Ether, so it will be
impossible to rapidly register new servers, giving us more time to react to possible spam attacks (e.g., through
voting).

Desicion :

This dynamic deposit creates new Threads, because an attacker can stop other nodes from registering honest
nodes by adding a lot of nodes and so increasing the min deposit. That’s why this will not be implemented right
now.

Voting

In addition, the smart contract provides a voting function for removing inactive servers: To vote, a server has to
sign a message with a current block and the owner of the server they want to get voted out. Only the latest 256
blockhashes are allowed, so every signature will effectively expire after roughly 1 hour. The power of each vote
will be calculated by the amount of time when the server was registered. To make sure that the oldest servers
won’t get too powerful, the voting power gets capped at one year and won’t increase further. The server being
voted out will also get an oppositional voting power that is capped at two years.

730

Chapter 24. Threat Model for Incubed

Incubed Documentation, Release 2.3

For the server to be voted out, the combined voting power of all the servers has to be greater than the oppositional
voting power. Also, the accumulated voting power has to be greater than at least 50% of all the chosen voters.

As with a high amount of registered in3-servers, the handling of all votes would become impossible. We cap the
maximum amount of signatures at 24. This means to vote out a server that has been active for more then two
years, 24 in3-servers with a lifetime of one month are required to vote. This number decreases when more older
servers are voting. This mechanism will prevent the rapid onboarding of many malicious in3-servers that would
vote out all regular servers and take control of the in3-nodelist.

Additionally, we do not allow all servers to vote. Instead, we choose up to 24 servers randomly with the
blockhash as a seed. For the vote to succeed, they have to sign on the same blockhash and have enough voting
power.

To “punish” a server owner for having an inactive server, after a successful vote, that individual will lose 1%
of their deposit while the rest is locked until their deposit timeout expires, ensuring possible liabilities. Part of
this 1% deposit will be used to reimburse the transaction costs; the rest will be burned. To make sure that the
transaction will always be paid, a minimum deposit of 10 finney (equal to 0.01 Ether) will be enforced.

Desicion:

Voting will also create the risc of also Voting against honest nodes. Any node can act honest for a long time and
then become a malicious node using their voting power to vote against the remaining honest nodes and so end
up kicking all other nodes out. That’s why voting will be removed for the first release.

24.1.3 DDOS Attack to uncontrolled urls

Status: not implemented yet

As a owner I can register any url even a server which I don’t own. By doing this I can also add a high weight, which
increases the chances to get request. This way I can get potentially a lot of clients to send many requests to a node,
which is not expecting it. Even though clients may blacklist this node, it would be to easy to create a DDOS-Atack.

Solution:

Whenever there is a new node the client has never communicated to, we should should check using a DNS-Entry if
this node is controlled by the owner. The Entry may look like this:

in3-signer: 0x21341242135346534634634,0xabf21341242135346534634634,
—0xdef21341242135346534634634

Only if this DNS record contains the signer-address, the client should communicate with this node.

24.1.4 Self-Convict Attack

Status: solved

A user may register a mailcious server and even store a deposit, but as soon as they sign a wrong blockhash, they use
a second account to convict themself to get the deposit before somebody else can.

Solution:

SIM: We burn 50% of the depoist. In this case, the attacker would lose 50% of the deposit. But this also
means the attacker would get the other half, so the price they would have to pay for lying is up to 50% of
their deposit. This should be considered by clients when picking nodes for signatures.

Desicion: Accepted and implemented

24.1. Registry Issues 731

Incubed Documentation, Release 2.3

24.1.5 Convict Frontrunner Attack

Status: solved

Servers act as watchdogs and automatically call convict if they receive a wrong blockhash. This will cost them some
gas to send the transaction. If the block is older than 256 blocks, this may even cost a lot of gas since the server needs
to put blockhashes into the BlockhashRegistry first. But they are incentivized to do so, because after successfully
convicting, they receive a reward of 50% of the deposit.

