
Incubed Documentation
Release 1.2

Slock.it GmbH

Oct 08, 2019

Reference

1 Getting Started 1
1.1 TypeScript/JavaScript . 1
1.2 As Docker Container . 2
1.3 C Implementation . 3
1.4 Java . 4
1.5 Command-line Tool . 4
1.6 Supported Chains . 5
1.7 Registering an Incubed Node . 6

2 Downloading in3 9
2.1 in3-node . 9
2.2 in3-client (ts) . 10
2.3 in3-client(C) . 10

3 Roadmap 13
3.1 V2.0 Stable: Q3 2019 . 13
3.2 V2.1 Incentivization: Q4 2019 . 14
3.3 V2.2 Bitcoin: Q1 2020 . 15
3.4 V2.3 WASM: Q3 2020 . 15
3.5 V2.4 Substrate: Q1 2021 . 15
3.6 V2.5 Services: Q3 2021 . 15

4 Threat Model for Incubed 17
4.1 Registry Issues . 17
4.2 Network Attacks . 20
4.3 Privacy . 22
4.4 Risk Calculation . 22

5 Benchmarks 25
5.1 Setup and Tools . 25
5.2 Considerations . 27
5.3 Results/Baseline . 27

6 IN3-Protocol 29
6.1 Incubed Requests . 29
6.2 Incubed Responses . 30
6.3 ChainId . 32

i

6.4 Registry . 32
6.5 Binary Format . 39
6.6 Communication . 40
6.7 Proofs . 42
6.8 RPC-Methods Ethereum . 50
6.9 PoA Validations . 50

7 API Reference TS 51
7.1 Examples . 51
7.2 Main Module . 53
7.3 Package client . 54
7.4 Package modules/eth . 56
7.5 Package modules/ipfs . 63
7.6 Package types . 64
7.7 Common Module . 71
7.8 Package modules/eth . 74
7.9 Package types . 78
7.10 Package util . 81

8 API Reference C 83
8.1 Overview . 83
8.2 Building . 84
8.3 Examples . 86
8.4 Module api/eth1 . 88
8.5 Module api/usn . 102
8.6 Module cmd/in3 . 105
8.7 Module core . 106
8.8 Module transport/curl . 163
8.9 Module transport/http . 163
8.10 Module verifier/eth1/basic . 164
8.11 Module verifier/eth1/evm . 169
8.12 Module verifier/eth1/full . 194
8.13 Module verifier/eth1/nano . 195

9 API Reference Java 209
9.1 Installing . 209
9.2 Examples . 211
9.3 Package in3 . 214
9.4 Package in3.eth1 . 226

10 API Reference CMD 245
10.1 Usage . 245
10.2 Install . 246
10.3 Ubuntu Launchpad (Linux) . 247
10.4 Brew (MacOS) . 247
10.5 Environment Variables . 248
10.6 Methods . 248
10.7 Running as Server . 249
10.8 Cache . 249
10.9 Signing . 249
10.10 Autocompletion . 250
10.11 Function Signatures . 250
10.12 Examples . 250

11 API Reference Node/Server 253

ii

11.1 Command-line Arguments . 253
11.2 in3-server-setup tool . 255
11.3 Registering Your Own Incubed Node . 255

12 Concept 257
12.1 Situation . 257
12.2 Low-Performance Hardware . 258
12.3 Scalability . 258
12.4 Use Cases . 258
12.5 Architecture . 261
12.6 Scaling . 269

13 Blockheader Verification 271
13.1 Ethereum . 271
13.2 Bitcoin . 273

14 Incentivization 277
14.1 Decentralizing Access . 277
14.2 Incentivization for Nodes . 277
14.3 Connecting Clients and Server . 278
14.4 Ensuring Client Access . 278
14.5 Deposit . 281
14.6 LoadBalancing . 282
14.7 Free Access . 282
14.8 Convict . 282
14.9 Handling conflicts . 283
14.10 Payment . 283
14.11 Client Identification . 283

15 Decentralizing Central Services 285
15.1 Incentivization . 287
15.2 Verification . 287

Index 289

iii

iv

CHAPTER 1

Getting Started

Incubed can be used in different ways:

Stack Size Code
Base

Use Case

TS/JS 2.7 MB
(browser-
ified)

Type-
Script

Web application (client in the browser) or mobile application

TS/JS/WASM470 kB C -
(WASM)

Web application (client in the browser) or mobile application

C/C++ 200 KB C IoT devices can be integrated nicely on many micro controllers (like Zephyr-
supported boards (https://docs.zephyrproject.org/latest/boards/index.html)) or any
other C/C++ application

Java 705 KB C Java implementation of a native wrapper
Docker 2.6 MB C For replacing existing clients with this docker and connecting to Incubed via local-

host:8545 without needing to change the architecture
Bash 400 KB C The command-line tool can be used directly as executable within Bash script or on

the shell

Other languages will be supported soon (or simply use the shared library directly).

1.1 TypeScript/JavaScript

Installing Incubed is as easy as installing any other module:

npm install --save in3

1.1.1 As Provider in Web3

The Incubed client also implements the provider interface used in the Web3 library and can be used directly.

1

https://docs.zephyrproject.org/latest/boards/index.html

Incubed Documentation, Release 1.2

// import in3-Module
import In3Client from 'in3'
import * as web3 from 'web3'

// use the In3Client as Http-Provider
const web3 = new Web3(new In3Client({

proof : 'standard',
signatureCount: 1,
requestCount : 2,
chainId : 'mainnet'

}).createWeb3Provider())

// use the web3
const block = await web.eth.getBlockByNumber('latest')
...

1.1.2 Direct API

Incubed includes a light API, allowing the ability to not only use all RPC methods in a type-safe way but also sign
transactions and call functions of a contract without the Web3 library.

For more details, see the API doc.

// import in3-Module
import In3Client from 'in3'

// use the In3Client
const in3 = new In3Client({

proof : 'standard',
signatureCount: 1,
requestCount : 2,
chainId : 'mainnet'

})

// use the API to call a function..
const myBalance = await in3.eth.callFn(myTokenContract, 'balanceOf(address):uint',
→˓myAccount)

// ot to send a transaction..
const receipt = await in3.eth.sendTransaction({

to : myTokenContract,
method : 'transfer(address,uint256)',
args : [target,amount],
confirmations: 2,
pk : myKey

})

...

1.2 As Docker Container

To start Incubed as a standalone client (allowing other non-JS applications to connect to it), you can start the container
as the following:

2 Chapter 1. Getting Started

https://github.com/slockit/in3/blob/master/docs/api.md#type-api

Incubed Documentation, Release 1.2

docker run -d -p 8545:8545 slockit/in3:latest -port 8545

1.3 C Implementation

The C implementation will be released soon!

#include <in3/client.h> // the core client
#include <in3/eth_api.h> // wrapper for easier use
#include <in3/eth_basic.h> // use the basic module
#include <in3/in3_curl.h> // transport implementation

#include <inttypes.h>
#include <stdio.h>

int main(int argc, char* argv[]) {

// register a chain-verifier for basic Ethereum-Support, which is enough to verify
→˓blocks
// this needs to be called only once
in3_register_eth_basic();

// use curl as the default for sending out requests
// this needs to be called only once.
in3_register_curl();

// create new incubed client
in3_t* in3 = in3_new();

// the b lock we want to get
uint64_t block_number = 8432424;

// get the latest block without the transaction details
eth_block_t* block = eth_getBlockByNumber(in3, block_number, false);

// if the result is null there was an error an we can get the latest error message
→˓from eth_lat_error()
if (!block)
printf("error getting the block : %s\n", eth_last_error());

else {
printf("Number of transactions in Block #%llu: %d\n", block->number, block->tx_

→˓count);
free(block);

}

// cleanup client after usage
in3_free(in3);

}

More details coming soon. . .

1.3. C Implementation 3

Incubed Documentation, Release 1.2

1.4 Java

The Java implementation uses a wrapper of the C implemenation. This is why you need to make sure the libin3.so,
in3.dll, or libin3.dylib can be found in the java.library.path. For example:

java -cp in3.jar:. HelloIN3.class

import java.util.*;
import in3.*;
import in3.eth1.*;
import java.math.BigInteger;

public class HelloIN3 {
//
public static void main(String[] args) throws Exception {
// create incubed
IN3 in3 = new IN3();

// configure
in3.setChainId(0x1); // set it to mainnet (which is also dthe default)

// read the latest Block including all Transactions.
Block latestBlock = in3.getEth1API().getBlockByNumber(Block.LATEST, true);

// Use the getters to retrieve all containing data
System.out.println("current BlockNumber : " + latestBlock.getNumber());
System.out.println("minded at : " + new Date(latestBlock.getTimeStamp()) + " by "

→˓+ latestBlock.getAuthor());

// get all Transaction of the Block
Transaction[] transactions = latestBlock.getTransactions();

BigInteger sum = BigInteger.valueOf(0);
for (int i = 0; i < transactions.length; i++)

sum = sum.add(transactions[i].getValue());

System.out.println("total Value transfered in all Transactions : " + sum + " wei
→˓");
}

}

1.5 Command-line Tool

Based on the C implementation, a command-line utility is built, which executes a JSON-RPC request and only delivers
the result. This can be used within Bash scripts:

CURRENT_BLOCK = `in3 -c kovan eth_blockNumber`

#or to send a transaction

in3 -pk my_key_file.json send -to 0x27a37a1210df14f7e058393d026e2fb53b7cf8c1 -value 0.
→˓2eth

(continues on next page)

4 Chapter 1. Getting Started

Incubed Documentation, Release 1.2

(continued from previous page)

in3 -pk my_key_file.json send -to 0x27a37a1210df14f7e058393d026e2fb53b7cf8c1 -gas
→˓1000000 "registerServer(string,uint256)" "https://in3.slock.it/kovan1" 0xFF

1.6 Supported Chains

Currently, Incubed is deployed on the following chains:

1.6.1 Mainnet

Registry-legacy: 0x2736D225f85740f42D17987100dc8d58e9e16252

Registry: 0x64abe24afbba64cae47e3dc3ced0fcab95e4edd5

ChainId: 0x1 (alias mainnet)

Status: https://in3.slock.it?n=mainnet

NodeList: https://in3.slock.it/mainnet/nd-3

1.6.2 Kovan

Registry-legacy: 0x27a37a1210df14f7e058393d026e2fb53b7cf8c1

Registry: 0x33f55122c21cc87b539e7003f7ab16229bc3af69

ChainId: 0x2a (alias kovan)

Status: https://in3.slock.it?n=kovan

NodeList: https://in3.slock.it/kovan/nd-3

1.6.3 Evan

Registry: 0x85613723dB1Bc29f332A37EeF10b61F8a4225c7e

ChainId: 0x4b1 (alias evan)

Status: https://in3.slock.it?n=evan

NodeList: https://in3.slock.it/evan/nd-3

1.6.4 Görli

Registry-legacy: 0x85613723dB1Bc29f332A37EeF10b61F8a4225c7e

Registry: 0xfea298b288d232a256ae0ad5941e5c890b1db691

ChainId: 0x5 (alias goerli)

Status: https://in3.slock.it?n=goerli

NodeList: https://in3.slock.it/goerli/nd-3

1.6. Supported Chains 5

https://eth.slock.it/#/main/0x2736D225f85740f42D17987100dc8d58e9e16252
https://eth.slock.it/#/main/0x64abe24afbba64cae47e3dc3ced0fcab95e4edd5
https://in3.slock.it?n=mainnet
https://in3.slock.it/mainnet/nd-3/api/in3_nodeList
https://eth.slock.it/#/kovan/0x27a37a1210df14f7e058393d026e2fb53b7cf8c1
https://eth.slock.it/#/kovan/0x33f55122c21cc87b539e7003f7ab16229bc3af69
https://in3.slock.it?n=kovan
https://in3.slock.it/kovan/nd-3/api/in3_nodeList
https://eth.slock.it/#/evan/0x85613723dB1Bc29f332A37EeF10b61F8a4225c7e
https://in3.slock.it?n=evan
https://in3.slock.it/evan/nd-3/api/in3_nodeList
https://eth.slock.it/#/goerli/0x85613723dB1Bc29f332A37EeF10b61F8a4225c7e
https://eth.slock.it/#/goerli/0xfea298b288d232a256ae0ad5941e5c890b1db691
https://in3.slock.it?n=goerli
https://in3.slock.it/goerli/nd-3/api/in3_nodeList

Incubed Documentation, Release 1.2

1.6.5 IPFS

Registry: 0xf0fb87f4757c77ea3416afe87f36acaa0496c7e9

ChainId: 0x7d0 (alias ipfs)

Status: https://in3.slock.it?n=ipfs

NodeList: https://in3.slock.it/ipfs/nd-3

1.7 Registering an Incubed Node

If you want to participate in this network and also register a node, you need to send a transaction to the registry
contract, calling registerServer(string _url, uint _props).

ABI of the registry:

[{"constant":true,"inputs":[],"name":"totalServers","outputs":[{"name":"","type":
→˓"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant
→˓":false,"inputs":[{"name":"_serverIndex","type":"uint256"},{"name":"_props","type":
→˓"uint256"}],"name":"updateServer","outputs":[],"payable":true,"stateMutability":
→˓"payable","type":"function"},{"constant":false,"inputs":[{"name":"_url","type":
→˓"string"},{"name":"_props","type":"uint256"}],"name":"registerServer","outputs":[],
→˓"payable":true,"stateMutability":"payable","type":"function"},{"constant":true,
→˓"inputs":[{"name":"","type":"uint256"}],"name":"servers","outputs":[{"name":"url",
→˓"type":"string"},{"name":"owner","type":"address"},{"name":"deposit","type":"uint256
→˓"},{"name":"props","type":"uint256"},{"name":"unregisterTime","type":"uint128"},{
→˓"name":"unregisterDeposit","type":"uint128"},{"name":"unregisterCaller","type":
→˓"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant
→˓":false,"inputs":[{"name":"_serverIndex","type":"uint256"}],"name":
→˓"cancelUnregisteringServer","outputs":[],"payable":false,"stateMutability":
→˓"nonpayable","type":"function"},{"constant":false,"inputs":[{"name":"_serverIndex",
→˓"type":"uint256"},{"name":"_blockhash","type":"bytes32"},{"name":"_blocknumber",
→˓"type":"uint256"},{"name":"_v","type":"uint8"},{"name":"_r","type":"bytes32"},{"name
→˓":"_s","type":"bytes32"}],"name":"convict","outputs":[],"payable":false,
→˓"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[{"name
→˓":"_serverIndex","type":"uint256"}],"name":"calcUnregisterDeposit","outputs":[{"name
→˓":"","type":"uint128"}],"payable":false,"stateMutability":"view","type":"function"},
→˓{"constant":false,"inputs":[{"name":"_serverIndex","type":"uint256"}],"name":
→˓"confirmUnregisteringServer","outputs":[],"payable":false,"stateMutability":
→˓"nonpayable","type":"function"},{"constant":false,"inputs":[{"name":"_serverIndex",
→˓"type":"uint256"}],"name":"requestUnregisteringServer","outputs":[],"payable":true,
→˓"stateMutability":"payable","type":"function"},{"anonymous":false,"inputs":[{
→˓"indexed":false,"name":"url","type":"string"},{"indexed":false,"name":"props","type
→˓":"uint256"},{"indexed":false,"name":"owner","type":"address"},{"indexed":false,
→˓"name":"deposit","type":"uint256"}],"name":"LogServerRegistered","type":"event"},{
→˓"anonymous":false,"inputs":[{"indexed":false,"name":"url","type":"string"},{"indexed
→˓":false,"name":"owner","type":"address"},{"indexed":false,"name":"caller","type":
→˓"address"}],"name":"LogServerUnregisterRequested","type":"event"},{"anonymous
→˓":false,"inputs":[{"indexed":false,"name":"url","type":"string"},{"indexed":false,
→˓"name":"owner","type":"address"}],"name":"LogServerUnregisterCanceled","type":"event
→˓"},{"anonymous":false,"inputs":[{"indexed":false,"name":"url","type":"string"},{
→˓"indexed":false,"name":"owner","type":"address"}],"name":"LogServerConvicted","type
→˓":"event"},{"anonymous":false,"inputs":[{"indexed":false,"name":"url","type":"string
→˓"},{"indexed":false,"name":"owner","type":"address"}],"name":"LogServerRemoved",
→˓"type":"event"}]

To run an Incubed node, you simply use docker-compose:

6 Chapter 1. Getting Started

https://eth.slock.it/#/kovan/0xf0fb87f4757c77ea3416afe87f36acaa0496c7e9
https://in3.slock.it?n=ipfs
https://in3.slock.it/ipfs/nd-3/api/in3_nodeList

Incubed Documentation, Release 1.2

version: '2'
services:

incubed-server:
image: slockit/in3-server:latest
volumes:
- $PWD/keys:/secure # directory where the

→˓private key is stored
ports:
- 8500:8500/tcp # open the port 8500 to

→˓be accessed by the public
command:
- --privateKey=/secure/myKey.json # internal path to the key
- --privateKeyPassphrase=dummy # passphrase to unlock

→˓the key
- --chain=0x1 # chain (Kovan)
- --rpcUrl=http://incubed-parity:8545 # URL of the Kovan client
- --registry=0xFdb0eA8AB08212A1fFfDB35aFacf37C3857083ca # URL of the Incubed

→˓registry
- --autoRegistry-url=http://in3.server:8500 # check or register this

→˓node for this URL
- --autoRegistry-deposit=2 # deposit to use when

→˓registering

incubed-parity:
image: slockit/parity-in3:v2.2 # parity-image with the

→˓getProof-function implemented
command:
- --auto-update=none # do not automatically

→˓update the client
- --pruning=archive
- --pruning-memory=30000 # limit storage

1.7. Registering an Incubed Node 7

Incubed Documentation, Release 1.2

8 Chapter 1. Getting Started

CHAPTER 2

Downloading in3

in3 is divided into two distinct components, the in3-node and in3-client. The in3-node is currently written in typescript,
whereas the in3-client has a version in typescript as well as a smaller and more feature packed version written in C.

In order to compile from scratch, please use the sources from our github page or the public gitlab page. Instructions
for building from scratch can be found in our documentation.

The in3-server and in3-client has been published in multiple package managers and locations, they can be found here:

Package man-
ager

Link Use case

in3-
node(ts)

Docker Hub Docker-
Hub

To run the in3-server, which the in3-client can use to connect to the
in3 network

in3-
client(ts)

NPM NPM To use with js applications

in3-
client(C)

Ubuntu Launch-
pad

Ubuntu It can be quickly integrated on linux systems, IoT devices or any
micro controllers

Docker Hub Docker-
Hub

Quick and easy way to get in3 client running

Brew Home-
brew

Easy to install on MacOS or linux/windows subsystems

Release page Github For directly playing with the binaries/deb/jar/wasm files

2.1 in3-node

2.1.1 Docker Hub

1. Pull the image from docker using docker pull slockit/in3-node

2. In order to run your own in3-node, you must first register the node. The information for registering a node can
be found here

9

https://github.com/slockit/in3
https://public-git.slock.it
https://hub.docker.com/r/slockit/in3-node
https://hub.docker.com/r/slockit/in3-node
https://www.npmjs.com/package/in3
https://launchpad.net/~devops-slock-it/+archive/ubuntu/in3
https://hub.docker.com/r/slockit/in3
https://hub.docker.com/r/slockit/in3
https://github.com/slockit/homebrew-in3
https://github.com/slockit/homebrew-in3
https://github.com/slockit/in3-c/releases
https://in3.readthedocs.io/en/develop/getting_started.html#registering-an-incubed-node

Incubed Documentation, Release 1.2

3. Run the in3-node image using a direct docker command or a docker-compose file, the parameters for which are
explained here

2.2 in3-client (ts)

2.2.1 npm

1. Install the package by running npm install --save in3

2. import In3Client from "in3"

3. View our examples for information on how to use the module

2.3 in3-client(C)

2.3.1 Ubuntu Launchpad

There are 2 packages published to Ubuntu Launchpad: in3 and in3-dev. The package in3 only installs the binary
file and allows you to use in3 via command line. The package in3-dev would install the binary as well as the library
files, allowing you to use in3 not only via command line, but also inside your C programs by including the statically
linked files.

Installation instructions for in3:

This package will only install the in3 binary in your system.

1. Add the slock.it ppa to your system with sudo add-apt-repository ppa:devops-slock-it/in3

2. Update the local sources sudo apt-get update

3. Install in3 with sudo apt-get install in3

Installation instructions for in3-dev:

This package will install the statically linked library files and the include files in your system.

1. Add the slock.it ppa to your system with sudo add-apt-repository ppa:devops-slock-it/in3

2. Update the local sources sudo apt-get update

3. Install in3 with sudo apt-get install in3-dev

2.3.2 Docker Hub

Usage instructions:

1. Pull the image from docker using docker pull slockit/in3

2. Run the client using: docker run -d -p 8545:8545 slockit/in3:latest
--chainId=goerli -port 8545

3. More parameters and their descriptions can be found here.

10 Chapter 2. Downloading in3

https://in3.readthedocs.io/en/develop/api-node.html
https://in3.readthedocs.io/en/develop/getting_started.html#as-docker-container

Incubed Documentation, Release 1.2

2.3.3 Release page

Usage instructions:

1. Navigate to the in3-client release page on this github repo

2. Download the binary that matches your target system, or read below for architecture specific information:

For WASM:

1. Download the WASM binding with npm install --save in3-wasm

2. More information on how to use the WASM binding can be found here

3. Examples on how to use the WASM binding can be found here

For C library:

1. Download the C library from the release page or by installing the in3-dev package from ubuntu launchpad

2. Include the C library in your code, as shown in our examples

3. Build your code with gcc -std=c99 -o test test.c -lin3 -lcurl, more information can be
found here

For Java:

1. Download the Java file from the release page

2. Use the java binding as show in our example

3. Build your java project with javac -cp $IN3_JAR_LOCATION/in3.jar *.java

2.3.4 Brew

Usage instructions:

1. Ensure that homebrew is installed on your system

2. Add a brew tap with brew tap slockit/in3

3. Install in3 with brew install in3

4. You should now be able to use in3 in the terminal, can be verified with in3 eth_blockNumber

2.3. in3-client(C) 11

https://github.com/slockit/in3-c/releases
https://www.npmjs.com/package/in3-wasm
https://github.com/slockit/in3-c/tree/master/examples/js
https://github.com/slockit/in3-c/tree/master/examples/c
https://github.com/slockit/in3-c/blob/master/examples/c/build.sh
https://github.com/slockit/in3-c/blob/master/examples/java/GetBlockRPC.java

Incubed Documentation, Release 1.2

12 Chapter 2. Downloading in3

CHAPTER 3

Roadmap

Incubed implements two versions:

• TypeScript / JavaScript: optimized for dApps, web apps, or mobile apps.

• C: optimized for microcontrollers and all other use cases.

In the future we will focus on one codebase, which is C. This will be ported to many platforms (like WASM).

3.1 V2.0 Stable: Q3 2019

This was the first stable release, which was published after Devcon. It contains full verification of all relevant Ethereum
RPC calls (except eth_call for eWasm contracts), but there is no payment or incentivization included yet.

• Fail-safe Connection: The Incubed client will connect to any Ethereum blockchain (providing Incubed servers)
by randomly selecting nodes within the Incubed network and, if the node cannot be reached or does not deliver
verifiable responses, automatically retrying with different nodes.

• Reputation Management: Nodes that are not available will be temporarily blacklisted and lose reputation. The
selection of a node is based on the weight (or performance) of the node and its availability.

• Automatic NodeList Updates: All Incubed nodes are registered in smart contracts on chain and will trigger
events if the NodeList changes. Each request will always return the blockNumber of the last event so that the
client knows when to update its NodeList.

• Partial NodeList: To support small devices, the NodeList can be limited and still be fully verified by basing the
selection of nodes deterministically on a client-generated seed.

• Multichain Support: Incubed is currently supporting any Ethereum-based chain. The client can even run
parallel requests to different networks without the need to synchronize first.

• Preconfigured Boot Nodes: While you can configure any registry contract, the standard version contains con-
figuration with boot nodes for mainnet, kovan, evan, tobalaba, and ipfs.

• Full Verification of JSON-RPC Methods: Incubed is able to fully verify all important JSON-RPC methods.
This even includes calling functions in smart contract and verifying their return value (eth_call), which
means executing each opcode locally in the client to confirm the result.

13

Incubed Documentation, Release 1.2

• IPFS Support: Incubed is able to write and read IPFS content and verify the data by hashing and creating the
multihash.

• Caching Support: An optional cache enables storage of the results of RPC requests that can automatically be
used again within a configurable time span or if the client is offline. This also includes RPC requests, blocks,
code, and NodeLists.

• Custom Configuration: The client is highly customizable. For each request, a configuration can be explicitly
passed or adjusted through events (client.on('beforeRequest',...)). This allows the proof level or
number of requests to be sent to be optimized depending on the context.

• Proof Levels: Incubed supports different proof levels: none for no verification, standard for verifying only
relevant properties, and full for complete verification, including uncle blocks or previous transactions (higher
payload).

• Security Levels: Configurable number of signatures (for PoW) and minimal deposit stored.

• PoW Support: For PoW, blocks are verified based on blockhashes signed by Incubed nodes storing a deposit,
which they lose if this blockhash is not correct.

• PoA Support: (experimental) For PoA chains (using Aura and clique), blockhashes are verified by extracting
the signature from the sealed fields of the blockheader and by using the Aura algorithm to determine the signer
from the validatorlist (with static validatorlist or contract-based validators).

• Finality Support: For PoA chains, the client can require a configurable number of signatures (in percent) to
accept them as final.

• Flexible Transport Layer: The communication layer between clients and nodes can be overridden, but the
layer already supports different transport formats (JSON/CBOR/Incubed).

• Replace Latest Blocks: Since most applications per default always ask for the latest block, which cannot be
considered final in a PoW chain, a configuration allows applications to automatically use a certain block height
to run the request (like six blocks).

• Light Ethereum API: Incubed comes with a simple type-safe API, which covers all standard JSON-RPC re-
quests (in3.eth.getBalance('0x52bc44d5378309EE2abF1539BF71dE1b7d7bE3b5')). This
API also includes support for signing and sending transactions, as well as calling methods in smart contracts
without a complete ABI by simply passing the signature of the method as an argument.

• TypeScript Support: Because Incubed is written 100% in TypeScript, you get all the advantages of a type-safe
toolchain.

• java: java version of the Incubed client based on the C sources (using JNI)

3.2 V2.1 Incentivization: Q4 2019

This release will introduce the incentivization layer, which should help provide more nodes to create the decentralized
network.

• PoA Clique: Supports Clique PoA to verify blockheaders.

• Signed Requests: Incubed supports the incentivization layer, which requires signed requests to assign client
requests to certain nodes.

• Network Balancing: Nodes will balance the network based on load and reputation.

• python-bindings: integration in python

• go-bindings: bindings for go

14 Chapter 3. Roadmap

Incubed Documentation, Release 1.2

3.3 V2.2 Bitcoin: Q1 2020

Multichain Support for BTC

• Bitcoin: Supports Verfification for Bitcoin blocks and Transactions

• WASM: Typescript client based on a the C-Sources compiled to wasm.

3.4 V2.3 WASM: Q3 2020

For eth_call verification, the client and server must be able to execute the code. This release adds the ability to
support eWasm contracts.

• eth 2.0: Basic Support for Eth 2.0

• eWasm: Supports eWasm contracts in eth_call.

3.5 V2.4 Substrate: Q1 2021

Supports Polkadot or any substrate-based chains.

• Substrate: Framework support.

• Runtime Optimization: Using precompiled runtimes.

3.6 V2.5 Services: Q3 2021

Generic interface enables any deterministic service (such as docker-container) to be decentralized and verified.

3.3. V2.2 Bitcoin: Q1 2020 15

Incubed Documentation, Release 1.2

16 Chapter 3. Roadmap

CHAPTER 4

Threat Model for Incubed

4.1 Registry Issues

4.1.1 Long Time Attack

Status: open

A client is offline for a long time and does not update the NodeList. During this time, a server is convicted and/or
removed from the list. The client may now send a request to this server, which means it cannot be convicted anymore
and the client has no way to know that.

Solutions:

CHR: I think that the fallback is often “out of service.” What will happen is that those random nodes (A,
C) will not respond. We (slock.it) could help them update the list in a centralized way.

But I think the best way is the following: Allow nodes to commit to stay in the registry for a fixed amount
of time. In that time, they cannot withdraw their funds. The client will most likely look for those first,
especially those who only occasionally need data from the chain.

SIM: Yes, this could help, but it only protects from regular unregistering. If you convict a server, then this
timeout does not help.

To remove this issue completely, you would need a trusted authority where you could update the NodeList
first. But for the 100% decentralized way, you can only reduce it by asking multiple servers. Since they
will also pass the latest block number when the NodeList changes, the client will find out that it needs
to update the NodeList, and by having multiple requests in parallel, it reduces the risk of relying on a
manipulated NodeList. The malicious server may return a correct NodeList for an older block when this
server was still valid and even receive signatures for this, but the server cannot do so for a newer block
number, which can only be found out by asking as many servers as needed.

Another point is that as long as the signature does not come from the same server, the DataProvider will
always check, so even if you request a signature from a server that is not part of the list anymore, the
DataProvider will reject this. To use this attack, both the DataProvider and the BlockHashSigner must
work together to provide a proof that matches the wrong blockhash.

17

Incubed Documentation, Release 1.2

CHR: Correct. I think the strategy for clients who have been offline for a while is to first get multiple
signed blockhashes from different sources (ideally from bootstrap nodes similar to light clients and then
ask for the current list). Actually, we could define the same bootstrap nodes as those currently hard-coded
in Parity and Geth.

4.1.2 Inactive Server Spam Attack

Status: partially solved

Everyone can register a lot of servers that don’t even exist or aren’t running. Somebody may even put in a decent
deposit. Of course, the client would try to find out whether these nodes were inactive. If an attacker were able to
onboard enough inactive servers, the chances for an Incubed client to find a working server would decrease.

Solutions:

1. Static Min Deposit

There is a min deposit required to register a new node. Even though this may not entirely stop any attacker, but
it makes it expensive to register a high number of nodes.

Desicion :

Will be implemented in the first release, since it does not create new Riscs.

2. Unregister Key

At least in the beginning we may give us (for example for the first year) the right to remove inactive nodes.
While this goes against the principle of a fully decentralized system, it will help us to learn. If this key has a
timeout coded into the smart contract all users can rely on the fact that we will not be able to do this after one
year.

Desicion :

Will be implemented in the first release, at least as a workaround limited to one year.

3. Dynamic Min Deposit

To register a server, the owner has to pay a deposit calculated by the formula:

𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑚𝑖𝑛 =
86400 · 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑎𝑣𝑒𝑟𝑎𝑔𝑒
(𝑡𝑛𝑜𝑤 − 𝑡𝑙𝑎𝑠𝑡𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑒𝑑)

To avoid some exploitation of the formula, the deposit_average gets capped at 50 Ether. This means that
the maximum deposit_min calculated by this formula is about 4.3 million Ether when trying to register two
servers within one block. In the first year, there will also be an enforced deposit limit of 50 Ether, so it will be
impossible to rapidly register new servers, giving us more time to react to possible spam attacks (e.g., through
voting).

Desicion :

This dynamic deposit creates new Threads, because an attacker can stop other nodes from registering honest
nodes by adding a lot of nodes and so increasing the min deposit. That’s why this will not be implemented right
now.

4. Voting

In addition, the smart contract provides a voting function for removing inactive servers: To vote, a server has to
sign a message with a current block and the owner of the server they want to get voted out. Only the latest 256
blockhashes are allowed, so every signature will effectively expire after roughly 1 hour. The power of each vote
will be calculated by the amount of time when the server was registered. To make sure that the oldest servers
won’t get too powerful, the voting power gets capped at one year and won’t increase further. The server being
voted out will also get an oppositional voting power that is capped at two years.

18 Chapter 4. Threat Model for Incubed

Incubed Documentation, Release 1.2

For the server to be voted out, the combined voting power of all the servers has to be greater than the oppositional
voting power. Also, the accumulated voting power has to be greater than at least 50% of all the chosen voters.

As with a high amount of registered in3-servers, the handling of all votes would become impossible. We cap the
maximum amount of signatures at 24. This means to vote out a server that has been active for more then two
years, 24 in3-servers with a lifetime of one month are required to vote. This number decreases when more older
servers are voting. This mechanism will prevent the rapid onboarding of many malicious in3-servers that would
vote out all regular servers and take control of the in3-nodelist.

Additionally, we do not allow all servers to vote. Instead, we choose up to 24 servers randomly with the
blockhash as a seed. For the vote to succeed, they have to sign on the same blockhash and have enough voting
power.

To “punish” a server owner for having an inactive server, after a successful vote, that individual will lose 1%
of their deposit while the rest is locked until their deposit timeout expires, ensuring possible liabilities. Part of
this 1% deposit will be used to reimburse the transaction costs; the rest will be burned. To make sure that the
transaction will always be paid, a minimum deposit of 10 finney (equal to 0.01 Ether) will be enforced.

Desicion:

Voting will also create the risc of also Voting against honest nodes. Any node can act honest for a long time and
then become a malicious node using their voting power to vote against the remaining honest nodes and so end
up kicking all other nodes out. That’s why voting will be removed for the first release.

4.1.3 DDOS Attack to uncontrolled urls

Status: not implemented yet

As a owner I can register any url even a server which I don’t own. By doing this I can also add a high weight, which
increases the chances to get request. This way I can get potentially a lot of clients to send many requests to a node,
which is not expecting it. Even though clients may blacklist this node, it would be to easy to create a DDOS-Atack.

Solution:

Whenever there is a new node the client has never communicated to, we should should check using a DNS-Entry if
this node is controlled by the owner. The Entry may look like this:

in3-signer: 0x21341242135346534634634,0xabf21341242135346534634634,
→˓0xdef21341242135346534634634

Only if this DNS record contains the signer-address, the client should communicate with this node.

4.1.4 Self-Convict Attack

Status: solved

A user may register a mailcious server and even store a deposit, but as soon as they sign a wrong blockhash, they use
a second account to convict themself to get the deposit before somebody else can.

Solution:

SIM: We burn 50% of the depoist. In this case, the attacker would lose 50% of the deposit. But this also
means the attacker would get the other half, so the price they would have to pay for lying is up to 50% of
their deposit. This should be considered by clients when picking nodes for signatures.

Desicion: Accepted and implemented

4.1. Registry Issues 19

Incubed Documentation, Release 1.2

4.1.5 Convict Frontrunner Attack

Status: solved

Servers act as watchdogs and automatically call convict if they receive a wrong blockhash. This will cost them some
gas to send the transaction. If the block is older than 256 blocks, this may even cost a lot of gas since the server needs
to put blockhashes into the BlockhashRegistry first. But they are incentivized to do so, because after successfully
convicting, they receive a reward of 50% of the deposit.

A miner or other attacker could now wait for a pending transaction for convict and simply use the data and send the
same transaction with a high gas price, which means the transaction would eventually be mined first and the server,
after putting so much work into preparing the convict, would get nothing.

Solution:

Convicting a server requires two steps: The first is calling the convict function with the block number of the wrongly
signed block keccak256(_blockhash, sender, v, r, s). Both the real blockhash and the provided hash
will be stored in the smart contract. In the second step, the function revealConvict has to be called. The missing
information is revealed there, but only the previous sender is able to reproduce the provided hash of the first transaction,
thus being able to convict a server.

Desicion: Accepted and implemented

4.2 Network Attacks

4.2.1 Blacklist Attack

Status: partially solved

If the client has no direct internet connection and must rely on a proxy or a phone to make requests, this would give
the intermediary the chance to set up a malicious server.

This is done by simply forwarding the request to its own server instead of the requested one. Of course, they may
prepare a wrong answer, but they cannot fake the signatures of the blockhash. Instead of sending back any signed
hashes, they may return no signatures, which indicates to the client that the chosen nodes were not willing to sign
them. The client will then blacklist them and request the signature from other nodes. The proxy or relay could return
no signature and repeat that until all are blacklisted and the client finally asks for the signature from a malicious node,
which would then give the signature and the response. Since both come from a bad-acting server, they will not convict
themself and will thus prepare a proof for a wrong response.

Solutions:

1. Signing Responses

SIM: First, we may consider signing the response of the DataProvider node, even if this signature
cannot be used to convict. However, the client then knows that this response came from the client
they requested and was also checked by them. This would reduce the chances of this attack since this
would mean that the client picked two random servers that were acting malicious together.

Decision:

Not implemented yet. Maybe later.

2. Reject responses when 50% are blacklisted

If the client blacklisted more than 50% of the nodes, we should stop. The only issue here is that
the client does not know whether this is an ‘Inactive Server Spam Attack’ or not. In case of an
‘Inactive Server Spam Attack,’ it would actually be good to blacklist 90% of the servers and still be

20 Chapter 4. Threat Model for Incubed

Incubed Documentation, Release 1.2

able to work with the remaining 10%, but if the proxy is the problem, then the client needs to stop
blacklisting.

CHR: I think the client needs a list of nodes (bootstrape nodes) that should be signed in case the
response is no signature at all. No signature at all should default to an untrusted relayer. In this case,
it needs to go to trusted relayers. Or ask the untrusted relayer to get a signature from one of the
trusted relayers. If they forward the signed reponse, they should become trusted again.

SIM: We will allow the client to configure optional trusted nodes, which will always be part of the
nodelist and used in case of a blacklist attack. This means in case more than 50% are blacklisted the
client may only ask trusted nodes and if they don’t respond, instead of blacklisting it will reject the
request. While this may work in case of such a attack, it becomes an issue if more than 50% of the
registered nodes are inactive and blacklisted.

Decision:

The option of allowing trusted nodes is implemented.

4.2.2 DDoS Attacks

Status: solved (as much as possible)

Since the URLs of the network are known, they may be targets for DDoS attacks.

Solution:

SIM: Each node is reponsible for protecting itself with services like Cloudflare. Also, the nodes should
have an upper limit of concurrent requests they can handle. The response with status 500 should indicate
reaching this limit. This will still lead to blacklisting, but this protects the node by not sending more
requests.

CHR: The same is true for bootstrapping nodes of the foundation.

4.2.3 None Verifying DataProvider

Status: solved (more signatures = more security)

A DataProvider should always check the signatures of the blockhash they received from the signers. Of course, the
DataProvider is incentivized to do so because then they can get 50% of their deposit, but after getting the deposit, they
are not incentivized to report this to the client. There are two scenarios:

1. The DataProvider receives the signature but does not check it.

In this case, at least the verification inside the client will fail since the provided blockheader does not match.

2. The DataProvider works together with the signer.

In this case, the DataProvider would prepare a wrong blockheader that fits the wrong blockhash and would pass
the verification inside the client.

Solution:

SIM: In this case, only a higher number of signatures could increase security.

4.2. Network Attacks 21

Incubed Documentation, Release 1.2

4.3 Privacy

4.3.1 Private Keys as API Keys

Status: solved

For the scoring model, we are using private keys. The perfect security model would register each client, which is
almost impossible on mainnet, especially if you have a lot of devices. Using shared keys will very likely happen, but
this a nightmare for security experts.

Solution:

1. Limit the power of such a key so that the worst thing that can happen is a leaked key that can be used by another
client, which would then be able to use the score of the server the key is assigned to.

2. Keep the private key secret and manage the connection to the server only off chain.

3. Instead of using a private key as API-Key, we keep the private key private and only get a signature from the node
of the ecosystem confirming this relationship. This may happen completly offchain and scales much better.

Desicion: clients will not share private keys, but work with a signed approval from the node.

4.3.2 Filtering of Nodes

Status: partially solved

All nodes are known with their URLs in the NodeRegistry-contract. For countries trying to filter blockchain requests,
this makes it easy to add these URLs to blacklists of firewalls, which would stop the Incubed network.

Solution:

Support Onion-URLs, dynamic IPs, LORA, BLE, and other protocols. The registry may even use the
props to indicate the capabilities, so the client can choose which protocol to he is capable to use.

Decision: Accepted and prepared, but not fully implemented yet.

4.3.3 Inspecting Data in Relays or Proxies

For a device like a BLE, a relay (for example, a phone) is used to connect to the internet. Since a relay is able to read
the content, it is possible to read the data or even pretend the server is not responding. (See Blacklist Attack above.)

Solution:

Encrypt the data by using the public key of the server. This can only be decrypted by the target server
with the private key.

4.4 Risk Calculation

Just like the light client there is not 100% protection from malicious servers. The only way to reach this would be to
trust special authority nodes to sign the blockhash. For all other nodes, we must always assume they are trying to find
ways to cheat.

The risk of losing the deposit is significantly lower if the DataProvider node and the signing nodes are run by the
same attacker. In this case, they will not only skip over checks, but also prepare the data, the proof, and a blockhash
that matches the blockheader. If this were the only request and the client had no other anchor, they would accept a
malicious response.

22 Chapter 4. Threat Model for Incubed

Incubed Documentation, Release 1.2

Depending on how many malicious nodes have registered themselves and are working together, the risk can be calcu-
lated. If 10% of all registered nodes would be run by an attacker (with the same deposit as the rest), the risk of getting
a malicious response would be 1% with only one signature. The risk would go down to 0.006% with three signatures:

50%
bad

In case of an attacker controlling 50% of all nodes, it looks a bit different. Here, one signature would give you a risk
of 25% to get a bad response, and it would take more than four signatures to reduce this to under 1%.

10%
bad

Solution:

The risk can be reduced by sending two requests in parallel. This way the attacker cannot be sure that their
attack would be successful because chances are higher to detect this. If both requests lead to a different
result, this conflict can be forwarded to as many servers as possible, where these servers can then check

4.4. Risk Calculation 23

Incubed Documentation, Release 1.2

the blockhash and possibly convict the malicious server.

24 Chapter 4. Threat Model for Incubed

CHAPTER 5

Benchmarks

These benchmarks aim to test the Incubed version for stability and performance on the server. As a result, we can
gauge the resources needed to serve many clients.