A miner or other attacker could now wait for a pending transaction for convict and simply use the data and send the
same transaction with a high gas price, which means the transaction would eventually be mined first and the server,
after putting so much work into preparing the convict, would get nothing.

Solution:

Convicting a server requires two steps: The first is calling the convict function with the block number of the wrongly
signed block keccak256 (_blockhash, sender, v, r, s).Boththereal blockhash and the provided hash
will be stored in the smart contract. In the second step, the function revealConvict has to be called. The missing
information is revealed there, but only the previous sender is able to reproduce the provided hash of the first transaction,
thus being able to convict a server.

Desicion: Accepted and implemented

24.2 Network Attacks

24.2.1 Blacklist Attack

Status: partially solved

If the client has no direct internet connection and must rely on a proxy or a phone to make requests, this would give
the intermediary the chance to set up a malicious server.

This is done by simply forwarding the request to its own server instead of the requested one. Of course, they may
prepare a wrong answer, but they cannot fake the signatures of the blockhash. Instead of sending back any signed
hashes, they may return no signatures, which indicates to the client that the chosen nodes were not willing to sign
them. The client will then blacklist them and request the signature from other nodes. The proxy or relay could return
no signature and repeat that until all are blacklisted and the client finally asks for the signature from a malicious node,
which would then give the signature and the response. Since both come from a bad-acting server, they will not convict
themself and will thus prepare a proof for a wrong response.

Solutions:
1. Signing Responses

SIM: First, we may consider signing the response of the DataProvider node, even if this signature
cannot be used to convict. However, the client then knows that this response came from the client
they requested and was also checked by them. This would reduce the chances of this attack since this
would mean that the client picked two random servers that were acting malicious together.

Decision:
Not implemented yet. Maybe later.
2. Reject responses when 50% are blacklisted

If the client blacklisted more than 50% of the nodes, we should stop. The only issue here is that
the client does not know whether this is an ‘Inactive Server Spam Attack’ or not. In case of an
‘Inactive Server Spam Attack,” it would actually be good to blacklist 90% of the servers and still be

732 Chapter 24. Threat Model for Incubed

Incubed Documentation, Release 2.3

able to work with the remaining 10%, but if the proxy is the problem, then the client needs to stop
blacklisting.

CHR: I think the client needs a list of nodes (bootstrape nodes) that should be signed in case the
response is no signature at all. No signature at all should default to an untrusted relayer. In this case,
it needs to go to trusted relayers. Or ask the untrusted relayer to get a signature from one of the
trusted relayers. If they forward the signed reponse, they should become trusted again.

SIM: We will allow the client to configure optional trusted nodes, which will always be part of the
nodelist and used in case of a blacklist attack. This means in case more than 50% are blacklisted the
client may only ask trusted nodes and if they don’t respond, instead of blacklisting it will reject the
request. While this may work in case of such a attack, it becomes an issue if more than 50% of the
registered nodes are inactive and blacklisted.

Decision:

The option of allowing trusted nodes is implemented.

24.2.2 DDoS Attacks

Status: solved (as much as possible)
Since the URLSs of the network are known, they may be targets for DDoS attacks.
Solution:

SIM: Each node is reponsible for protecting itself with services like Cloudflare. Also, the nodes should
have an upper limit of concurrent requests they can handle. The response with status 500 should indicate
reaching this limit. This will still lead to blacklisting, but this protects the node by not sending more
requests.

CHR: The same is true for bootstrapping nodes of the foundation.

24.2.3 None Verifying DataProvider

Status: solved (more signatures = more security)

A DataProvider should always check the signatures of the blockhash they received from the signers. Of course, the
DataProvider is incentivized to do so because then they can get 50% of their deposit, but after getting the deposit, they
are not incentivized to report this to the client. There are two scenarios:

1. The DataProvider receives the signature but does not check it.
In this case, at least the verification inside the client will fail since the provided blockheader does not match.
2. The DataProvider works together with the signer.