5.1 Setup and Tools

• JMeter is used to send requests parallel to the server

• Custom Python scripts is used to generate lists of transactions as well as randomize them (used to create test
plan)

• Link for making JMeter tests online without setting up the server: https://www.blazemeter.com/

JMeter can be downloaded from: https://jmeter.apache.org/download_jmeter.cgi

Install JMeter on Mac OS With HomeBrew

1. Open a Mac Terminal where we will be running all the commands

2. First, check to see if HomeBrew is installed on your Mac by executing this command. You
can either run brew help or brew -v

3. If HomeBrew is not installed, run the following command to install HomeBrew on Mac:

ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/
→˓install/master/install)"
Once HomeBrew is installed, we can continue to install JMeter.

4. To install JMeter without the extra plugins, run the following command:

brew install jmeter

5. To install JMeter with all the extra plugins, run the following command:

brew install jmeter --with-plugins

25

https://www.blazemeter.com/
https://jmeter.apache.org/download_jmeter.cgi

Incubed Documentation, Release 1.2

6. Finally, verify the installation by executing jmeter -v

7. Run JMeter using ‘jmeter’ which should load the JMeter GUI

JMeter on EC2 instance CLI only (testing pending):

1. Login to AWS and navigate to the EC2 instance page

2. Create a new instance, choose an Ubuntu AMI]

3. Provision the AWS instance with the needed information, enable CloudWatch monitoring

4. Configure the instance to allow all outgoing traffic, and fine tune Security group rules to
suit your need

5. Save the SSH key, use the SSH key to login to the EC2 instance

6. Install Java:

sudo add-apt-repository ppa:linuxuprising/java
sudo apt-get update
sudo apt-get install oracle-java11-installer

7. Install JMeter using:

sudo apt-get install jmeter

8. Get the JMeter Plugins:

wget http://jmeter-plugins.org/downloads/file/JMeterPlugins-
→˓Standard-1.2.0.zip
wget http://jmeter-plugins.org/downloads/file/JMeterPlugins-
→˓Extras-1.2.0.zip
wget http://jmeter-plugins.org/downloads/file/JMeterPlugins-
→˓ExtrasLibs-1.2.0.zip

9. Move the unzipped jar files to the install location:

sudo unzip JMeterPlugins-Standard-1.2.0.zip -d /usr/share/jmeter/
sudo unzip JMeterPlugins-Extras-1.2.0.zip -d /usr/share/jmeter/
sudo unzip JMeterPlugins-ExtrasLibs-1.2.0.zip -d /usr/share/
→˓jmeter/

10. Copy the JML file to the EC2 instance using:

(On host computer)

scp -i <path_to_key> <path_to_local_file> <user>@<server_url>:
→˓<path_on_server>

11. Run JMeter without the GUI:

jmeter -n -t <path_to_jmx> -l <path_to_output_jtl>

12. Copy the JTL file back to the host computer and view the file using JMeter with GUI

Python script to create test plan:

1. Navigate to the txGenerator folder in the in3-tests repo.

2. Run the main.py file while referencing the start block (-s), end block (-e) and number of blocks to choose in this
range (-n). The script will randomly choose three transactions per block.

26 Chapter 5. Benchmarks

Incubed Documentation, Release 1.2

3. The transactions chosen are sent through a tumble function, resulting in a randomized list of transactions from
random blocks. This should be a realistic scenario to test with, and prevents too many concurrent cache hits.

4. Import the generated CSV file into the loaded test plan on JMeter.

5. Refer to existing test plans for information on how to read transactions from CSV files and to see how it can be
integrated into the requests.

5.2 Considerations

• When the Incubed benchmark is run on a new server, create a baseline before applying any changes.

• Run the same benchmark test with the new codebase, test for performance gains.

• The tests can be modified to include the number of users and duration of the test. For a stress test, choose 200
users and a test duration of 500 seconds or more.

• When running in an EC2 instance, up to 500 users can be simulated without issues. Running in GUI mode
reduces this number.

• A beneficial method for running the test is to slowly ramp up the user count. Start with a test of 10 users for 120
seconds in order to test basic stability. Work your way up to 200 users and longer durations.

• Parity might often be the bottleneck; you can confirm this by using the get_avg_stddev_in3_response.sh script
in the scripts directory of the in3-test repo. This would help show what optimizations are needed.

5.3 Results/Baseline

• The baseline test was done with our existing server running multiple docker containers. It is not indicative of a
perfect server setup, but it can be used to benchmark upgrades to our codebase.

• The baseline for our current system is given below. This system has multithreading enabled and has been tested
with ethCalls included in the test plan.

Users/durationNum-
ber
of re-
quests

tps get-
Block-
By-
Hash
(ms)

get-
Block-
ByNum-
ber
(ms)

get-
Trans-
action-
Hash
(ms)

get-
Trans-
action-
Re-
ceipt
(ms)

Eth-
Call(ms)

eth_getStorage
(ms)

Notes

10/120s
20/120s4800 40 580 419 521 923 449 206
40/120s5705 47 1020 708 902 1508 816 442
80/120s7970 66 1105 790 2451 3197 984 452
100/120s6911 57 1505 1379 2501 4310 1486 866
110/120s6000 50 1789 1646 4204 5662 1811 1007
120/500s32000 65 1331 1184 4600 5314 1815 1607
140/500s31000 62 1666 1425 5207 6722 1760 941
160/500s33000 65 1949 1615 6269 7604 1900 930 In3 -> 400ms, rpc -> 2081ms
200/500s34000 70 1270 1031 12500 14349 1251 716 At higher loads, the RPC delay

adds up. It is the bottlenecking
factor. Able to handle 200 users
on sustained loads.

5.2. Considerations 27

Incubed Documentation, Release 1.2

• More benchmarks and their results can be found in the in3-tests repo

28 Chapter 5. Benchmarks

CHAPTER 6

IN3-Protocol

This document describes the communication between a Incubed client and a Incubed node. This communication is
based on requests that use extended JSON-RPC-Format. Especially for ethereum-based requests, this means each node
also accepts all standard requests as defined at Ethereum JSON-RPC, which also includes handling Bulk-requests.

Each request may add an optional in3 property defining the verification behavior for Incubed.

6.1 Incubed Requests

Requests without an in3 property will also get a response without in3. This allows any Incubed node to also act as
a raw ethereum JSON-RPC endpoint. The in3 property in the request is defined as the following:

• chainId string<hex> - The requested chainId. This property is optional, but should always be specified in
case a node may support multiple chains. In this case, the default of the node would be used, which may end up
in an undefined behavior since the client cannot know the default.

• includeCode boolean - Applies only for eth_call-requests. If true, the request should include the codes
of all accounts. Otherwise only the the codeHash is returned. In this case, the client may ask by calling
eth_getCode() afterwards.

• verifiedHashes string<bytes32>[] - If the client sends an array of blockhashes, the server will not deliver
any signatures or blockheaders for these blocks, but only return a string with a number. This allows the client to
skip requiring signed blockhashes for blocks already verified.

• latestBlock integer - If specified, the blocknumber latest will be replaced by a blockNumber-specified
value. This allows the Incubed client to define finality for PoW-Chains, which is important, since the latest-
block cannot be considered final and therefore it would be unlikely to find nodes willing to sign a blockhash for
such a block.

• useRef boolean - If true, binary-data (starting with a 0x) will be referred if occurring again. This decreases
the payload especially for recurring data such as merkle proofs. If supported, the server (and client) will keep
track of each binary value storing them in a temporary array. If the previously used value is used again, the
server replaces it with :<index>. The client then resolves such refs by lookups in the temporary array.

29

https://www.jsonrpc.org/specification
https://github.com/ethereum/wiki/wiki/JSON-RPC

Incubed Documentation, Release 1.2

• useBinary boolean - If true, binary-data will be used. This format is optimzed for embedded devices and
reduces the payload to about 30%. For details see the Binary-spec.

• useFullProof boolean - If true, all data in the response will be proven, which leads to a higher payload. The
result depends on the method called and will be specified there.

• finality number - For PoA-Chains, it will deliver additional proof to reach finality. If given, the server will
deliver the blockheaders of the following blocks until at least the number in percent of the validators is reached.

• verification string - Defines the kind of proof the client is asking for. Must be one of the these values:

– 'never’ : No proof will be delivered (default). Also no in3-property will be added to the response, but
only the raw JSON-RPC response will be returned.

– 'proof’ : The proof will be created including a blockheader, but without any signed blockhashes.

– 'proofWithSignature’ : The returned proof will also include signed blockhashes as required in
signatures.

• signatures string<address>[] - A list of addresses (as 20bytes in hex) requested to sign the blockhash.

A example of an Incubed request may look like this:

{
"jsonrpc": "2.0",
"id": 2,
"method": "eth_getTransactionByHash",
"params": ["0xf84cfb78971ebd940d7e4375b077244e93db2c3f88443bb93c561812cfed055c"],
"in3": {

"chainId": "0x1",
"verification": "proofWithSignature",
"signatures":["0x784bfa9eb182C3a02DbeB5285e3dBa92d717E07a"]

}
}

6.2 Incubed Responses

Each Incubed node response is based on JSON-RPC, but also adds the in3 property. If the request does not contain a
in3 property or does not require proof, the response must also omit the in3 property.

If the proof is requested, the in3 property is defined with the following properties:

• proof Proof - The Proof-data, which depends on the requested method. For more details, see the Proofs section.

• lastNodeList number - The blocknumber for the last block updating the nodelist. This blocknumber should be
used to indicate changes in the nodelist. If the client has a smaller blocknumber, it should update the nodeList.

• lastValidatorChange number - The blocknumber of the last change of the validatorList (only for PoA-chains).
If the client has a smaller number, it needs to update the validatorlist first. For details, see PoA Validations

• currentBlock number - The current blocknumber. This number may be stored in the client in order to run
sanity checks for latest blocks or eth_blockNumber, since they cannot be verified directly.

An example of such a response would look like this:

{
"jsonrpc": "2.0",
"result": {
"blockHash": "0x2dbbac3abe47a1d0a7843d378fe3b8701ca7892f530fd1d2b13a46b202af4297",
"blockNumber": "0x79fab6",

(continues on next page)

30 Chapter 6. IN3-Protocol

Incubed Documentation, Release 1.2

(continued from previous page)

"chainId": "0x1",
"condition": null,
"creates": null,
"from": "0x2c5811cb45ba9387f2e7c227193ad10014960bfc",
"gas": "0x186a0",
"gasPrice": "0x4a817c800",
"hash": "0xf84cfb78971ebd940d7e4375b077244e93db2c3f88443bb93c561812cfed055c",
"input":

→˓"0xa9059cbb000000000000000000000000290648fc6f2cb27a2a81dc35a429090872991b920015af1d78b58c400000
→˓",

"nonce": "0xa8",
"publicKey":

→˓"0x6b30c392dda89d58866bf2c1bedf8229d12c6ae3589d82d0f52ae588838a475aacda64775b7a1b376935d732bb8022630a01c4926e71171eeda938b644d83365
→˓",

"r": "0x4666976b528fc7802edd9330b935c7d48fce0144ce97ade8236da29878c1aa96",
"raw":

→˓"0xf8ab81a88504a817c800830186a094d3ebdaea9aeac98de723f640bce4aa07e2e4419280b844a9059cbb000000000000000000000000290648fc6f2cb27a2a81dc35a429090872991b920015af1d78b58c40000025a04666976b528fc7802edd9330b935c7d48fce0144ce97ade8236da29878c1aa96a05089dca7ecf7b061bec3cca7726aab1fcb4c8beb51517886f91c9b0ca710b09d
→˓",

"s": "0x5089dca7ecf7b061bec3cca7726aab1fcb4c8beb51517886f91c9b0ca710b09d",
"standardV": "0x0",
"to": "0xd3ebdaea9aeac98de723f640bce4aa07e2e44192",
"transactionIndex": "0x3e",
"v": "0x25",
"value": "0x0"

},
"id": 2,
"in3": {

"proof": {
"type": "transactionProof",
"block":

→˓"0xf90219a03d050deecd980b16cad9752133333ccdface463cc69e784f32dd981e2e751e34a01dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d4934794829bd824b016326a401d083b33d092293333a830a012892951590f62f4b2802f88e8fddc09c951ad2cac23803e07c4f11e01991907a018a21c8413fc7fc29f09d12f75515993ab38858bfa9e5632670cbba3358f0cfaa02fc4436c96ae4d100921c20b5cb601252de68ddde159bc89f3353555eff0ccccb901009034d281f0400b0920d21f7795b09d8c2b9cd48a939ce476aa84f486c68855684c0804a304a444a17c0ca4420e32a3b29a8218802d9fab5112a82b8d60e12203400084c2a236149a4a44905e120540a1478261a55a399229fe046595236900025de213ea6a000612901d6008080a6f773755182105c9100048a40eb458808a0334a2c5927a9308f300962916898c861a888d8d780508061c2bc54c866078216042497a0cd05dfa65948b8dc4144ca64144883c2422a5280848021328d8a8e41602890d122b0110c27bc014193502a7690d40e00f03a879080b0073f1ae4ab0232b93630c068ecb7b4b923de0012566855524a000502c87906480151e81d2b032870709c2784add128379fab6837a3f58837a12f8845d0b4673987070796520e4b883e5bda9e7a59ee4bb99e9b1bc9329ad43a0e21b342112a946b58fa2f50739166c20aed4647d3ad8e37210d451fb8b243870888f95c17c0647e1f9
→˓",

"merkleProof": [

→˓"0xf90131a00150ff50e29f3df34b89870f183c85a82a73f21722d7e6c787e663159f165010a0b8c56f207a223067c7ae5df7420221327c32f89f36cef8a14c33e5a4e67be9cfa0112091138bbf6bde2e20c88b08d10f8ea08ec298f2daac34d76fc8e248379dc5a0c737a71d34faa7c864930707ac7870b2c7cc28e7d489d21330acfa8deb72d805a075811c4bdef2cc74095e57cacce23debab8ea8e6d8937932678d2fd444367ea9a0e79e4e445e517b7b31ad626acabec77a6e0c846207b91f01ac33e804af096325a07065708e1a9e9b865dbd5e19e521224ae554a5d3064257e5401d7cad900f555aa01a71ef57896ce378fd51bf44a1d0b538d3587d9aecdbf3c6c7f6794bbb0f0fa8a0d720eecae23cd40af5c534b90b00f33b7ec0638b11cc7809058110bf984a02d48080808080808080
→˓",

→˓"0xf90211a0f4a5e4a1197190f910e4a026f50bd6a169716b52be42c99ddb043ad9b4da6117a09ad1def70dd1d991331d013719cca31d35111cf75d3046dffdc9d1897ecfce29a01ada8fa2d6a7f9b44394a0d7fafe8a59810e48596e1258adb57ca51a6a014024a0eeb2d6482d696d623ae7f868aa3463790041c4863f1d47f84d6629f2d5ee88c5a0f1c04c4bc88aa5f24c7e5ac401c5246cf17834e7e68d4b2c9b656a37f510aff1a040446d66c0039c4806ee13da02ebe408abab366332ec2355367ca0dec5aab273a0775b1f53ad22fdcb6fef814d34b910be6a2e6463febb174d4f2064626baf639fa0bb1668055775f8ba59bf071465ffe68db4f916a7eb0ea07126b71d3e30a8fd70a08ad25a05847cdeec5261154c5ae89f03f2a8a813e8804983c677dc0d39e26bfca0a0c6f9e3e55cabbe3a9c0c6713aeb4e70135b9abe21b50bb6e04e6f4a09888d5a011d5422e577e357d26390492378b9328518b263310574b1e0d9e322031485a22a0c2f4f15a1ba6585a87a0dcca7b45dc0bbcd72830df61888d7abf16fef6a4df72a02bf0d1675ebf1c1f2af6793edf748e3184c2ac5522a6640a1b04d3b7bad7e23ca0c80cf2596da4c35f6c5e5348791c64c10d80ccd7668d6ef73a2454f0f11a0f59a03e54112466dbd3791d6e1e281d25470b884c96406e39bd83e8a806cfc8e60219a00e2cc674fa10aefb4dea53ac114e28c6353d30b315d4ba280ab4741920a60ce280
→˓",

→˓"0xf8b020b8adf8ab81a88504a817c800830186a094d3ebdaea9aeac98de723f640bce4aa07e2e4419280b844a9059cbb000000000000000000000000290648fc6f2cb27a2a81dc35a429090872991b920015af1d78b58c40000025a04666976b528fc7802edd9330b935c7d48fce0144ce97ade8236da29878c1aa96a05089dca7ecf7b061bec3cca7726aab1fcb4c8beb51517886f91c9b0ca710b09d
→˓"

],
"txIndex": 62,
"signatures": [

{
"blockHash":

→˓"0x2dbbac3abe47a1d0a7843d378fe3b8701ca7892f530fd1d2b13a46b202af4297",
"block": 7994038,
"r": "0xef73a527ae8d38b595437e6436bd4fa037d50550bf3840ad0cd3c6ca641a951e",
"s": "0x6a5815db16c12b890347d42c014d19b60e1605d2e8e64b729f89e662f9ce706b",
"v": 27,
"msgHash":

→˓"0xa8fc6e2564e496efc5fd7db8e70f03fd50af53e092f47c98329c84c96026fdff"
}

]
},

(continues on next page)

6.2. Incubed Responses 31

Incubed Documentation, Release 1.2

(continued from previous page)

"currentBlock": 7994124,
"lastValidatorChange": 0,
"lastNodeList": 6619795

}
}

6.3 ChainId

Incubed supports multiple chains and a client may even run requests to different chains in parallel. While, in most
cases, a chain refers to a specific running blockchain, chainIds may also refer to abstract networks such as ipfs. So,
the definition of a chain in the context of Incubed is simply a distributed data domain offering verifiable api-functions
implemented in an in3-node.

Each chain is identified by a uint64 identifier written as hex-value (without leading zeros). Since incubed started
with ethereum, the chainIds for public ethereum-chains are based on the intrinsic chainId of the ethereum-chain. See
https://chainid.network.

For each chain, Incubed manages a list of nodes as stored in the server registry and a chainspec describing the verifi-
cation. These chainspecs are held in the client, as they specify the rules about how responses may be validated.

6.4 Registry

As Incubed aims for fully decentralized access to the blockchain, the registry is implemented as an ethereum smart
contract.

This contract serves different purposes. Primarily, it manages all the Incubed nodes, both the onboarding and also
unregistering process. In order to do so, it must also manage the deposits: reverting when the amount of provided
ether is smaller than the current minimum deposit; but also locking and/or sending back deposits after a server leaves
the in3-network.

In addition, the contract is also used to secure the in3-network by providing functions to “convict” servers that provided
a wrongly signed block, and also having a function to vote out inactive servers.

6.4.1 Node structure

Each Incubed node must be registered in the ServerRegistry in order to be known to the network. A node or server is
defined as:

• url string - The public url of the node, which must accept JSON-RPC requests.

• owner address - The owner of the node with the permission to edit or remove the node.

• signer address - The address used when signing blockhashes. This address must be unique within the
nodeList.

• timeout uint64 - Timeout after which the owner is allowed to receive its stored deposit. This information
is also important for the client, since an invalid blockhash-signature can only “convict” as long as the server is
registered. A long timeout may provide higher security since the node can not lie and unregister right away.

• deposit uint256 - The deposit stored for the node, which the node will lose if it signs a wrong blockhash.

• props uint64 - A bitmask defining the capabilities of the node:

32 Chapter 6. IN3-Protocol

Incubed Documentation, Release 1.2

– 0x01 : proof : The node is able to deliver proof. If not set, it may only serve pure ethereum JSON/RPC.
Thus, simple remote nodes may also be registered as Incubed nodes.

– 0x02 : multichain : The same RPC endpoint may also accept requests for different chains.

– 0x04 : archive : If set, the node is able to support archive requests returning older states. If not, only a
pruned node is running.

– 0x08 : http : If set, the node will also serve requests on standard http even if the url specifies https. This
is relevant for small embedded devices trying to save resources by not having to run the TLS.

– 0x10 : binary : If set, the node accepts request with binary:true. This reduces the payload to about
30% for embedded devices.

More properties will be added in future versions.

• unregisterTime uint64 - The earliest timestamp when the node can unregister itself by calling
confirmUnregisteringServer. This will only be set after the node requests an unregister. The client
nodes with an unregisterTime set have less trust, since they will not be able to convict after this timestamp.

• registerTime uint64 - The timestamp, when the server was registered.

• weight uint64 - The number of parallel requests this node may accept. A higher number indicates a stronger
node, which will be used within the incentivization layer to calculate the score.

The following functions are offered within the registry:

6.4.2 NodeRegistry functions

constructor

constructor

Development notice: cannot be deployed in a genesis block

Parameters:

• _blockRegistry BlockhashRegistry: address of a BlockhashRegistry-contract

convict

must be called before revealConvict commits a blocknumber and a hash

Development notice: The v,r,s paramaters are from the signature of the wrong blockhash that the node provided

Parameters:

• _blockNumber uint: the blocknumber of the wrong blockhash

• _hash bytes32: keccak256(wrong blockhash, msg.sender, v, r, s); used to prevent frontrunning.

registerNode

register a new node with the sender as owner

Development notice: will call the registerNodeInteral function

Parameters:

• _url string: the url of the node, has to be unique

6.4. Registry 33

Incubed Documentation, Release 1.2

• _props uint64: properties of the node

• _timeout uint64: timespan of how long the node of a deposit will be locked. Will be at least for 1h

• _weight uint64: how many requests per second the node is able to handle

registerNodeFor

register a new node as a owner using a different signer address

Development notice: will revert when a wrong signature has been provided

which is calculated by the hash of the url, properties, timeout, weight and the owner

in order to prove that the owner has control over the signer-address he has to sign a message

will call the registerNodeInteral function

Parameters:

• _url string: the url of the node, has to be unique

• _props uint64: properties of the node

• _timeout uint64: timespan of how long the node of a deposit will be locked. Will be at least for 1h

• _signer address: the signer of the in3-node

• _weight uint64: how many requests per second the node is able to handle

• _v uint8: v of the signed message

• _r bytes32: r of the signed message

• _s bytes32: s of the signed message

removeNodeFromRegistry

removes an in3-server from the registry

Development notice: only callable in the 1st year after deployment

only callable by the unregisterKey-account

Parameters:

• _signer address: the signer-address of the in3-node

returnDeposit

only callable after the timeout of the deposit is over returns the deposit after a node has been removed

Development notice: reverts if the deposit is still locked

reverts when there is nothing to transfer

reverts when not the owner of the former in3-node

Parameters:

• _signer address: the signer-address of a former in3-node

34 Chapter 6. IN3-Protocol

Incubed Documentation, Release 1.2

revealConvict

reveals the wrongly provided blockhash, so that the node-owner will lose its deposit

Development notice: reverts when the wrong convict hash (see convict-function) is used

reverts when the _signer did not sign the block

reverts when trying to reveal immediately after calling convict

reverts when trying to convict someone with a correct blockhash

reverts if a block with that number cannot be found in either the latest 256 blocks or the blockhash registry

Parameters:

• _signer address: the address that signed the wrong blockhash

• _blockhash bytes32: the wrongly provided blockhash

• _blockNumber uint: number of the wrongly provided blockhash

• _v uint8: v of the signature

• _r bytes32: r of the signature

• _s bytes32: s of the signature

transferOwnership

changes the ownership of an in3-node

Development notice:

reverts when the sender is not the current owner

reverts when trying to pass ownership to 0x0

reverts when trying to change ownership of an inactive node

Parameters:

• _signer address: the signer-address of the in3-node, used as an identifier

• _newOwner address: the new owner

unregisteringNode

doing so will also lock his deposit for the timeout of the node a node owner can unregister a node, removing it from
the nodeList

Development notice: reverts when not called by the owner of the node

reverts when the provided address is not an in3-signer

Parameters:

• _signer address: the signer of the in3-node

6.4. Registry 35

Incubed Documentation, Release 1.2

updateNode

updates a node by adding the msg.value to the deposit and setting the props or timeout

Development notice: reverts when trying to change the url to an already existing one

reverts when trying to increase the timeout above 10 years

reverts when the signer does not own a node

reverts when the sender is not the owner of the node

Parameters:

• _signer address: the signer-address of the in3-node, used as an identifier

• _url string: the url, will be changed if different from the current one

• _props uint64: the new properties, will be changed if different from the current onec

• _timeout uint64: the new timeout of the node, cannot be decreased. Has to be at least 1h

• _weight uint64: the amount of requests per second the node is able to handle

totalNodes

length of the nodelist Return Parameters:

• uint the number of currently active nodes

calcProofHash

calculates the sha3 hash of the most important properties in order to make the proof faster

Parameters:

• _node In3Node: the in3 node to calculate the hash from

Return Parameters:

• bytes32 the hash of the properties to prove with in3

checkNodeProperties

function to check whether the allowed amount of ether as deposit per server has been reached

Development notice: will fail when the provided timeout is greater then 1 year

will fail when the deposit is greater then 50 ether in the 1st year

Parameters:

• _deposit uint256: the new amount of deposit a server has

• _timeout uint64: the timeout until a server can receive his deposit after unregister

36 Chapter 6. IN3-Protocol

Incubed Documentation, Release 1.2

registerNodeInternal

registers a node

Development notice: reverts when either the owner or the url is already in use

reverts when trying to register a node with more then 50 ether in the 1st year after deployment

reverts when provided not enough deposit

reverts when time timeout exceed the MAXDEPOSITTIMEOUT

Parameters:

• _url string: the url of a node

• _props uint64: properties of a node

• _timeout uint64: the time before the owner can access the deposit after unregister a node

• _signer address: the address that signs the answers of the node

• _owner address: the owner address of the node

• _deposit uint: the deposit of a node

• _weight uint64: the amount of requests per second a node is able to handle

unregisterNodeInternal

handles the setting of the unregister values for a node internally

Parameters:

• _si SignerInformation: information of the signer

• _n In3Node: information of the in3-node

removeNode

removes a node from the node-array

6.4.3 BlockHashRegistry functions

constructor

constructor

searchForAvailableBlock

searches for an already existing snapshot

Parameters:

• _startNumber uint: the blocknumber to start searching

• _numBlocks uint: the number of blocks to search for

Return Parameters:

• uint returns a blocknumber when a snapshot had been found. It will return 0 if no blocknumber was found.

6.4. Registry 37

Incubed Documentation, Release 1.2

recreateBlockheaders

if successfull the last blockhash of the header will be added to the smart contract it will be checked whether the
provided chain is correct by using the reCalculateBlockheaders function only usable when the given blocknumber is
already in the smart contract starts with a given blocknumber and its header and tries to recreate a (reverse) chain of
blocks

Development notice: function is public due to the usage of a dynamic bytes array (not yet supported for external
functions)

reverts when the chain of headers is incorrect

reverts when there is not parent block already stored in the contract

Parameters:

• _blockNumber uint: the block number to start recreation from

• _blockheaders bytes[]: array with serialized blockheaders in reverse order (youngest -> oldest) => (e.g.
100, 99, 98)

saveBlockNumber

stores a certain blockhash to the state

Development notice: reverts if the block can’t be found inside the evm

Parameters:

• _blockNumber uint: the blocknumber to be stored

snapshot

stores the currentBlock-1 in the smart contract

getParentAndBlockhash

returns the blockhash and the parent blockhash from the provided blockheader

Parameters:

• _blockheader bytes: a serialized (rlp-encoded) blockheader

Return Parameters:

• parentHash bytes32

• bhash bytes32

reCalculateBlockheaders

the array of the blockheaders have to be in reverse order (e.g. [100,99,98,97]) starts with a given blockhash and its
header and tries to recreate a (reverse) chain of blocks

Parameters:

• _blockheaders bytes[]: array with serialized blockheaders in reverse order, i.e. from youngest to oldest

• _bHash bytes32: blockhash of the 1st element of the _blockheaders-array

38 Chapter 6. IN3-Protocol

Incubed Documentation, Release 1.2

6.5 Binary Format

Since Incubed is optimized for embedded devices, a server can not only support JSON, but a special binary-format.
You may wonder why we don’t want to use any existing binary serialization for JSON like CBOR or others. The
reason is simply: because we do not need to support all the features JSON offers. The following features are not
supported:

• no escape sequences (this allows use of the string without copying it)

• no float support (at least for now)

• no string literals starting with 0x since this is always considered as hexcoded bytes

• no propertyNames within the same object with the same key hash

Since we are able to accept these restrictions, we can keep the JSON-parser simple. This binary-format is highly opti-
mized for small devices and will reduce the payload to about 30%. This is achieved with the following optimizations:

• All strings starting with 0xare interpreted as binary data and stored as such, which reduces the size of the data
to 50%.

• Recurring byte-values will use references to previous data, which reduces the payload, especially for merkle
proofs.

• All propertyNames of JSON-objects are hashed to a 16bit-value, reducing the size of the data to a signifivant
amount (depending on the propertyName).

The hash is calculated very easily like this:

static d_key_t key(const char* c) {
uint16_t val = 0, l = strlen(c);
for (; l; l--, c++) val ^= *c | val << 7;
return val;

}

Note: A very important limitation is the fact that property names are stored as 16bit hashes, which decreases the
payload, but does not allow for the restoration of the full json without knowing all property names!

The binary format is based on JSON-structure, but uses a RLP-encoding approach. Each node or value is represented
by these four values:

• key uint16_t - The key hash of the property. This value will only pass before the property node if the
structure is a property of a JSON-object.

• type d_type_t - 3 bit : defining the type of the element.

• len uint32_t - 5 bit : the length of the data (for bytes/string/array/object). For (boolean or integer) the length
will specify the value.

• data bytes_t - The bytes or value of the node (only for strings or bytes).

6.5. Binary Format 39

Incubed Documentation, Release 1.2

key

16 bit

type

type (3bit) len (5bit)
len ext data

The serialization depends on the type, which is defined in the first 3 bits of the first byte of the element:

d_type_t type = *val >> 5; // first 3 bits define the type
uint8_t len = *val & 0x1F; // the other 5 bits (0-31) the length

The len depends on the size of the data. So, the last 5 bit of the first bytes are interpreted as follows:

• 0x00 - 0x1c : The length is taken as is from the 5 bits.

• 0x1d - 0x1f : The length is taken by reading the big-endian value of the next len - 0x1c bytes (len ext).

After the type-byte and optional length bytes, the 2 bytes representing the property hash is added, but only if the
element is a property of a JSON-object.

Depending on these types, the length will be used to read the next bytes:

• 0x0 : binary data - This would be a value or property with binary data. The len will be used to read the
number of bytes as binary data.

• 0x1 : string data - This would be a value or property with string data. The len will be used to read the number
of bytes (+1) as string. The string will always be null-terminated, since it will allow small devices to use the
data directly instead of copying memory in RAM.

• 0x2 : array - Represents an array node, where the len represents the number of elements in the array. The
array elements will be added right after the array-node.

• 0x3 : object - A JSON-object with len properties coming next. In this case the properties following this
element will have a leading key specified.

• 0x4 : boolean - Boolean value where len must be either 0x1= true or 0x0 = false. If len > 1 this
element is a copy of a previous node and may reference the same data. The index of the source node will then
be len-2.

• 0x5 : integer - An integer-value with max 29 bit (since the 3 bits are used for the type). If the value is higher
than 0x20000000, it will be stored as binary data.

• 0x6 : null - Represents a null-value. If this value has a len> 0 it will indicate the beginning of data, where len
will be used to specify the number of elements to follow. This is optional, but helps small devices to allocate the
right amount of memory.

6.6 Communication

Incubed requests follow a simple request/response schema allowing even devices with a small bandwith to retrieve all
the required data with one request. But there are exceptions when additional data need to be fetched.

These are:

40 Chapter 6. IN3-Protocol

Incubed Documentation, Release 1.2

1. Changes in the NodeRegistry

Changes in the NodeRegistry are based on one of the following events:

• LogNodeRegistered

• LogNodeRemoved

• LogNodeChanged

The server needs to watch for events from the NodeRegistry contract, and update the nodeList when needed.

Changes are detected by the client by comparing the blocknumber of the latest change with the last known
blocknumber. Since each response will include the lastNodeList, a client may detect this change after
receiving the data. The client is then expected to call in3_nodeList to update its nodeList before sending
out the next request. In the event that the node is not able to proof the new nodeList, the client may blacklist
such a node.

1. Changes in the ValidatorList

This only applies to PoA-chains where the client needs a defined and verified validatorList. Depend-
ing on the consensus, changes in the validatorList must be detected by the node and indicated with the
lastValidatorChange on each response. This lastValidatorChange holds the last blocknumber
of a change in the validatorList.

Changes are detected by the client by comparing the blocknumber of the latest change with the last known
blocknumber. Since each response will include the lastValidatorChange a client may detect this
change after receiving the data or in case of an unverifiable response. The client is then expected to call
in3_validatorList to update its list before sending out the next request. In the event that the node is
not able to proof the new nodeList, the client may blacklist such a node.

2. Failover

It is also good to have a second request in the event that a valid response is not delivered. This could happen if a
node does not respond at all or the response cannot be validated. In both cases, the client may blacklist the node
for a while and send the same request to another node.

6.6. Communication 41

Incubed Documentation, Release 1.2

6.7 Proofs

Proofs are a crucial part of the security concept for Incubed. Whenever a request is made for a response with
verification: proof, the node must provide the proof needed to validate the response result. The proof it-
self depends on the chain.

6.7.1 Ethereum

For ethereum, all proofs are based on the correct block hash. That’s why verification differentiates between Verifying
the blockhash (which depends on the user consensus) the actual result data.

There is another reason why the BlockHash is so important. This is the only value you are able to access from
within a SmartContract, because the evm supports a OpCode (BLOCKHASH), which allows you to read the last 256
blockhashes, which gives us the chance to verify even the blockhash onchain.

Depending on the method, different proofs are needed, which are described in this document.

• Block Proof - Verifies the content of the BlockHeader.

• Transaction Proof - Verifies the input data of a transaction.

• Receipt Proof - Verifies the outcome of a transaction.

• Log Proof - Verifies the response of eth_getPastLogs.

• Account Proof - Verifies the state of an account.

• Call Proof - Verifies the result of an eth_call-response.

Each in3-section of the response containing proofs has a property with a proof-object with the following properties:

• type string (required) - The type of the proof.Must be one of the these values : 'transactionProof’,
'receiptProof’, 'blockProof’, 'accountProof’, 'callProof’, 'logProof’

• block string - The serialized blockheader as hex, required in most proofs.

• finalityBlocks array - The serialized following blockheaders as hex, required in case of finality asked (only
relevant for PoA-chains). The server must deliver enough blockheaders to cover more then 50% of the validators.
In order to verify them, they must be linkable (with the parentHash).

• transactions array - The list of raw transactions of the block if needed to create a merkle trie for the transac-
tions.

• uncles array - The list of uncle-headers of the block. This will only be set if full verification is required in
order to create a merkle tree for the uncles and so prove the uncle_hash.

• merkleProof string[] - The serialized merkle-nodes beginning with the root-node (depending on the content
to prove).

• merkleProofPrev string[] - The serialized merkle-nodes beginning with the root-node of the previous entry
(only for full proof of receipts).

• txProof string[] - The serialized merkle-nodes beginning with the root-node in order to proof the transac-
tionIndex (only needed for transaction receipts).

• logProof LogProof - The Log Proof in case of a eth_getLogs-request.

• accounts object - A map of addresses and their AccountProof.

• txIndex integer - The transactionIndex within the block (for transaactions and receipts).

• signatures Signature[] - Requested signatures.

42 Chapter 6. IN3-Protocol

poa.html
poa.html

Incubed Documentation, Release 1.2

BlockProof

BlockProofs are used whenever you want to read data of a block and verify them. This would be:

• eth_getBlockTransactionCountByHash

• eth_getBlockTransactionCountByNumber

• eth_getBlockByHash

• eth_getBlockByNumber

The eth_getBlockBy... methods return the Block-Data. In this case, all we need is somebody verifying the
blockhash, which is done by requiring somebody who stored a deposit and would otherwise lose it, to sign this
blockhash.

The verification is then done by simply creating the blockhash and comparing this to the signed one.

The blockhash is calculated by serializing the blockdata with rlp and hashing it:

blockHeader = rlp.encode([
bytes32(parentHash),
bytes32(sha3Uncles),
address(miner || coinbase),
bytes32(stateRoot),
bytes32(transactionsRoot),
bytes32(receiptsRoot || receiptRoot),
bytes256(logsBloom),
uint(difficulty),
uint(number),
uint(gasLimit),
uint(gasUsed),
uint(timestamp),
bytes(extraData),

... sealFields
? sealFields.map(rlp.decode)
: [

bytes32(b.mixHash),
bytes8(b.nonce)

]
])

For POA-chains, the blockheader will use the sealFields (instead of mixHash and nonce) which are already RLP-
encoded and should be added as raw data when using rlp.encode.

if (keccak256(blockHeader) !== singedBlockHash)
throw new Error('Invalid Block')

In case of the eth_getBlockTransactionCountBy..., the proof contains the full blockHeader already seri-
lalized plus all transactionHashes. This is needed in order to verify them in a merkle tree and compare them with the
transactionRoot.

Transaction Proof

TransactionProofs are used for the following transaction-methods:

• eth_getTransactionByHash

• eth_getTransactionByBlockHashAndIndex

6.7. Proofs 43

https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getblocktransactioncountbyhash
https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getblocktransactioncountbynumber
https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getblockbyhash
https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getblockbynumber
https://github.com/slockit/in3/blob/master/src/util/serialize.ts#L120
https://github.com/ethereum/wiki/wiki/RLP
https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_gettransactionbyhash
https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_gettransactionbyblockhashandindex

Incubed Documentation, Release 1.2

• eth_getTransactionByBlockNumberAndIndex

Transaction Trie

parentHash ... transactionRoot receiptRoot stateRoot

0x123456

 0x123456 0xabcdef 0x98765 0xfcab34

transaction data

In order to prove the transaction data, each transaction of the containing block must be serialized

transaction = rlp.encode([
uint(tx.nonce),
uint(tx.gasPrice),
uint(tx.gas || tx.gasLimit),
address(tx.to),
uint(tx.value),
bytes(tx.input || tx.data),
uint(tx.v),
uint(tx.r),
uint(tx.s)

])

and stored in a merkle tree with rlp.encode(transactionIndex) as key or path, since the blockheader only
contains the transactionRoot, which is the root-hash of the resulting merkle tree. A merkle-proof with the
transactionIndex of the target transaction will then be created from this tree.

The proof-data will look like these:

{
"jsonrpc": "2.0",
"id": 6,
"result": {
"blockHash": "0xf1a2fd6a36f27950c78ce559b1dc4e991d46590683cb8cb84804fa672bca395b",
"blockNumber": "0xca",
"from": "0x7e5f4552091a69125d5dfcb7b8c2659029395bdf",
"gas": "0x55f0",
"gasPrice": "0x0",

(continues on next page)

44 Chapter 6. IN3-Protocol

https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_gettransactionbyblocknumberandindex

Incubed Documentation, Release 1.2

(continued from previous page)

"hash": "0xe9c15c3b26342e3287bb069e433de48ac3fa4ddd32a31b48e426d19d761d7e9b",
"input": "0x00",
"value": "0x3e8"
...

},
"in3": {
"proof": {

"type": "transactionProof",
"block": "0xf901e6a040997a53895b48...", // serialized blockheader
"merkleProof": [/* serialized nodes starting with the root-node */

"0xf868822080b863f86136808255f0942b5ad5c4795c026514f8317c7a215e218dc..."
"0xcd6cf8203e8001ca0dc967310342af5042bb64c34d3b92799345401b26713b43f..."

],
"txIndex": 0,
"signatures": [...]

}
}

}

Receipt Proof

Proofs for the transactionReceipt are used for the following method:

• eth_getTransactionReceipt

Receipt Trie

parentHash ... transactionRoot receiptRoot stateRoot

0x123456

 0x123456 0xabcdef 0x98765 0xfcab34

transaction receipt

The proof works similiar to the transaction proof.

In order to create the proof we need to serialize all transaction receipts

6.7. Proofs 45

https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_gettransactionreceipt

Incubed Documentation, Release 1.2

transactionReceipt = rlp.encode([
uint(r.status || r.root),
uint(r.cumulativeGasUsed),
bytes256(r.logsBloom),
r.logs.map(l => [
address(l.address),
l.topics.map(bytes32),
bytes(l.data)

])
].slice(r.status === null && r.root === null ? 1 : 0))

and store them in a merkle tree with elp.encode(transactionIndex) as key or path, since the blockheader
only contains the receiptRoot, which is the root-hash of the resulting merkle tree. A merkle proof with the
transactionIndex of the target transaction receipt will then be created from this tree.

Since the merkle proof is only proving the value for the given transactionIndex, we also need to prove that the trans-
actionIndex matches the transactionHash requested. This is done by adding another MerkleProof for the transaction
itself as described in the Transaction Proof .

Log Proof

Proofs for logs are only for the one RPC-method:

• eth_getLogs

Since logs or events are based on the TransactionReceipts, the only way to prove them is by proving the Transaction-
Receipt each event belongs to.

That’s why this proof needs to provide:

• all blockheaders where these events occured

• all TransactionReceipts plus their MerkleProof of the logs

• all MerkleProofs for the transactions in order to prove the transactionIndex

The proof data structure will look like this:

Proof {
type: 'logProof',
logProof: {

[blockNr: string]: { // the blockNumber in hex as key
block : string // serialized blockheader
receipts: {
[txHash: string]: { // the transactionHash as key

txIndex: number // transactionIndex within the block
txProof: string[] // the merkle Proof-Array for the transaction
proof: string[] // the merkle Proof-Array for the receipts

}
}

}
}

}

In order to create the proof, we group all events into their blocks and transactions, so we only need to provide the
blockheader once per block. The merkle-proofs for receipts are created as described in the Receipt Proof .