In this case, the DataProvider would prepare a wrong blockheader that fits the wrong blockhash and would pass
the verification inside the client.

Solution:

SIM: In this case, only a higher number of signatures could increase security.

24.2. Network Attacks 733

Incubed Documentation, Release 2.3

24.3 Privacy

24.3.1 Private Keys as API Keys

Status: solved

For the scoring model, we are using private keys. The perfect security model would register each client, which is
almost impossible on mainnet, especially if you have a lot of devices. Using shared keys will very likely happen, but
this a nightmare for security experts.

Solution:

1. Limit the power of such a key so that the worst thing that can happen is a leaked key that can be used by another
client, which would then be able to use the score of the server the key is assigned to.

2. Keep the private key secret and manage the connection to the server only off chain.

3. Instead of using a private key as API-Key, we keep the private key private and only get a signature from the node
of the ecosystem confirming this relationship. This may happen completly offchain and scales much better.

Desicion: clients will not share private keys, but work with a signed approval from the node.

24.3.2 Filtering of Nodes

Status: partially solved

All nodes are known with their URLSs in the NodeRegistry-contract. For countries trying to filter blockchain requests,
this makes it easy to add these URLs to blacklists of firewalls, which would stop the Incubed network.

Solution:

Support Onion-URLs, dynamic IPs, LORA, BLE, and other protocols. The registry may even use the
props to indicate the capabilities, so the client can choose which protocol to he is capable to use.

Decision: Accepted and prepared, but not fully implemented yet.

24.3.3 Inspecting Data in Relays or Proxies

For a device like a BLE, a relay (for example, a phone) is used to connect to the internet. Since a relay is able to read
the content, it is possible to read the data or even pretend the server is not responding. (See Blacklist Attack above.)

Solution:

Encrypt the data by using the public key of the server. This can only be decrypted by the target server
with the private key.

24.4 Risk Calculation

Just like the light client there is not 100% protection from malicious servers. The only way to reach this would be to
trust special authority nodes to sign the blockhash. For all other nodes, we must always assume they are trying to find
ways to cheat.

The risk of losing the deposit is significantly lower if the DataProvider node and the signing nodes are run by the
same attacker. In this case, they will not only skip over checks, but also prepare the data, the proof, and a blockhash
that matches the blockheader. If this were the only request and the client had no other anchor, they would accept a
malicious response.

734 Chapter 24. Threat Model for Incubed

Incubed Documentation, Release 2.3

Depending on how many malicious nodes have registered themselves and are working together, the risk can be calcu-
lated. If 10% of all registered nodes would be run by an attacker (with the same deposit as the rest), the risk of getting
a malicious response would be 1% with only one signature. The risk would go down to 0.006% with three signatures:

Risc if 50% are bad

30%

25%

20%

15%

10%

5%

0,94% 0,35%

0%
1 2 3 4 5 b

e i i 5066 are bad
50%
bad

In case of an attacker controlling 50% of all nodes, it looks a bit different. Here, one signature would give you a risk
of 25% to get a bad response, and it would take more than four signatures to reduce this to under 1%.

Risc if 10% are bad

1,2000%
1,0000% 1,0000%
0,8000%
0,6000%

0,4000%

0,20005% 0,0830%
0,0000% I ——

1 2 3 - 5 6

0,0060% 0,0003% 0,0000% 0,0000%

e i i 10F% are bad
10%
bad

Solution:

The risk can be reduced by sending two requests in parallel. This way the attacker cannot be sure that their
attack would be successful because chances are higher to detect this. If both requests lead to a different
result, this conflict can be forwarded to as many servers as possible, where these servers can then check

24.4. Risk Calculation 735

Incubed Documentation, Release 2.3

the blockhash and possibly convict the malicious server.