46 Chapter 6. IN3-Protocol

https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getlogs

Incubed Documentation, Release 1.2

Account Proof

Proofing an account-value applies to these functions:

• eth_getBalance

• eth_getCode

• eth_getTransactionCount

• eth_getStorageAt

Each of these values are stored in the account-object:

account = rlp.encode([
uint(nonce),
uint(balance),
bytes32(storageHash || ethUtil.KECCAK256_RLP),
bytes32(codeHash || ethUtil.KECCAK256_NULL)

])

The proof of an account is created by taking the state merkle tree and creating a MerkleProof. Since all of the above
RPC-methods only provide a single value, the proof must contain all four values in order to encode them and verify
the value of the MerkleProof.

For verification, the stateRoot of the blockHeader is used and keccak(accountProof.address) as the
path or key within the merkle tree.

verifyMerkleProof(
block.stateRoot, // expected merkle root
keccak(accountProof.address), // path, which is the hashed address
accountProof.accountProof), // array of Buffer with the merkle-proof-data
isNotExistend(accountProof) ? null : serializeAccount(accountProof), // the expected
→˓serialized account
)

In case the account does not exist yet (which is the case if none == startNonce and codeHash
== '0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470'), the proof
may end with one of these nodes:

• The last node is a branch, where the child of the next step does not exist.

• The last node is a leaf with a different relative key.

Both would prove that this key does not exist.

For eth_getStorageAt, an additional storage proof is required. This is created by using the storageHash of
the account and creating a MerkleProof using the hash of the storage key (keccak(key)) as path.

verifyMerkleProof(
bytes32(accountProof.storageHash), // the storageRoot of the account
keccak(bytes32(s.key)), // the path, which is the hash of the key
s.proof.map(bytes), // array of Buffer with the merkle-proof-data
s.value === '0x0' ? null : util.rlp.encode(s.value) // the expected value or none

→˓to proof non-existence
))

6.7. Proofs 47

https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getbalance
https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getcode
https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_gettransactioncount
https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getstorageat

Incubed Documentation, Release 1.2

Blockheader

State Trie

Storage Trie

parentHash ... stateRoot transactionRoot receiptRoot ...

 0x123456 0xabcdef

 0x123456 0xabcdef 0x98765 0xfcab34

nonce balance storageHash codeHash

 0x123456 0xabcdef

 0x123456 0xabcdef 0x98765 0xfcab34

storage value

Call Proof

Call proofs are used whenever you are calling a read-only function of a smart contract:

• eth_call

Verifying the result of an eth_call is a little bit more complex because the response is a result of executing opcodes
in the vm. The only way to do so is to reproduce it and execute the same code. That’s why a call proof needs to provide
all data used within the call. This means:

• All referred accounts including the code (if it is a contract), storageHash, nonce and balance.

• All storage keys that are used (this can be found by tracing the transaction and collecting data based on the

48 Chapter 6. IN3-Protocol

https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_call

Incubed Documentation, Release 1.2

SLOAD-opcode).

• All blockdata, which are referred at (besides the current one, also the BLOCKHASH-opcodes are referring to
former blocks).

For verifying, you need to follow these steps:

1. Serialize all used blockheaders and compare the blockhash with the signed hashes. (See BlockProof)

2. Verify all used accounts and their storage as showed in Account Proof .

3. Create a new VM with a MerkleTree as state and fill in all used value in the state:

// create new state for a vm
const state = new Trie()
const vm = new VM({ state })

// fill in values
for (const adr of Object.keys(accounts)) {
const ac = accounts[adr]

// create an account-object
const account = new Account([ac.nonce, ac.balance, ac.stateRoot, ac.codeHash])

// if we have a code, we will set the code
if (ac.code) account.setCode(state, bytes(ac.code))

// set all storage-values
for (const s of ac.storageProof)
account.setStorage(state, bytes32(s.key), rlp.encode(bytes32(s.value)))

// set the account data
state.put(address(adr), account.serialize())

}

// add listener on each step to make sure it uses only values found in the proof
vm.on('step', ev => {

if (ev.opcode.name === 'SLOAD') {
const contract = toHex(ev.address) // address of the current code
const storageKey = bytes32(ev.stack[ev.stack.length - 1]) // last element

→˓on the stack is the key
if (!getStorageValue(contract, storageKey))
throw new Error(`incomplete data: missing key ${storageKey}`)

}
/// ... check other opcodes as well

})

// create a transaction
const tx = new Transaction(txData)

// run it
const result = await vm.runTx({ tx, block: new Block([block, [], []]) })

// use the return value
return result.vm.return

In the future, we will be using the same approach to verify calls with ewasm.

6.7. Proofs 49

https://github.com/ethereumjs/ethereumjs-vm

Incubed Documentation, Release 1.2

6.8 RPC-Methods Ethereum

This section describes the behavior for each standard-RPC-method.

6.8.1 web3_clientVersion

Returns the underlying client version.

See web3_clientversion for spec. No proof or verification possible.

6.8.2 web3_sha3

Returns Keccak-256 (not the standardized SHA3-256) of the given data.

See web3_sha3 for spec. No proof returned, but the client must verify the result by hashing the request data itself.

6.8.3 net_version

Returns the current network ID.

See net_version for spec. No proof returned, but the client must verify the result by comparing it to the used chainId.

6.8.4 eth_blockNumber

Returns the number of the most recent block.

See eth_blockNumber for spec. No proof returned, since there is none, but the client should verify the result by
comparing it to the current blocks returned from others. With the blockTime from the chainspec, including a
tolerance, the current blocknumber may be checked if in the proposed range.

6.8.5 eth_getBalance

Returns the balance of the account of a given address.

See eth_getBalance for spec.

An AccountProof, since there is none, but the client should verify the result by comparing it to the current blocks
returned from others. With the blockTime from the chainspec, including a tolerance, the current blocknumber may
be checked if in the proposed range.

6.9 PoA Validations

50 Chapter 6. IN3-Protocol

https://github.com/ethereum/wiki/wiki/JSON-RPC#web3_clientversion
https://github.com/ethereum/wiki/wiki/JSON-RPC#web3_sha3
https://github.com/ethereum/wiki/wiki/JSON-RPC#net_version
https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_blockNumber
https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getBalance

CHAPTER 7

API Reference TS

This page contains a list of all Datastructures and Classes used within the TypeScript IN3 Client.

7.1 Examples

This is a collection of different incubed-examples.

7.1.1 using Web3

Since incubed works with on a JSON-RPC-Level it can easily be used as Provider for Web3:

// import in3-Module
import In3Client from 'in3'
import * as web3 from 'web3'

// use the In3Client as Http-Provider
const web3 = new Web3(new In3Client({

proof : 'standard',
signatureCount: 1,
requestCount : 2,
chainId : 'mainnet'

}).createWeb3Provider())

// use the web3
const block = await web.eth.getBlockByNumber('latest')
...

7.1.2 using Incubed API

Incubed includes a light API, allowinng not only to use all RPC-Methods in a typesafe way, but also to sign transactions
and call funnctions of a contract without the web3-library.

51

Incubed Documentation, Release 1.2

For more details see the API-Doc

// import in3-Module
import In3Client from 'in3'

// use the In3Client
const in3 = new In3Client({

proof : 'standard',
signatureCount: 1,
requestCount : 2,
chainId : 'mainnet'

})

// use the api to call a funnction..
const myBalance = await in3.eth.callFn(myTokenContract, 'balanceOf(address):uint',
→˓myAccount)

// ot to send a transaction..
const receipt = await in3.eth.sendTransaction({

to : myTokenContract,
method : 'transfer(address,uint256)',
args : [target,amount],
confirmations: 2,
pk : myKey

})

...

7.1.3 Reading event with incubed

// import in3-Module
import In3Client from 'in3'

// use the In3Client
const in3 = new In3Client({

proof : 'standard',
signatureCount: 1,
requestCount : 2,
chainId : 'mainnet'

})

// use the ABI-String of the smart contract
abi = [{"anonymous":false,"inputs":[{"indexed":false,"name":"name","type":"string"},{
→˓"indexed":true,"name":"label","type":"bytes32"},{"indexed":true,"name":"owner","type
→˓":"address"},{"indexed":false,"name":"cost","type":"uint256"},{"indexed":false,"name
→˓":"expires","type":"uint256"}],"name":"NameRegistered","type":"event"}]

// create a contract-object for a given address
const contract = in3.eth.contractAt(abi, '0xF0AD5cAd05e10572EfcEB849f6Ff0c68f9700455
→˓') // ENS contract.

// read all events starting from a specified block until the latest
const logs = await c.events.NameRegistered.getLogs({fromBlock:8022948}))

// print out the properties of the event.
for (const ev of logs)

(continues on next page)

52 Chapter 7. API Reference TS

api-ts.html#type-client

Incubed Documentation, Release 1.2

(continued from previous page)

console.log(`${ev.owner} registered ${ev.name} for ${ev.cost} wei until ${new
→˓Date(ev.expires.toNumber()*1000).toString()}`)

...

7.2 Main Module

Importing incubed is as easy as

import Client,{util} from "in3"

While the In3Client-class is the default import, the following imports can be used:

‘

• AccountProof : interface - the Proof-for a single Account

• AuraValidatoryProof : interface - a Object holding proofs for validator logs. The key is the blockNumber
as hex

• ChainSpec : interface - describes the chainspecific consensus params

• IN3Client : class - Client for N3.

• IN3Config : interface - the iguration of the IN3-Client. This can be paritally overriden for every request.

• IN3NodeConfig : interface - a configuration of a in3-server.

• IN3NodeWeight : interface - a local weight of a n3-node. (This is used internally to weight the requests)

• IN3RPCConfig : interface - the configuration for the rpc-handler

• IN3RPCHandlerConfig : interface - the configuration for the rpc-handler

• IN3RPCRequestConfig : interface - additional config for a IN3 RPC-Request

• IN3ResponseConfig : interface - additional data returned from a IN3 Server

• LogProof : interface - a Object holding proofs for event logs. The key is the blockNumber as hex

• Proof : interface - the Proof-data as part of the in3-section

• RPCRequest : interface - a JSONRPC-Request with N3-Extension

• RPCResponse : interface - a JSONRPC-Responset with N3-Extension

• ServerList : interface - a List of nodes

• Signature : interface - Verified ECDSA Signature. Signatures are a pair (r, s). Where r is computed as the
X coordinate of a point R, modulo the curve order n.

• EthAPI : class

• chainAliases

– goerli :string

– ipfs :string

– kovan :string

– main :string

– mainnet :string

7.2. Main Module 53

https://github.com/slockit/in3/blob/master/src/index.ts#L61
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L700
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L700
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L700
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L700
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L700

Incubed Documentation, Release 1.2

– tobalaba :string

• chainData

– callContract(client :Client, contract :string, chainId :string, signature :string, args :any[],
config :IN3Config) :Promise<any>

– getChainData(client :Client, chainId :string, config :IN3Config) :Promise<>

• createRandomIndexes(len :number, limit :number, seed :Buffer, result :number[] = []) :number[] -
helper function creating deterministic random indexes used for limited nodelists

• header

– AuthSpec :interface - Authority specification for proof of authority chains

– checkBlockSignatures(blockHeaders :any[], getChainSpec :) :Promise<number> - verify a Block-
header and returns the percentage of finality

– getChainSpec(b :Block, ctx :ChainContext) :Promise<AuthSpec>

– getSigner(data :Block) :Buffer

• typeDefs

– AccountProof : Object

– AuraValidatoryProof : Object

– ChainSpec : Object

– IN3Config : Object

– IN3NodeConfig : Object

– IN3NodeWeight : Object

– IN3RPCConfig : Object

– IN3RPCHandlerConfig : Object

– IN3RPCRequestConfig : Object

– IN3ResponseConfig : Object

– LogProof : Object

– Proof : Object

– RPCRequest : Object

– RPCResponse : Object

– ServerList : Object

– Signature : Object

• util :any

7.3 Package client

7.3.1 Type Client

Client for N3.

Source: client/Client.ts

54 Chapter 7. API Reference TS

https://github.com/slockit/in3/blob/master/src/client/Client.ts#L700
https://github.com/slockit/in3/blob/master/src/index.ts#L35
https://github.com/slockit/in3/blob/master/src/modules/eth/chainData.ts#L27
https://github.com/slockit/in3/blob/master/src/modules/eth/chainData.ts#L36
https://github.com/slockit/in3/blob/master/src/client/serverList.ts#L56
https://github.com/slockit/in3/blob/master/src/index.ts#L32
https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L26
https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L229
https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L75
https://github.com/slockit/in3/blob/master/src/index.ts#L60
https://github.com/slockit/in3/blob/master/src/types/types.ts#L886
https://github.com/slockit/in3/blob/master/src/types/types.ts#L886
https://github.com/slockit/in3/blob/master/src/types/types.ts#L886
https://github.com/slockit/in3/blob/master/src/types/types.ts#L886
https://github.com/slockit/in3/blob/master/src/types/types.ts#L886
https://github.com/slockit/in3/blob/master/src/types/types.ts#L886
https://github.com/slockit/in3/blob/master/src/types/types.ts#L886
https://github.com/slockit/in3/blob/master/src/types/types.ts#L886
https://github.com/slockit/in3/blob/master/src/types/types.ts#L886
https://github.com/slockit/in3/blob/master/src/types/types.ts#L886
https://github.com/slockit/in3/blob/master/src/types/types.ts#L886
https://github.com/slockit/in3/blob/master/src/types/types.ts#L886
https://github.com/slockit/in3/blob/master/src/types/types.ts#L886
https://github.com/slockit/in3/blob/master/src/types/types.ts#L886
https://github.com/slockit/in3/blob/master/src/types/types.ts#L886
https://github.com/slockit/in3/blob/master/src/types/types.ts#L886
https://github.com/slockit/in3/blob/master/src/index.ts#L21
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L53

Incubed Documentation, Release 1.2

• defaultMaxListeners :number

• static listenerCount(emitter :EventEmitter, event :string|symbol) :number

• constructor constructor(config :Partial<IN3Config> = {}, transport :Transport) :Client - cre-
ates a new Client.

• defConfig :IN3Config - the iguration of the IN3-Client. This can be paritally overriden for every request.

• eth :EthAPI

• ipfs :IpfsAPI - simple API for IPFS

• config()

• addListener(event :string|symbol, listener :) :this

• call(method :string, params :any, chain :string, config :Partial<IN3Config>) :Promise<any> -
sends a simply RPC-Request

• clearStats() :void - clears all stats and weights, like blocklisted nodes

• createWeb3Provider() :any

• emit(event :string|symbol, args :any[]) :boolean

• eventNames() :Array<>

• getChainContext(chainId :string) :ChainContext

• getMaxListeners() :number

• listenerCount(type :string|symbol) :number

• listeners(event :string|symbol) :Function[]

• off(event :string|symbol, listener :) :this

• on(event :string|symbol, listener :) :this

• once(event :string|symbol, listener :) :this

• prependListener(event :string|symbol, listener :) :this

• prependOnceListener(event :string|symbol, listener :) :this

• rawListeners(event :string|symbol) :Function[]

• removeAllListeners(event :string|symbol) :this

• removeListener(event :string|symbol, listener :) :this

• send(request :RPCRequest[]|RPCRequest, callback :, config :Partial<IN3Config>) :Promise<> -
sends one or a multiple requests. if the request is a array the response will be a array as well. If the callback is
given it will be called with the response, if not a Promise will be returned. This function supports callback so it
can be used as a Provider for the web3.

• sendRPC(method :string, params :any[] = [], chain :string, config :Partial<IN3Config>)
:Promise<RPCResponse> - sends a simply RPC-Request

• setMaxListeners(n :number) :this

• updateNodeList(chainId :string, conf :Partial<IN3Config>, retryCount :number = 5)
:Promise<void> - fetches the nodeList from the servers.

7.3. Package client 55

https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L9
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L8
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L64
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L60
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L56
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L57
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L11
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L219
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L251
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L111
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L23
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L24
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L118
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L20
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L25
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L21
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L17
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L12
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L13
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L14
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L15
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L22
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L18
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L16
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L231
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L208
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L19
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L143

Incubed Documentation, Release 1.2

7.3.2 Type ChainContext

Context for a specific chain including cache and chainSpecs.

Source: client/ChainContext.ts

• constructor constructor(client :Client, chainId :string, chainSpec :ChainSpec[])
:ChainContext

• chainId :string

• chainSpec :ChainSpec[]

• client :Client - Client for N3.

• genericCache

• lastValidatorChange :number

• module :Module

• registryId :string (optional)

• clearCache(prefix :string) :void

• getChainSpec(block :number) :ChainSpec - returns the chainspec for th given block number

• getFromCache(key :string) :string

• handleIntern(request :RPCRequest) :Promise<RPCResponse> - this function is calleds before the server
is asked. If it returns a promise than the request is handled internally otherwise the server will handle the
response. this function should be overriden by modules that want to handle calls internally

• initCache() :void

• putInCache(key :string, value :string) :void

• updateCache() :void

7.3.3 Type Module

Source: client/modules.ts

• name :string

• createChainContext(client :Client, chainId :string, spec :ChainSpec[]) :ChainContext

• verifyProof(request :RPCRequest, response :RPCResponse, allowWithoutProof :boolean, ctx
:ChainContext) :Promise<boolean> - general verification-function which handles it according to its
given type.

7.4 Package modules/eth

7.4.1 Type EthAPI

Source: modules/eth/api.ts

• constructor constructor(client :Client) :EthAPI

• client :Client - Client for N3.

• signer :Signer (optional)

56 Chapter 7. API Reference TS

https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L27
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L34
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L31
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L29
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L28
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L33
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L32
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L30
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L34
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L116
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L69
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L106
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L62
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L74
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L110
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L100
https://github.com/slockit/in3/blob/master/src/client/modules.ts#L7
https://github.com/slockit/in3/blob/master/src/client/modules.ts#L8
https://github.com/slockit/in3/blob/master/src/client/modules.ts#L10
https://github.com/slockit/in3/blob/master/src/client/modules.ts#L12
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L256
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L258
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L257
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L258

Incubed Documentation, Release 1.2

• blockNumber() :Promise<number> - Returns the number of most recent block. (as number)

• call(tx :Transaction, block :BlockType = “latest”) :Promise<string> - Executes a new message call
immediately without creating a transaction on the block chain.

• callFn(to :Address, method :string, args :any[]) :Promise<any> - Executes a function of a contract, by
passing a method-signature and the arguments, which will then be ABI-encoded and send as eth_call.

• chainId() :Promise<string> - Returns the EIP155 chain ID used for transaction signing at the current best
block. Null is returned if not available.

• contractAt(abi :ABI[], address :Address) :

• decodeEventData(log :Log, d :ABI) :any

• estimateGas(tx :Transaction) :Promise<number> - Makes a call or transaction, which won’t be added
to the blockchain and returns the used gas, which can be used for estimating the used gas.

• gasPrice() :Promise<number> - Returns the current price per gas in wei. (as number)

• getBalance(address :Address, block :BlockType = “latest”) :Promise<BN> - Returns the balance of the
account of given address in wei (as hex).

• getBlockByHash(hash :Hash, includeTransactions :boolean = false) :Promise<Block> - Returns infor-
mation about a block by hash.

• getBlockByNumber(block :BlockType = “latest”, includeTransactions :boolean = false)
:Promise<Block> - Returns information about a block by block number.

• getBlockTransactionCountByHash(block :Hash) :Promise<number> - Returns the number of transac-
tions in a block from a block matching the given block hash.

• getBlockTransactionCountByNumber(block :Hash) :Promise<number> - Returns the number of trans-
actions in a block from a block matching the given block number.

• getCode(address :Address, block :BlockType = “latest”) :Promise<string> - Returns code at a given
address.

• getFilterChanges(id :Quantity) :Promise<> - Polling method for a filter, which returns an array of logs
which occurred since last poll.

• getFilterLogs(id :Quantity) :Promise<> - Returns an array of all logs matching filter with given id.

• getLogs(filter :LogFilter) :Promise<> - Returns an array of all logs matching a given filter object.

• getStorageAt(address :Address, pos :Quantity , block :BlockType = “latest”) :Promise<string> -
Returns the value from a storage position at a given address.

• getTransactionByBlockHashAndIndex(hash :Hash, pos :Quantity) :Promise<TransactionDetail>
- Returns information about a transaction by block hash and transaction index position.

• getTransactionByBlockNumberAndIndex(block :BlockType, pos :Quantity)
:Promise<TransactionDetail> - Returns information about a transaction by block number and
transaction index position.

• getTransactionByHash(hash :Hash) :Promise<TransactionDetail> - Returns the information about
a transaction requested by transaction hash.

• getTransactionCount(address :Address, block :BlockType = “latest”) :Promise<number> - Returns
the number of transactions sent from an address. (as number)

• getTransactionReceipt(hash :Hash) :Promise<TransactionReceipt> - Returns the receipt of a trans-
action by transaction hash. Note That the receipt is available even for pending transactions.

7.4. Package modules/eth 57

https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L273
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L286
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L293
https://github.com/ethereumjs/ethereumjs-abi/blob/master/README.md#simple-encoding-and-decoding
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L301
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L593
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L674
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L308
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L279
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L315
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L338
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L345
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L353
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L361
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L322
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L368
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L375
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L382
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L330
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L395
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L403
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L410
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L417
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L425

Incubed Documentation, Release 1.2

• getUncleByBlockHashAndIndex(hash :Hash, pos :Quantity) :Promise<Block> - Returns information
about a uncle of a block by hash and uncle index position. Note: An uncle doesn’t contain individual transac-
tions.

• getUncleByBlockNumberAndIndex(block :BlockType, pos :Quantity) :Promise<Block> - Returns
information about a uncle of a block number and uncle index position. Note: An uncle doesn’t contain individual
transactions.

• getUncleCountByBlockHash(hash :Hash) :Promise<number> - Returns the number of uncles in a block
from a block matching the given block hash.

• getUncleCountByBlockNumber(block :BlockType) :Promise<number> - Returns the number of uncles
in a block from a block matching the given block hash.

• hashMessage(data :Data|Buffer) :Buffer

• newBlockFilter() :Promise<string> - Creates a filter in the node, to notify when a new block arrives. To
check if the state has changed, call eth_getFilterChanges.

• newFilter(filter :LogFilter) :Promise<string> - Creates a filter object, based on filter options, to notify
when the state changes (logs). To check if the state has changed, call eth_getFilterChanges.

• newPendingTransactionFilter() :Promise<string> - Creates a filter in the node, to notify when new pend-
ing transactions arrive.

• protocolVersion() :Promise<string> - Returns the current ethereum protocol version.

• sendRawTransaction(data :Data) :Promise<string> - Creates new message call transaction or a contract
creation for signed transactions.

• sendTransaction(args :TxRequest) :Promise<> - sends a Transaction

• sign(account :Address, data :Data) :Promise<Signature> - signs any kind of message using the
\x19Ethereum Signed Message:\n-prefix

• syncing() :Promise<> - Returns the current ethereum protocol version.

• uninstallFilter(id :Quantity) :Promise<Quantity> - Uninstalls a filter with given id. Should always
be called when watch is no longer needed. Additonally Filters timeout when they aren’t requested with
eth_getFilterChanges for a period of time.

7.4.2 Type AuthSpec

Authority specification for proof of authority chains

Source: modules/eth/header.ts

• authorities :Buffer[] - List of validator addresses storead as an buffer array

• proposer :Buffer - proposer of the block this authspec belongs

• spec :ChainSpec - chain specification

7.4.3 Type Block

Source: modules/eth/api.ts

• Block

– Hex :string

– Quantity :number|Hex

58 Chapter 7. API Reference TS

https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L437
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L446
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L453
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L460
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L677
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L468
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L485
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L494
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L509
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L538
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L565
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L547
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L516
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L502
https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L12
https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L14
https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L18
https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L16
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L131
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L131
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L12

Incubed Documentation, Release 1.2

– Hex :string

– Quantity :number|Hex

– Quantity :number|Hex

– Hex :string

– Hex :string

– Hex :string

– Hex :string

– Quantity :number|Hex

– Hex :string

– Hex :string

– sealFields :Data[] - PoA-Fields

– Hex :string

– Quantity :number|Hex

– Hex :string

– Quantity :number|Hex

– Quantity :number|Hex

– transactions :string|[] - Array of transaction objects, or 32 Bytes transaction hashes depending on the
last given parameter

– Hex :string

– uncles :Hash[] - Array of uncle hashes

7.4.4 Type Signer

Source: modules/eth/api.ts

• prepareTransaction (optional) - optiional method which allows to change the transaction-data before sending
it. This can be used for redirecting it through a multisig.

• sign - signing of any data.

• hasAccount(account :Address) :Promise<boolean> - returns true if the account is supported (or un-
locked)

7.4.5 Type Transaction

Source: modules/eth/api.ts

• Transaction

– chainId :any (optional) - optional chain id

– data :string - 4 byte hash of the method signature followed by encoded parameters. For details see
Ethereum Contract ABI.

– Hex :string

– Quantity :number|Hex

7.4. Package modules/eth 59

https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L12
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L12
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L12
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L173
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L12
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L12
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L12
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L169
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L171
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L244
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L246
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L252
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L249
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L42
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L42
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L58
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L54
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L12

Incubed Documentation, Release 1.2

– Quantity :number|Hex

– Quantity :number|Hex

– Hex :string

– Quantity :number|Hex

7.4.6 Type BlockType

Source: modules/eth/api.ts

• BlockType :number|'latest'|'earliest'|'pending'

7.4.7 Type Address

Source: modules/eth/api.ts

• Hex :string

7.4.8 Type ABI

Source: modules/eth/api.ts

• ABI

– anonymous :boolean (optional)

– constant :boolean (optional)

– inputs :ABIField[] (optional)

– name :string (optional)

– outputs :ABIField[] (optional)

– payable :boolean (optional)

– stateMutability :'nonpayable'|'payable'|'view'|'pure' (optional)

– type :'event'|'function'|'constructor'|'fallback'

7.4.9 Type Log

Source: modules/eth/api.ts

• Log

– Hex :string

– Hex :string

– Quantity :number|Hex

– Hex :string

– Quantity :number|Hex

– removed :boolean - true when the log was removed, due to a chain reorganization. false if its a valid
log.

60 Chapter 7. API Reference TS

https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L12
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L12
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L12
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L14
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L31
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L31
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L32
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L33
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L37
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L39
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L38
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L34
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L35
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L40
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L175
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L175
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L12
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L12
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L177

Incubed Documentation, Release 1.2

– topics :Data[] - - Array of 0 to 4 32 Bytes DATA of indexed log arguments. (In solidity: The first topic
is the hash of the signature of the event (e.g. Deposit(address,bytes32,uint256)), except you declared the
event with the anonymous specifier.)

– Hex :string

– Quantity :number|Hex

7.4.10 Type Hash

Source: modules/eth/api.ts

• Hex :string

7.4.11 Type Quantity

Source: modules/eth/api.ts

• Quantity :number|Hex

7.4.12 Type LogFilter

Source: modules/eth/api.ts

• LogFilter

– Hex :string

– BlockType :number|'latest'|'earliest'|'pending'

– Quantity :number|Hex

– BlockType :number|'latest'|'earliest'|'pending'

– topics :string|string[][] - (optional) Array of 32 Bytes Data topics. Topics are order-dependent.
It’s possible to pass in null to match any topic, or a subarray of multiple topics of which one should be
matching.

7.4.13 Type TransactionDetail

Source: modules/eth/api.ts

• TransactionDetail

– Hex :string

– BlockType :number|'latest'|'earliest'|'pending'

– Quantity :number|Hex

– condition :any - (optional) conditional submission, Block number in block or timestamp in time or null.
(parity-feature)

– Hex :string

– Hex :string

– Quantity :number|Hex

– Quantity :number|Hex

7.4. Package modules/eth 61

https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L193
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L12
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L13
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L12
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L12
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L196
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L196
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L12
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L204
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L88
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L88
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L12
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L126
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L12
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L12

Incubed Documentation, Release 1.2

– Hex :string

– Hex :string

– Quantity :number|Hex

– pk :any (optional) - optional: the private key to use for signing

– Hex :string

– Quantity :number|Hex

– Hex :string

– Quantity :number|Hex

– Hex :string

– Quantity :number|Hex

– Quantity :number|Hex

– Quantity :number|Hex

7.4.14 Type TransactionReceipt

Source: modules/eth/api.ts

• TransactionReceipt

– Hex :string

– BlockType :number|'latest'|'earliest'|'pending'

– Hex :string

– Quantity :number|Hex

– Hex :string

– Quantity :number|Hex

– logs :Log[] - Array of log objects, which this transaction generated.

– Hex :string

– Hex :string

– Quantity :number|Hex

– Hex :string

– Hex :string

– Quantity :number|Hex

7.4.15 Type Data

Source: modules/eth/api.ts

• Hex :string

62 Chapter 7. API Reference TS

https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L12
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L128
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L12
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L12
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L12
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L12
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L12
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L60
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L60
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L12
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L12
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L76
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L12
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L12
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L15
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11

Incubed Documentation, Release 1.2

7.4.16 Type TxRequest

Source: modules/eth/api.ts

• TxRequest

– args :any[] (optional) - the argument to pass to the method

– confirmations :number (optional) - number of block to wait before confirming

– Hex :string

– Hex :string

– gas :number (optional) - the gas needed

– gasPrice :number (optional) - the gasPrice used

– method :string (optional) - the ABI of the method to be used

– nonce :number (optional) - the nonce

– Hex :string

– Hex :string

– Quantity :number|Hex

7.4.17 Type Hex

Source: modules/eth/api.ts

• Hex :string

7.4.18 Type ABIField

Source: modules/eth/api.ts

• ABIField

– indexed :boolean (optional)

– name :string

– type :string

7.5 Package modules/ipfs

7.5.1 Type IpfsAPI

simple API for IPFS

Source: modules/ipfs/api.ts

• constructor constructor(_client :Client) :IpfsAPI

• client :Client - Client for N3.

• get(hash :string, resultEncoding :string) :Promise<Buffer> - retrieves the conent for a hash from
IPFS.

7.5. Package modules/ipfs 63

https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L209
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L209
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L235
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L241
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L220
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L223
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L232
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L226
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L12
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L26
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L26
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L27
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L28
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L29
https://github.com/slockit/in3/blob/master/src/modules/ipfs/api.ts#L6
https://github.com/slockit/in3/blob/master/src/modules/ipfs/api.ts#L7
https://github.com/slockit/in3/blob/master/src/modules/ipfs/api.ts#L7
https://github.com/slockit/in3/blob/master/src/modules/ipfs/api.ts#L19

Incubed Documentation, Release 1.2

• put(data :Buffer, dataEncoding :string) :Promise<string> - stores the data on ipfs and returns the
IPFS-Hash.

7.6 Package types

7.6.1 Type AccountProof

the Proof-for a single Account

Source: types/types.ts

• accountProof :string[] - the serialized merle-noodes beginning with the root-node

• address :string - the address of this account

• balance :string - the balance of this account as hex

• code :string (optional) - the code of this account as hex (if required)

• codeHash :string - the codeHash of this account as hex

• nonce :string - the nonce of this account as hex

• storageHash :string - the storageHash of this account as hex

• storageProof :[] - proof for requested storage-data

7.6.2 Type AuraValidatoryProof

a Object holding proofs for validator logs. The key is the blockNumber as hex

Source: types/types.ts

• block :string - the serialized blockheader example: 0x72804cfa0179d648ccbe6a65b01a6463a8f1ebb14f3aff6b19cb91acf2b8ec1ffee98c0437b4ac839d8a2ece1b18166da704b86d8f42c92bbda6463a8f1ebb14f3aff6b19cb91acf2b8ec1ffee98c0437b4ac839d8a2ece1b18166da704b

• finalityBlocks :any[] (optional) - the serialized blockheader as hex, required in case of finality asked example:
0x72804cfa0179d648ccbe6a65b01a6463a8f1ebb14f3aff6b19cb91acf2b8ec1ffee98c0437b4ac839d8a2ece1b18166da704b86d8f42c92bbda6463a8f1ebb14f3aff6b19cb91acf2b8ec1ffee98c0437b4ac839d8a2ece1b18166da704b

• logIndex :number - the transaction log index

• proof :string[] - the merkleProof

• txIndex :number - the transactionIndex within the block

7.6.3 Type ChainSpec

describes the chainspecific consensus params

Source: types/types.ts

• block :number (optional) - the blocknumnber when this configuration should apply

• bypassFinality :number (optional) - Bypass finality check for transition to contract based Aura Engines ex-
ample: bypassFinality = 10960502 -> will skip the finality check and add the list at block 10960502

• contract :string (optional) - The validator contract at the block

• engine :'ethHash'|'authorityRound'|'clique' (optional) - the engine type (like Ethhash, authority-
Round, . . .)

• list :string[] (optional) - The list of validators at the particular block

64 Chapter 7. API Reference TS

https://github.com/slockit/in3/blob/master/src/modules/ipfs/api.ts#L30
https://github.com/slockit/in3/blob/master/src/types/types.ts#L4
https://github.com/slockit/in3/blob/master/src/types/types.ts#L8
https://github.com/slockit/in3/blob/master/src/types/types.ts#L12
https://github.com/slockit/in3/blob/master/src/types/types.ts#L16
https://github.com/slockit/in3/blob/master/src/types/types.ts#L24
https://github.com/slockit/in3/blob/master/src/types/types.ts#L20
https://github.com/slockit/in3/blob/master/src/types/types.ts#L28
https://github.com/slockit/in3/blob/master/src/types/types.ts#L32
https://github.com/slockit/in3/blob/master/src/types/types.ts#L36
https://github.com/slockit/in3/blob/master/src/types/types.ts#L54
https://github.com/slockit/in3/blob/master/src/types/types.ts#L63
https://github.com/slockit/in3/blob/master/src/types/types.ts#L76
https://github.com/slockit/in3/blob/master/src/types/types.ts#L58
https://github.com/slockit/in3/blob/master/src/types/types.ts#L71
https://github.com/slockit/in3/blob/master/src/types/types.ts#L67
https://github.com/slockit/in3/blob/master/src/types/types.ts#L81
https://github.com/slockit/in3/blob/master/src/types/types.ts#L85
https://github.com/slockit/in3/blob/master/src/types/types.ts#L107
https://github.com/slockit/in3/blob/master/src/types/types.ts#L97
https://github.com/slockit/in3/blob/master/src/types/types.ts#L89
https://github.com/slockit/in3/blob/master/src/types/types.ts#L93

Incubed Documentation, Release 1.2

• requiresFinality :boolean (optional) - indicates whether the transition requires a finality check example: true

7.6.4 Type IN3Config

the iguration of the IN3-Client. This can be paritally overriden for every request.

Source: types/types.ts

• autoConfig :boolean (optional) - if true the config will be adjusted depending on the request

• autoUpdateList :boolean (optional) - if true the nodelist will be automaticly updated if the lastBlock is newer
example: true

• cacheStorage :any (optional) - a cache handler offering 2 functions (setItem(string,string), getItem(string))

• cacheTimeout :number (optional) - number of seconds requests can be cached.

• chainId :string - servers to filter for the given chain. The chain-id based on EIP-155. example: 0x1

• chainRegistry :string (optional) - main chain-registry contract example:
0xe36179e2286ef405e929C90ad3E70E649B22a945

• finality :number (optional) - the number in percent needed in order reach finality (% of signature of the val-
idators) example: 50

• format :'json'|'jsonRef'|'cbor' (optional) - the format for sending the data to the client. Default is
json, but using cbor means using only 30-40% of the payload since it is using binary encoding example: json

• includeCode :boolean (optional) - if true, the request should include the codes of all accounts. otherwise
only the the codeHash is returned. In this case the client may ask by calling eth_getCode() afterwards example:
true

• keepIn3 :boolean (optional) - if true, the in3-section of thr response will be kept. Otherwise it will be removed
after validating the data. This is useful for debugging or if the proof should be used afterwards.

• key :any (optional) - the client key to sign requests example: 0x387a8233c96e1fc0ad5e284353276177af2186e7afa85296f106336e376669f7

• loggerUrl :string (optional) - a url of RES-Endpoint, the client will log all errors to. The client will post to
this endpoint JSON like { id?, level, message, meta? }

• mainChain :string (optional) - main chain-id, where the chain registry is running. example: 0x1

• maxAttempts :number (optional) - max number of attempts in case a response is rejected example: 10

• maxBlockCache :number (optional) - number of number of blocks cached in memory example: 100

• maxCodeCache :number (optional) - number of max bytes used to cache the code in memory example:
100000

• minDeposit :number - min stake of the server. Only nodes owning at least this amount will be chosen.

• nodeLimit :number (optional) - the limit of nodes to store in the client. example: 150

• proof :'none'|'standard'|'full' (optional) - if true the nodes should send a proof of the response
example: true

• replaceLatestBlock :number (optional) - if specified, the blocknumber latest will be replaced by
blockNumber- specified value example: 6

• requestCount :number - the number of request send when getting a first answer example: 3

• retryWithoutProof :boolean (optional) - if true the the request may be handled without proof in case of an
error. (use with care!)

• rpc :string (optional) - url of one or more rpc-endpoints to use. (list can be comma seperated)

7.6. Package types 65

https://github.com/slockit/in3/blob/master/src/types/types.ts#L102
https://github.com/slockit/in3/blob/master/src/types/types.ts#L112
https://github.com/slockit/in3/blob/master/src/types/types.ts#L139
https://github.com/slockit/in3/blob/master/src/types/types.ts#L221
https://github.com/slockit/in3/blob/master/src/types/types.ts#L225
https://github.com/slockit/in3/blob/master/src/types/types.ts#L116
https://github.com/slockit/in3/blob/master/src/types/types.ts#L206
https://github.com/slockit/in3/blob/master/src/types/types.ts#L211
https://github.com/slockit/in3/blob/master/src/types/types.ts#L196
https://github.com/slockit/in3/blob/master/src/types/types.ts#L130
https://github.com/slockit/in3/blob/master/src/types/types.ts#L153
https://github.com/slockit/in3/blob/master/src/types/types.ts#L125
https://github.com/slockit/in3/blob/master/src/types/types.ts#L135
https://github.com/slockit/in3/blob/master/src/types/types.ts#L229
https://github.com/slockit/in3/blob/master/src/types/types.ts#L216
https://github.com/slockit/in3/blob/master/src/types/types.ts#L148
https://github.com/slockit/in3/blob/master/src/types/types.ts#L163
https://github.com/slockit/in3/blob/master/src/types/types.ts#L158
https://github.com/slockit/in3/blob/master/src/types/types.ts#L181
https://github.com/slockit/in3/blob/master/src/types/types.ts#L121
https://github.com/slockit/in3/blob/master/src/types/types.ts#L172
https://github.com/slockit/in3/blob/master/src/types/types.ts#L186
https://github.com/slockit/in3/blob/master/src/types/types.ts#L191
https://github.com/slockit/in3/blob/master/src/types/types.ts#L143
https://github.com/slockit/in3/blob/master/src/types/types.ts#L233

Incubed Documentation, Release 1.2

• servers (optional) - the nodelist per chain

• signatureCount :number (optional) - number of signatures requested example: 2

• timeout :number (optional) - specifies the number of milliseconds before the request times out. increasing
may be helpful if the device uses a slow connection. example: 3000

• verifiedHashes :string[] (optional) - if the client sends a array of blockhashes the server will not deliver any
signatures or blockheaders for these blocks, but only return a string with a number. This is automaticly updated
by the cache, but can be overriden per request.

7.6.5 Type IN3NodeConfig

a configuration of a in3-server.

Source: types/types.ts

• address :string - the address of the node, which is the public address it iis signing with. example:
0x6C1a01C2aB554930A937B0a2E8105fB47946c679

• capacity :number (optional) - the capacity of the node. example: 100

• chainIds :string[] - the list of supported chains example: 0x1

• deposit :number - the deposit of the node in wei example: 12350000

• index :number (optional) - the index within the contract example: 13

• props :number (optional) - the properties of the node. example: 3

• registerTime :number (optional) - the UNIX-timestamp when the node was registered example: 1563279168

• timeout :number (optional) - the time (in seconds) until an owner is able to receive his deposit back after he
unregisters himself example: 3600

• unregisterTime :number (optional) - the UNIX-timestamp when the node is allowed to be deregister example:
1563279168

• url :string - the endpoint to post to example: https://in3.slock.it

7.6.6 Type IN3NodeWeight

a local weight of a n3-node. (This is used internally to weight the requests)

Source: types/types.ts

• avgResponseTime :number (optional) - average time of a response in ms example: 240

• blacklistedUntil :number (optional) - blacklisted because of failed requests until the timestamp example:
1529074639623

• lastRequest :number (optional) - timestamp of the last request in ms example: 1529074632623

• pricePerRequest :number (optional) - last price

• responseCount :number (optional) - number of uses. example: 147

• weight :number (optional) - factor the weight this noe (default 1.0) example: 0.5

66 Chapter 7. API Reference TS

https://github.com/slockit/in3/blob/master/src/types/types.ts#L237
https://github.com/slockit/in3/blob/master/src/types/types.ts#L177
https://github.com/slockit/in3/blob/master/src/types/types.ts#L201
https://github.com/slockit/in3/blob/master/src/types/types.ts#L167
https://github.com/slockit/in3/blob/master/src/types/types.ts#L296
https://github.com/slockit/in3/blob/master/src/types/types.ts#L306
https://github.com/slockit/in3/blob/master/src/types/types.ts#L331
https://github.com/slockit/in3/blob/master/src/types/types.ts#L321
https://github.com/slockit/in3/blob/master/src/types/types.ts#L326
https://github.com/slockit/in3/blob/master/src/types/types.ts#L301
https://github.com/slockit/in3/blob/master/src/types/types.ts#L336
https://github.com/slockit/in3/blob/master/src/types/types.ts#L341
https://github.com/slockit/in3/blob/master/src/types/types.ts#L311
https://github.com/slockit/in3/blob/master/src/types/types.ts#L346
https://github.com/slockit/in3/blob/master/src/types/types.ts#L316
https://github.com/slockit/in3/blob/master/src/types/types.ts#L351
https://github.com/slockit/in3/blob/master/src/types/types.ts#L366
https://github.com/slockit/in3/blob/master/src/types/types.ts#L380
https://github.com/slockit/in3/blob/master/src/types/types.ts#L375
https://github.com/slockit/in3/blob/master/src/types/types.ts#L370
https://github.com/slockit/in3/blob/master/src/types/types.ts#L361
https://github.com/slockit/in3/blob/master/src/types/types.ts#L356

Incubed Documentation, Release 1.2

7.6.7 Type IN3RPCConfig

the configuration for the rpc-handler

Source: types/types.ts

• chains (optional) - a definition of the Handler per chain

• db (optional)

– database :string (optional) - name of the database

– host :string (optional) - db-host (default = localhost)

– password :string (optional) - password for db-access

– port :number (optional) - the database port

– user :string (optional) - username for the db

• defaultChain :string (optional) - the default chainId in case the request does not contain one.