e genindex

736 Chapter 24. Threat Model for Incubed

Index

Symbols

<JSON-RPC>-method, 660

A

abi_decode <signature> data, 660
abi_encode <signature> ...args, 660

C

call <signature> ...args, 660
Code, 661
createkey, 661

E

ecrecover <msg> <signature>, 661

IN3_CHAIN, 660
in3_nodeList, 660

IN3_PK, 660

in3_sign <blocknumber>, 660
in3_stats, 660

K

key <keyfile>, 661

N

NodeLists, 661

P

pk2address <privatekey>, 660
pk2public <privatekey>, 660

R

Reputations, 661

S

send <signature> ...args, 660
sign <data>, 660

V

Validators, 661

737

	Getting Started
	TypeScript/JavaScript
	As Docker Container
	C Implementation
	Java
	Command-line Tool
	Supported Chains
	Registering an Incubed Node

	Downloading in3
	in3-node
	in3-client (ts)
	in3-client(C)

	Running an in3 node on a VPS
	Side notes/ chat summary
	Recommendations

	IN3-Protocol
	Incubed Requests
	Incubed Responses
	ChainId
	Registry
	Binary Format
	Communication

	Roadmap
	V2.0 Stable: Q3 2019
	V2.1 Incentivization: Q4 2019
	V2.2 Bitcoin: Q1 2020
	V2.3 WASM: Q3 2020
	V2.4 Substrate: Q1 2021
	V2.5 Services: Q3 2021

	Benchmarks
	Setup and Tools
	Considerations
	Results/Baseline

	Embedded Devices
	Hardware Requirements
	Incubed with ESP-IDF
	Incubed with Zephyr

	API RPC
	in3
	eth
	ipfs
	btc
	zksync

	API Reference C
	Overview
	Building
	Examples
	How it works
	Plugins
	Integration of Ledger Nano S
	Module api
	Module core
	Module pay
	Module signer
	Module transport
	Module verifier

	API Reference TS
	Examples
	Main Module
	Package client
	Package index.ts
	Package modules/eth
	Package modules/ipfs
	Package util
	Common Module
	Package index.ts
	Package modules/eth
	Package types
	Package util

	API Reference WASM
	Installing
	Building from Source
	Examples
	Incubed Module
	Package index

	API Reference Python
	Python Incubed client
	Examples
	Incubed Modules
	Library Runtime

	API Reference Java
	Installing
	Examples
	Package in3
	Package in3.btc
	Package in3.config
	Package in3.eth1
	Package in3.ipfs
	Package in3.ipfs.API
	Package in3.utils

	API Reference Dotnet
	Runtimes
	Quickstart
	Examples
	Index

	API Reference Rust
	IN3 Rust API features:
	Quickstart
	Crate
	Api Documentation

	API Reference CMD
	Usage
	Install
	Environment Variables
	Methods
	Running as Server
	Cache
	Signing
	Autocompletion
	Function Signatures
	Examples

	API Reference Node/Server
	Command-line Arguments
	in3-server-setup tool
	Registering Your Own Incubed Node

	API Reference Solidity
	NodeRegistryData functions
	NodeRegistryLogic functions
	BlockHashRegistry functions

	Concept
	Situation
	Low-Performance Hardware
	Scalability
	Use Cases
	Architecture
	Scaling

	Ethereum
	Blockheader Verification
	Proof of Work
	Proof of Authority
	Ethereum Verification

	Bitcoin
	Concept
	Security Calculation
	Proofs
	Conviction

	Incentivization
	Decentralizing Access
	Incentivization for Nodes
	Connecting Clients and Server
	Ensuring Client Access
	Deposit
	LoadBalancing
	Free Access
	Convict
	Handling conflicts
	Payment
	Client Identification

	Decentralizing Central Services
	Incentivization
	Verification

	Threat Model for Incubed
	Registry Issues
	Network Attacks
	Privacy
	Risk Calculation

	Index