• id :string (optional) - a identifier used in logfiles as also for reading the config from the database

• logging (optional) - logger config

– colors :boolean (optional) - if true colors will be used

– file :string (optional) - the path to the logile

– host :string (optional) - the host for custom logging

– level :string (optional) - Loglevel

– name :string (optional) - the name of the provider

– port :number (optional) - the port for custom logging

– type :string (optional) - the module of the provider

• port :number (optional) - the listeneing port for the server

• profile (optional)

– comment :string (optional) - comments for the node

– icon :string (optional) - url to a icon or logo of company offering this node

– name :string (optional) - name of the node or company

– noStats :boolean (optional) - if active the stats will not be shown (default:false)

– url :string (optional) - url of the website of the company

7.6.8 Type IN3RPCHandlerConfig

the configuration for the rpc-handler

Source: types/types.ts

• autoRegistry (optional)

– capabilities (optional)

* multiChain :boolean (optional) - if true, this node is able to deliver multiple chains

* proof :boolean (optional) - if true, this node is able to deliver proofs

7.6. Package types 67

https://github.com/slockit/in3/blob/master/src/types/types.ts#L385
https://github.com/slockit/in3/blob/master/src/types/types.ts#L478
https://github.com/slockit/in3/blob/master/src/types/types.ts#L398
https://github.com/slockit/in3/blob/master/src/types/types.ts#L418
https://github.com/slockit/in3/blob/master/src/types/types.ts#L410
https://github.com/slockit/in3/blob/master/src/types/types.ts#L406
https://github.com/slockit/in3/blob/master/src/types/types.ts#L414
https://github.com/slockit/in3/blob/master/src/types/types.ts#L402
https://github.com/slockit/in3/blob/master/src/types/types.ts#L393
https://github.com/slockit/in3/blob/master/src/types/types.ts#L389
https://github.com/slockit/in3/blob/master/src/types/types.ts#L445
https://github.com/slockit/in3/blob/master/src/types/types.ts#L457
https://github.com/slockit/in3/blob/master/src/types/types.ts#L449
https://github.com/slockit/in3/blob/master/src/types/types.ts#L473
https://github.com/slockit/in3/blob/master/src/types/types.ts#L453
https://github.com/slockit/in3/blob/master/src/types/types.ts#L461
https://github.com/slockit/in3/blob/master/src/types/types.ts#L469
https://github.com/slockit/in3/blob/master/src/types/types.ts#L465
https://github.com/slockit/in3/blob/master/src/types/types.ts#L397
https://github.com/slockit/in3/blob/master/src/types/types.ts#L420
https://github.com/slockit/in3/blob/master/src/types/types.ts#L436
https://github.com/slockit/in3/blob/master/src/types/types.ts#L424
https://github.com/slockit/in3/blob/master/src/types/types.ts#L432
https://github.com/slockit/in3/blob/master/src/types/types.ts#L440
https://github.com/slockit/in3/blob/master/src/types/types.ts#L428
https://github.com/slockit/in3/blob/master/src/types/types.ts#L485
https://github.com/slockit/in3/blob/master/src/types/types.ts#L550
https://github.com/slockit/in3/blob/master/src/types/types.ts#L567
https://github.com/slockit/in3/blob/master/src/types/types.ts#L575
https://github.com/slockit/in3/blob/master/src/types/types.ts#L571

Incubed Documentation, Release 1.2

– capacity :number (optional) - max number of parallel requests

– deposit :number - the deposit you want ot store

– depositUnit :'ether'|'finney'|'szabo'|'wei' (optional) - unit of the deposit value

– url :string - the public url to reach this node

• clientKeys :string (optional) - a comma sepearted list of client keys to use for simulating clients for the
watchdog

• freeScore :number (optional) - the score for requests without a valid signature

• handler :'eth'|'ipfs'|'btc' (optional) - the impl used to handle the calls

• ipfsUrl :string (optional) - the url of the ipfs-client

• maxThreads :number (optional) - the maximal number of threads ofr running parallel processes

• minBlockHeight :number (optional) - the minimal blockheight in order to sign

• persistentFile :string (optional) - the filename of the file keeping track of the last handled blocknumber

• privateKey :string - the private key used to sign blockhashes. this can be either a 0x-prefixed string with the
raw private key or the path to a key-file.

• privateKeyPassphrase :string (optional) - the password used to decrpyt the private key

• registry :string - the address of the server registry used in order to update the nodeList

• registryRPC :string (optional) - the url of the client in case the registry is not on the same chain.

• rpcUrl :string - the url of the client

• startBlock :number (optional) - blocknumber to start watching the registry

• timeout :number (optional) - number of milliseconds to wait before a request gets a timeout

• watchInterval :number (optional) - the number of seconds of the interval for checking for new events

• watchdogInterval :number (optional) - average time between sending requests to the same node. 0 turns it off
(default)

7.6.9 Type IN3RPCRequestConfig

additional config for a IN3 RPC-Request

Source: types/types.ts

• chainId :string - the requested chainId example: 0x1

• clientSignature :any (optional) - the signature of the client

• finality :number (optional) - if given the server will deliver the blockheaders of the following blocks until at
least the number in percent of the validators is reached.

• includeCode :boolean (optional) - if true, the request should include the codes of all accounts. otherwise
only the the codeHash is returned. In this case the client may ask by calling eth_getCode() afterwards example:
true

• latestBlock :number (optional) - if specified, the blocknumber latest will be replaced by blockNumber- spec-
ified value example: 6

• signatures :string[] (optional) - a list of addresses requested to sign the blockhash example:
0x6C1a01C2aB554930A937B0a2E8105fB47946c679

• useBinary :boolean (optional) - if true binary-data will be used.

68 Chapter 7. API Reference TS

https://github.com/slockit/in3/blob/master/src/types/types.ts#L562
https://github.com/slockit/in3/blob/master/src/types/types.ts#L558
https://github.com/slockit/in3/blob/master/src/types/types.ts#L566
https://github.com/slockit/in3/blob/master/src/types/types.ts#L554
https://github.com/slockit/in3/blob/master/src/types/types.ts#L505
https://github.com/slockit/in3/blob/master/src/types/types.ts#L513
https://github.com/slockit/in3/blob/master/src/types/types.ts#L489
https://github.com/slockit/in3/blob/master/src/types/types.ts#L493
https://github.com/slockit/in3/blob/master/src/types/types.ts#L521
https://github.com/slockit/in3/blob/master/src/types/types.ts#L517
https://github.com/slockit/in3/blob/master/src/types/types.ts#L525
https://github.com/slockit/in3/blob/master/src/types/types.ts#L537
https://github.com/slockit/in3/blob/master/src/types/types.ts#L541
https://github.com/slockit/in3/blob/master/src/types/types.ts#L545
https://github.com/slockit/in3/blob/master/src/types/types.ts#L549
https://github.com/slockit/in3/blob/master/src/types/types.ts#L501
https://github.com/slockit/in3/blob/master/src/types/types.ts#L529
https://github.com/slockit/in3/blob/master/src/types/types.ts#L497
https://github.com/slockit/in3/blob/master/src/types/types.ts#L533
https://github.com/slockit/in3/blob/master/src/types/types.ts#L509
https://github.com/slockit/in3/blob/master/src/types/types.ts#L582
https://github.com/slockit/in3/blob/master/src/types/types.ts#L587
https://github.com/slockit/in3/blob/master/src/types/types.ts#L626
https://github.com/slockit/in3/blob/master/src/types/types.ts#L617
https://github.com/slockit/in3/blob/master/src/types/types.ts#L592
https://github.com/slockit/in3/blob/master/src/types/types.ts#L601
https://github.com/slockit/in3/blob/master/src/types/types.ts#L631
https://github.com/slockit/in3/blob/master/src/types/types.ts#L609

Incubed Documentation, Release 1.2

• useFullProof :boolean (optional) - if true all data in the response will be proven, which leads to a higher
payload.

• useRef :boolean (optional) - if true binary-data (starting with a 0x) will be refered if occuring again.

• verification :'never'|'proof'|'proofWithSignature' (optional) - defines the kind of proof the client
is asking for example: proof

• verifiedHashes :string[] (optional) - if the client sends a array of blockhashes the server will not deliver any
signatures or blockheaders for these blocks, but only return a string with a number.

7.6.10 Type IN3ResponseConfig

additional data returned from a IN3 Server

Source: types/types.ts

• currentBlock :number (optional) - the current blocknumber. example: 320126478

• lastNodeList :number (optional) - the blocknumber for the last block updating the nodelist. If the client has a
smaller blocknumber he should update the nodeList. example: 326478

• lastValidatorChange :number (optional) - the blocknumber of gthe last change of the validatorList

• proof :Proof (optional) - the Proof-data

7.6.11 Type LogProof

a Object holding proofs for event logs. The key is the blockNumber as hex

Source: types/types.ts

7.6.12 Type Proof

the Proof-data as part of the in3-section

Source: types/types.ts

• accounts (optional) - a map of addresses and their AccountProof

• block :string (optional) - the serialized blockheader as hex, required in most proofs example:
0x72804cfa0179d648ccbe6a65b01a6463a8f1ebb14f3aff6b19cb91acf2b8ec1ffee98c0437b4ac839d8a2ece1b18166da704b86d8f42c92bbda6463a8f1ebb14f3aff6b19cb91acf2b8ec1ffee98c0437b4ac839d8a2ece1b18166da704b

• finalityBlocks :any[] (optional) - the serialized blockheader as hex, required in case of finality asked example:
0x72804cfa0179d648ccbe6a65b01a6463a8f1ebb14f3aff6b19cb91acf2b8ec1ffee98c0437b4ac839d8a2ece1b18166da704b86d8f42c92bbda6463a8f1ebb14f3aff6b19cb91acf2b8ec1ffee98c0437b4ac839d8a2ece1b18166da704b

• logProof :LogProof (optional) - the Log Proof in case of a Log-Request

• merkleProof :string[] (optional) - the serialized merle-noodes beginning with the root-node

• merkleProofPrev :string[] (optional) - the serialized merkle-noodes beginning with the root-node of the
previous entry (only for full proof of receipts)

• signatures :Signature[] (optional) - requested signatures

• transactions :any[] (optional) - the list of transactions of the block example:

• txIndex :number (optional) - the transactionIndex within the block example: 4

• txProof :string[] (optional) - the serialized merkle-nodes beginning with the root-node in order to prrof the
transactionIndex

7.6. Package types 69

https://github.com/slockit/in3/blob/master/src/types/types.ts#L613
https://github.com/slockit/in3/blob/master/src/types/types.ts#L605
https://github.com/slockit/in3/blob/master/src/types/types.ts#L622
https://github.com/slockit/in3/blob/master/src/types/types.ts#L596
https://github.com/slockit/in3/blob/master/src/types/types.ts#L636
https://github.com/slockit/in3/blob/master/src/types/types.ts#L654
https://github.com/slockit/in3/blob/master/src/types/types.ts#L645
https://github.com/slockit/in3/blob/master/src/types/types.ts#L649
https://github.com/slockit/in3/blob/master/src/types/types.ts#L640
https://github.com/slockit/in3/blob/master/src/types/types.ts#L659
https://github.com/slockit/in3/blob/master/src/types/types.ts#L702
https://github.com/slockit/in3/blob/master/src/types/types.ts#L747
https://github.com/slockit/in3/blob/master/src/types/types.ts#L712
https://github.com/slockit/in3/blob/master/src/types/types.ts#L717
https://github.com/slockit/in3/blob/master/src/types/types.ts#L743
https://github.com/slockit/in3/blob/master/src/types/types.ts#L731
https://github.com/slockit/in3/blob/master/src/types/types.ts#L735
https://github.com/slockit/in3/blob/master/src/types/types.ts#L758
https://github.com/slockit/in3/blob/master/src/types/types.ts#L722
https://github.com/slockit/in3/blob/master/src/types/types.ts#L754
https://github.com/slockit/in3/blob/master/src/types/types.ts#L739

Incubed Documentation, Release 1.2

• type :'transactionProof'|'receiptProof'|'blockProof'|'accountProof'|'callProof'|'logProof'
- the type of the proof example: accountProof

• uncles :any[] (optional) - the list of uncle-headers of the block example:

7.6.13 Type RPCRequest

a JSONRPC-Request with N3-Extension

Source: types/types.ts

• id :number|string (optional) - the identifier of the request example: 2

• in3 :IN3RPCRequestConfig (optional) - the IN3-Config

• jsonrpc :'2.0' - the version

• method :string - the method to call example: eth_getBalance

• params :any[] (optional) - the params example: 0xe36179e2286ef405e929C90ad3E70E649B22a945,latest

7.6.14 Type RPCResponse

a JSONRPC-Responset with N3-Extension

Source: types/types.ts

• error :string (optional) - in case of an error this needs to be set

• id :string|number - the id matching the request example: 2

• in3 :IN3ResponseConfig (optional) - the IN3-Result

• in3Node :IN3NodeConfig (optional) - the node handling this response (internal only)

• jsonrpc :'2.0' - the version

• result :any (optional) - the params example: 0xa35bc

7.6.15 Type ServerList

a List of nodes

Source: types/types.ts

• contract :string (optional) - IN3 Registry

• lastBlockNumber :number (optional) - last Block number

• nodes :IN3NodeConfig[] - the list of nodes

• proof :Proof (optional) - the Proof-data as part of the in3-section

• registryId :string (optional) - registry id of the contract

• totalServers :number (optional) - number of servers

70 Chapter 7. API Reference TS

https://github.com/slockit/in3/blob/master/src/types/types.ts#L707
https://github.com/slockit/in3/blob/master/src/types/types.ts#L727
https://github.com/slockit/in3/blob/master/src/types/types.ts#L763
https://github.com/slockit/in3/blob/master/src/types/types.ts#L777
https://github.com/slockit/in3/blob/master/src/types/types.ts#L786
https://github.com/slockit/in3/blob/master/src/types/types.ts#L767
https://github.com/slockit/in3/blob/master/src/types/types.ts#L772
https://github.com/slockit/in3/blob/master/src/types/types.ts#L782
https://github.com/slockit/in3/blob/master/src/types/types.ts#L791
https://github.com/slockit/in3/blob/master/src/types/types.ts#L804
https://github.com/slockit/in3/blob/master/src/types/types.ts#L800
https://github.com/slockit/in3/blob/master/src/types/types.ts#L813
https://github.com/slockit/in3/blob/master/src/types/types.ts#L817
https://github.com/slockit/in3/blob/master/src/types/types.ts#L795
https://github.com/slockit/in3/blob/master/src/types/types.ts#L809
https://github.com/slockit/in3/blob/master/src/types/types.ts#L822
https://github.com/slockit/in3/blob/master/src/types/types.ts#L834
https://github.com/slockit/in3/blob/master/src/types/types.ts#L826
https://github.com/slockit/in3/blob/master/src/types/types.ts#L830
https://github.com/slockit/in3/blob/master/src/types/types.ts#L843
https://github.com/slockit/in3/blob/master/src/types/types.ts#L838
https://github.com/slockit/in3/blob/master/src/types/types.ts#L842

Incubed Documentation, Release 1.2

7.6.16 Type Signature

Verified ECDSA Signature. Signatures are a pair (r, s). Where r is computed as the X coordinate of a point R, modulo
the curve order n.

Source: types/types.ts

• address :string (optional) - the address of the signing node example:
0x6C1a01C2aB554930A937B0a2E8105fB47946c679

• block :number - the blocknumber example: 3123874

• blockHash :string - the hash of the block example: 0x6C1a01C2aB554930A937B0a212346037E8105fB47946c679

• msgHash :string - hash of the message example: 0x9C1a01C2aB554930A937B0a212346037E8105fB47946AB5D

• r :string - Positive non-zero Integer signature.r example: 0x72804cfa0179d648ccbe6a65b01a6463a8f1ebb14f3aff6b19cb91acf2b8ec1f

• s :string - Positive non-zero Integer signature.s example: 0x6d17b34aeaf95fee98c0437b4ac839d8a2ece1b18166da704b86d8f42c92bbda

• v :number - Calculated curve point, or identity element O. example: 28

7.7 Common Module

The common module (in3-common) contains all the typedefs used in the node and server.

• BlockData : interface - Block as returned by eth_getBlockByNumber

• LogData : interface - LogData as part of the TransactionReceipt

• Receipt :_serialize.Receipt

• ReceiptData : interface - TransactionReceipt as returned by eth_getTransactionReceipt

• Transaction :_serialize.Transaction

• TransactionData : interface - Transaction as returned by eth_getTransactionByHash

• Transport : interface - A Transport-object responsible to transport the message to the handler.

• AxiosTransport : class - Default Transport impl sending http-requests.

• Block : class - encodes and decodes the blockheader

• blockFromHex(hex :string) :Block - converts a hexstring to a block-object

• cbor

– createRefs(val :T, cache :string[] = []) :T

– decodeRequests(request :Buffer) :RPCRequest[]

– decodeResponses(responses :Buffer) :RPCResponse[]

– encodeRequests(requests :RPCRequest[]) :Buffer - turn

– encodeResponses(responses :RPCResponse[]) :Buffer

– resolveRefs(val :T, cache :string[] = []) :T

• chainAliases

– goerli :string

– ipfs :string

– kovan :string

7.7. Common Module 71

https://github.com/slockit/in3/blob/master/src/types/types.ts#L848
https://github.com/slockit/in3/blob/master/src/types/types.ts#L853
https://github.com/slockit/in3/blob/master/src/types/types.ts#L858
https://github.com/slockit/in3/blob/master/src/types/types.ts#L863
https://github.com/slockit/in3/blob/master/src/types/types.ts#L868
https://github.com/slockit/in3/blob/master/src/types/types.ts#L873
https://github.com/slockit/in3/blob/master/src/types/types.ts#L878
https://github.com/slockit/in3/blob/master/src/types/types.ts#L883
https://github.com/slockit/in3-common/blob/master/src/index.ts#L56
https://github.com/slockit/in3-common/blob/master/src/index.ts#L57
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L314
https://github.com/slockit/in3-common/blob/master/src/index.ts#L71
https://github.com/slockit/in3-common/blob/master/src/util/cbor.ts#L86
https://github.com/slockit/in3-common/blob/master/src/util/cbor.ts#L30
https://github.com/slockit/in3-common/blob/master/src/util/cbor.ts#L44
https://github.com/slockit/in3-common/blob/master/src/util/cbor.ts#L26
https://github.com/slockit/in3-common/blob/master/src/util/cbor.ts#L41
https://github.com/slockit/in3-common/blob/master/src/util/cbor.ts#L107
https://github.com/slockit/in3-common/blob/master/src/index.ts#L68
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L241
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L241
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L241

Incubed Documentation, Release 1.2

– main :string

– mainnet :string

– tobalaba :string

• createRandomIndexes(len :number, limit :number, seed :Buffer, result :number[] = []) :number[]

• createTx(transaction :any) :any - creates a Transaction-object from the rpc-transaction-data

• getSigner(data :Block) :Buffer

• rlp

• serialize

– Block :class - encodes and decodes the blockheader

– AccountData :interface - Account-Object

– BlockData :interface - Block as returned by eth_getBlockByNumber

– LogData :interface - LogData as part of the TransactionReceipt

– ReceiptData :interface - TransactionReceipt as returned by eth_getTransactionReceipt

– TransactionData :interface - Transaction as returned by eth_getTransactionByHash

– Account :Buffer[] - Buffer[] of the Account

– BlockHeader :Buffer[] - Buffer[] of the header

– Receipt : - Buffer[] of the Receipt

– Transaction :Buffer[] - Buffer[] of the transaction

– rlp - RLP-functions

– address(val :any) :any - converts it to a Buffer with 20 bytes length

– blockFromHex(hex :string) :Block - converts a hexstring to a block-object

– blockToHex(block :any) :string - converts blockdata to a hexstring

– bytes(val :any) :any - converts it to a Buffer

– bytes256(val :any) :any - converts it to a Buffer with 256 bytes length

– bytes32(val :any) :any - converts it to a Buffer with 32 bytes length

– bytes8(val :any) :any - converts it to a Buffer with 8 bytes length

– createTx(transaction :any) :any - creates a Transaction-object from the rpc-transaction-data

– hash(val :Block|Transaction|Receipt|Account|Buffer) :Buffer - returns the hash of the ob-
ject

– serialize(val :Block|Transaction|Receipt|Account|any) :Buffer - serialize the data

– toAccount(account :AccountData) :Buffer[]

– toBlockHeader(block :BlockData) :Buffer[] - create a Buffer[] from RPC-Response

– toReceipt(r :ReceiptData) :Object - create a Buffer[] from RPC-Response

– toTransaction(tx :TransactionData) :Buffer[] - create a Buffer[] from RPC-Response

– uint(val :any) :any - converts it to a Buffer with a variable length. 0 = length 0

– uint128(val :any) :any

72 Chapter 7. API Reference TS

https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L241
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L241
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L241
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L222
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L281
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L235
https://github.com/slockit/in3-common/blob/master/src/index.ts#L86
https://github.com/slockit/in3-common/blob/master/src/index.ts#L49
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L33
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L27
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L36
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L30
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L25
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L145
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L314
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L309
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L143
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L137
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L139
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L141
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L281
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L131
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L128
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L192
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L153
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L201
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L178
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L147
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L150

Incubed Documentation, Release 1.2

– uint64(val :any) :any

• storage

– getStorageArrayKey(pos :number, arrayIndex :number, structSize :number = 1, structPos :number
= 0) :any - calc the storrage array key

– getStorageMapKey(pos :number, key :string, structPos :number = 0) :any - calcs the storage Map
key.

– getStorageValue(rpc :string, contract :string, pos :number, type
:'address'|'bytes32'|'bytes16'|'bytes4'|'int'|'string', keyOrIndex
:number|string, structSize :number, structPos :number) :Promise<any> - get a storage
value from the server

– getStringValue(data :Buffer, storageKey :Buffer) :string| - creates a string from storage.

– getStringValueFromList(values :Buffer[], len :number) :string - concats the storage values to a
string.

– toBN(val :any) :any - converts any value to BN

• transport

– AxiosTransport :class - Default Transport impl sending http-requests.

– Transport :interface - A Transport-object responsible to transport the message to the handler.

• util

– checkForError(res :T) :T - check a RPC-Response for errors and rejects the promise if found

– createRandomIndexes(len :number, limit :number, seed :Buffer, result :number[] = []) :number[]

– getAddress(pk :string) :string - returns a address from a private key

– getSigner(data :Block) :Buffer

– padEnd(val :string, minLength :number, fill :string = “ “) :string - padEnd for legacy

– padStart(val :string, minLength :number, fill :string = “ “) :string - padStart for legacy

– promisify(self :any, fn :any, args :any[]) :Promise<any> - simple promisy-function

– toBN(val :any) :any - convert to BigNumber

– toBuffer(val :any, len :number = -1) :any - converts any value as Buffer if len === 0 it will return an
empty Buffer if the value is 0 or ‘0x00’, since this is the way rlpencode works wit 0-values.

– toHex(val :any, bytes :number) :string - converts any value as hex-string

– toMinHex(key :string|Buffer|number) :string - removes all leading 0 in the hexstring

– toNumber(val :any) :number - converts to a js-number

– toSimpleHex(val :string) :string - removes all leading 0 in a hex-string

– toUtf8(val :any) :string

– aliases : Object

* goerli :string

* ipfs :string

* kovan :string

* main :string

7.7. Common Module 73

https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L149
https://github.com/slockit/in3-common/blob/master/src/index.ts#L65
https://github.com/slockit/in3-common/blob/master/src/modules/eth/storage.ts#L28
https://github.com/slockit/in3-common/blob/master/src/modules/eth/storage.ts#L40
https://github.com/slockit/in3-common/blob/master/src/modules/eth/storage.ts#L88
https://github.com/slockit/in3-common/blob/master/src/modules/eth/storage.ts#L50
https://github.com/slockit/in3-common/blob/master/src/modules/eth/storage.ts#L69
https://github.com/slockit/in3-common/blob/master/src/modules/eth/storage.ts#L76
https://github.com/slockit/in3-common/blob/master/src/index.ts#L60
https://github.com/slockit/in3-common/blob/master/src/index.ts#L25
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L61
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L222
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L176
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L235
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L215
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L208
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L39
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L70
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L132
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L81
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L182
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L104
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L165
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L50
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L241
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L241
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L241
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L241
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L241

Incubed Documentation, Release 1.2

* mainnet :string

* tobalaba :string

• validate

– ajv :Ajv - the ajv instance with custom formatters and keywords

– validate(ob :any, def :any) :void

– validateAndThrow(fn :Ajv.ValidateFunction, ob :any) :void - validates the data and throws an
error in case they are not valid.

7.8 Package modules/eth

7.8.1 Type BlockData

Block as returned by eth_getBlockByNumber

Source: modules/eth/serialize.ts

• coinbase :string (optional)

• difficulty :string|number

• extraData :string

• gasLimit :string|number

• gasUsed :string|number

• hash :string

• logsBloom :string

• miner :string

• mixHash :string (optional)

• nonce :string|number (optional)

• number :string|number

• parentHash :string

• receiptRoot :string (optional)

• receiptsRoot :string

• sealFields :string[] (optional)

• sha3Uncles :string

• stateRoot :string

• timestamp :string|number

• transactions :any[] (optional)

• transactionsRoot :string

• uncles :string[] (optional)

74 Chapter 7. API Reference TS

https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L241
https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L241
https://github.com/slockit/in3-common/blob/master/src/index.ts#L22
https://github.com/slockit/in3-common/blob/master/src/util/validate.ts#L27
https://github.com/slockit/in3-common/blob/master/src/util/validate.ts#L55
https://github.com/slockit/in3-common/blob/master/src/util/validate.ts#L49
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L39
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L44
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L50
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L55
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L52
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L53
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L40
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L49
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L43
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L57
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L58
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L51
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L41
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L48
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L47
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L56
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L42
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L45
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L54
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L59
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L46
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L60

Incubed Documentation, Release 1.2

7.8.2 Type LogData

LogData as part of the TransactionReceipt

Source: modules/eth/serialize.ts

• address :string

• blockHash :string

• blockNumber :string

• data :string

• logIndex :string

• removed :boolean

• topics :string[]

• transactionHash :string

• transactionIndex :string

• transactionLogIndex :string

7.8.3 Type ReceiptData

TransactionReceipt as returned by eth_getTransactionReceipt

Source: modules/eth/serialize.ts

• blockHash :string (optional)

• blockNumber :string|number (optional)

• cumulativeGasUsed :string|number (optional)

• gasUsed :string|number (optional)

• logs :LogData[]

• logsBloom :string (optional)

• root :string (optional)

• status :string|boolean (optional)

• transactionHash :string (optional)

• transactionIndex :number (optional)

7.8.4 Type TransactionData

Transaction as returned by eth_getTransactionByHash

Source: modules/eth/serialize.ts

• blockHash :string (optional)

• blockNumber :number|string (optional)

• chainId :number|string (optional)

• condition :string (optional)

7.8. Package modules/eth 75

https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L99
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L107
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L105
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L106
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L108
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L101
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L100
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L109
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L104
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L103
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L102
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L113
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L117
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L116
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L120
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L121
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L123
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L122
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L119
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L118
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L114
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L115
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L64
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L66
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L67
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L68
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L69

Incubed Documentation, Release 1.2

• creates :string (optional)

• data :string (optional)

• from :string (optional)

• gas :number|string (optional)

• gasLimit :number|string (optional)

• gasPrice :number|string (optional)

• hash :string

• input :string

• nonce :number|string

• publicKey :string (optional)

• r :string (optional)

• raw :string (optional)

• s :string (optional)

• standardV :string (optional)

• to :string

• transactionIndex :number

• v :string (optional)

• value :number|string

7.8.5 Type Block

encodes and decodes the blockheader

Source: modules/eth/serialize.ts

• constructor constructor(data :Buffer|string|BlockData) :Block - creates a Block-Onject from
either the block-data as returned from rpc, a buffer or a hex-string of the encoded blockheader

• raw :BlockHeader - the raw Buffer fields of the BlockHeader

• transactions :Tx[] - the transaction-Object (if given)

• bloom()

• coinbase()

• difficulty()

• extra()

• gasLimit()

• gasUsed()

• number()

• parentHash()

• receiptTrie()

• sealedFields()

76 Chapter 7. API Reference TS

https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L70
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L76
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L71
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L72
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L73
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L74
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L65
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L75
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L77
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L78
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L83
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L79
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L84
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L80
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L81
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L82
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L85
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L86
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L225
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L246
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L228
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L231

Incubed Documentation, Release 1.2

• stateRoot()

• timestamp()

• transactionsTrie()

• uncleHash()

• bareHash() :Buffer - the blockhash as buffer without the seal fields

• hash() :Buffer - the blockhash as buffer

• serializeHeader() :Buffer - the serialized header as buffer

7.8.6 Type AccountData

Account-Object

Source: modules/eth/serialize.ts

• balance :string

• code :string (optional)

• codeHash :string

• nonce :string

• storageHash :string

7.8.7 Type Transaction

Buffer[] of the transaction

Source: modules/eth/serialize.ts

• Transaction :Buffer[] - Buffer[] of the transaction

7.8.8 Type Receipt

Buffer[] of the Receipt

Source: modules/eth/serialize.ts

• Receipt : - Buffer[] of the Receipt

7.8.9 Type Account

Buffer[] of the Account

Source: modules/eth/serialize.ts

• Account :Buffer[] - Buffer[] of the Account

7.8. Package modules/eth 77

https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L269
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L264
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L274
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L90
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L92
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L95
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L94
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L91
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L93
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L30
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L30
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L36
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L36
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L33
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L33

Incubed Documentation, Release 1.2

7.8.10 Type BlockHeader

Buffer[] of the header

Source: modules/eth/serialize.ts

• BlockHeader :Buffer[] - Buffer[] of the header

7.9 Package types

7.9.1 Type RPCRequest

a JSONRPC-Request with N3-Extension

Source: types/types.ts

• id :number|string (optional) - the identifier of the request example: 2

• in3 :IN3RPCRequestConfig (optional) - the IN3-Config

• jsonrpc :'2.0' - the version

• method :string - the method to call example: eth_getBalance

• params :any[] (optional) - the params example: 0xe36179e2286ef405e929C90ad3E70E649B22a945,latest

7.9.2 Type RPCResponse

a JSONRPC-Responset with N3-Extension

Source: types/types.ts

• error :string (optional) - in case of an error this needs to be set

• id :string|number - the id matching the request example: 2

• in3 :IN3ResponseConfig (optional) - the IN3-Result

• in3Node :IN3NodeConfig (optional) - the node handling this response (internal only)

• jsonrpc :'2.0' - the version

• result :any (optional) - the params example: 0xa35bc

7.9.3 Type IN3RPCRequestConfig

additional config for a IN3 RPC-Request

Source: types/types.ts

• chainId :string - the requested chainId example: 0x1

• clientSignature :any (optional) - the signature of the client

• finality :number (optional) - if given the server will deliver the blockheaders of the following blocks until at
least the number in percent of the validators is reached.

• includeCode :boolean (optional) - if true, the request should include the codes of all accounts. otherwise
only the the codeHash is returned. In this case the client may ask by calling eth_getCode() afterwards example:
true

78 Chapter 7. API Reference TS

https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L27
https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L27
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L345
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L359
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L368
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L349
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L354
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L364
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L373
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L386
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L382
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L395
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L399
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L377
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L391
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L164
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L169
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L208
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L199
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L174

Incubed Documentation, Release 1.2

• latestBlock :number (optional) - if specified, the blocknumber latest will be replaced by blockNumber- spec-
ified value example: 6

• signatures :string[] (optional) - a list of addresses requested to sign the blockhash example:
0x6C1a01C2aB554930A937B0a2E8105fB47946c679

• useBinary :boolean (optional) - if true binary-data will be used.

• useFullProof :boolean (optional) - if true all data in the response will be proven, which leads to a higher
payload.

• useRef :boolean (optional) - if true binary-data (starting with a 0x) will be refered if occuring again.

• verification :'never'|'proof'|'proofWithSignature' (optional) - defines the kind of proof the client
is asking for example: proof

• verifiedHashes :string[] (optional) - if the client sends a array of blockhashes the server will not deliver any
signatures or blockheaders for these blocks, but only return a string with a number.

7.9.4 Type IN3ResponseConfig

additional data returned from a IN3 Server

Source: types/types.ts

• currentBlock :number (optional) - the current blocknumber. example: 320126478

• lastNodeList :number (optional) - the blocknumber for the last block updating the nodelist. If the client has a
smaller blocknumber he should update the nodeList. example: 326478

• lastValidatorChange :number (optional) - the blocknumber of gthe last change of the validatorList

• proof :Proof (optional) - the Proof-data

7.9.5 Type IN3NodeConfig

a configuration of a in3-server.

Source: types/types.ts

• address :string - the address of the node, which is the public address it iis signing with. example:
0x6C1a01C2aB554930A937B0a2E8105fB47946c679

• capacity :number (optional) - the capacity of the node. example: 100

• chainIds :string[] - the list of supported chains example: 0x1

• deposit :number - the deposit of the node in wei example: 12350000

• index :number (optional) - the index within the contract example: 13

• props :number (optional) - the properties of the node. example: 3

• registerTime :number (optional) - the UNIX-timestamp when the node was registered example: 1563279168

• timeout :number (optional) - the time (in seconds) until an owner is able to receive his deposit back after he
unregisters himself example: 3600

• unregisterTime :number (optional) - the UNIX-timestamp when the node is allowed to be deregister example:
1563279168

• url :string - the endpoint to post to example: https://in3.slock.it

7.9. Package types 79

https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L183
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L213
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L191
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L195
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L187
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L204
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L178
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L218
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L236
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L227
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L231
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L222
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L75
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L85
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L110
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L100
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L105
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L80
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L115
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L120
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L90
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L125
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L95

Incubed Documentation, Release 1.2

7.9.6 Type Proof

the Proof-data as part of the in3-section

Source: types/types.ts

• accounts (optional) - a map of addresses and their AccountProof

• block :string (optional) - the serialized blockheader as hex, required in most proofs example:
0x72804cfa0179d648ccbe6a65b01a6463a8f1ebb14f3aff6b19cb91acf2b8ec1ffee98c0437b4ac839d8a2ece1b18166da704b86d8f42c92bbda6463a8f1ebb14f3aff6b19cb91acf2b8ec1ffee98c0437b4ac839d8a2ece1b18166da704b

• finalityBlocks :any[] (optional) - the serialized blockheader as hex, required in case of finality asked example:
0x72804cfa0179d648ccbe6a65b01a6463a8f1ebb14f3aff6b19cb91acf2b8ec1ffee98c0437b4ac839d8a2ece1b18166da704b86d8f42c92bbda6463a8f1ebb14f3aff6b19cb91acf2b8ec1ffee98c0437b4ac839d8a2ece1b18166da704b

• logProof :LogProof (optional) - the Log Proof in case of a Log-Request

• merkleProof :string[] (optional) - the serialized merle-noodes beginning with the root-node

• merkleProofPrev :string[] (optional) - the serialized merkle-noodes beginning with the root-node of the
previous entry (only for full proof of receipts)

• signatures :Signature[] (optional) - requested signatures

• transactions :any[] (optional) - the list of transactions of the block example:

• txIndex :number (optional) - the transactionIndex within the block example: 4

• txProof :string[] (optional) - the serialized merkle-nodes beginning with the root-node in order to prrof the
transactionIndex

• type :'transactionProof'|'receiptProof'|'blockProof'|'accountProof'|'callProof'|'logProof'
- the type of the proof example: accountProof

• uncles :any[] (optional) - the list of uncle-headers of the block example:

7.9.7 Type LogProof

a Object holding proofs for event logs. The key is the blockNumber as hex

Source: types/types.ts

7.9.8 Type Signature

Verified ECDSA Signature. Signatures are a pair (r, s). Where r is computed as the X coordinate of a point R, modulo
the curve order n.

Source: types/types.ts

• address :string (optional) - the address of the signing node example:
0x6C1a01C2aB554930A937B0a2E8105fB47946c679

• block :number - the blocknumber example: 3123874

• blockHash :string - the hash of the block example: 0x6C1a01C2aB554930A937B0a212346037E8105fB47946c679

• msgHash :string - hash of the message example: 0x9C1a01C2aB554930A937B0a212346037E8105fB47946AB5D

• r :string - Positive non-zero Integer signature.r example: 0x72804cfa0179d648ccbe6a65b01a6463a8f1ebb14f3aff6b19cb91acf2b8ec1f

• s :string - Positive non-zero Integer signature.s example: 0x6d17b34aeaf95fee98c0437b4ac839d8a2ece1b18166da704b86d8f42c92bbda

• v :number - Calculated curve point, or identity element O. example: 28

80 Chapter 7. API Reference TS

https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L284
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L329
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L294
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L299
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L325
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L313
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L317
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L340
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L304
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L336
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L321
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L289
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L309
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L241
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L404
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L409
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L414
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L419
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L424
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L429
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L434
https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L439

Incubed Documentation, Release 1.2

7.10 Package util

7.10.1 Type Transport

A Transport-object responsible to transport the message to the handler.

Source: util/transport.ts

• handle(url :string, data :RPCRequest|RPCRequest[], timeout :number) :Promise<> - handles a re-
quest by passing the data to the handler

• isOnline() :Promise<boolean> - check whether the handler is onlne.

• random(count :number) :number[] - generates random numbers (between 0-1)

7.10.2 Type AxiosTransport

Default Transport impl sending http-requests.

Source: util/transport.ts

• constructor constructor(format :'json'|'cbor'|'jsonRef' = “json”) :AxiosTransport

• format :'json'|'cbor'|'jsonRef'

• handle(url :string, data :RPCRequest|RPCRequest[], timeout :number) :Promise<>

• isOnline() :Promise<boolean>

• random(count :number) :number[]

7.10. Package util 81

https://github.com/slockit/in3-common/blob/master/src/util/transport.ts#L27
https://github.com/slockit/in3-common/blob/master/src/util/transport.ts#L31
https://github.com/slockit/in3-common/blob/master/src/util/transport.ts#L36
https://github.com/slockit/in3-common/blob/master/src/util/transport.ts#L41
https://github.com/slockit/in3-common/blob/master/src/util/transport.ts#L49
https://github.com/slockit/in3-common/blob/master/src/util/transport.ts#L51
https://github.com/slockit/in3-common/blob/master/src/util/transport.ts#L51
https://github.com/slockit/in3-common/blob/master/src/util/transport.ts#L61
https://github.com/slockit/in3-common/blob/master/src/util/transport.ts#L57
https://github.com/slockit/in3-common/blob/master/src/util/transport.ts#L90

Incubed Documentation, Release 1.2

82 Chapter 7. API Reference TS

CHAPTER 8

API Reference C

8.1 Overview

The C implementation of the Incubed client is prepared and optimized to run on small embedded devices. Because
each device is different, we prepare different modules that should be combined. This allows us to only generate the
code needed and reduce requirements for flash and memory.

This is why Incubed consists of different modules. While the core module is always required, additional functions will
be prepared by different modules:

8.1.1 Verifier

Incubed is a minimal verification client, which means that each response needs to be verifiable. Depending on the
expected requests and responses, you need to carefully choose which verifier you may need to register. For Ethereum,
we have developed three modules:

1. nano: a minimal module only able to verify transaction receipts (eth_getTransactionReceipt).

2. basic: module able to verify almost all other standard RPC functions (except eth_call).

3. full: module able to verify standard RPC functions. It also implements a full EVM to handle eth_call.

Depending on the module, you need to register the verifier before using it. This is done by calling the
in3_register... function like in3_register_eth_full().

8.1.2 Transport

To verify responses, you need to be able to send requests. The way to handle them depends heavily on your hardware
capabilities. For example, if your device only supports Bluetooth, you may use this connection to deliver the request
to a device with an existing internet connection and get the response in the same way, but if your device is able to
use a direct internet connection, you may use a curl-library to execute them. This is why the core client only defines
function pointer in3_transport_send, which must handle the requests.

At the moment we offer these modules; other implementations are supported by different hardware modules.

83

Incubed Documentation, Release 1.2

1. curl: module with a dependency on curl, which executes these requests and supports HTTPS. This module runs
a standard OS with curl installed.

8.1.3 API

While Incubed operates on JSON-RPC level, as a developer, you might want to use a better-structured API to prepare
these requests for you. These APIs are optional but make life easier:

1. eth: This module offers all standard RPC functions as described in the Ethereum JSON-RPC Specification. In
addition, it allows you to sign and encode/decode calls and transactions.

2. usn: This module offers basic USN functions like renting, event handling, and message verification.

8.2 Building

While we provide binaries, you can also build from source:

8.2.1 requirements

• cmake

• curl : curl is used as transport for command-line tools.

• optional: libsycrypt, which would be used for unlocking keystore files using scrypt as kdf method. if it does
not exist you can still build, but not decrypt such keys.

for osx brew install libscrypt and for debian sudo apt-get install libscrypt-dev

Incubed uses cmake for configuring:

mkdir build && cd build
cmake -DCMAKE_BUILD_TYPE=Release .. && make
make install

8.2.2 CMake options

CMD

build the comandline utils

Type: BOOL , Default-Value: ON

EVM_GAS

if true the gas costs are verified when validating a eth_call. This is a optimization since most calls are only interessted
in the result. EVM_GAS would be required if the contract uses gas-dependend op-codes.

Type: BOOL , Default-Value: ON

84 Chapter 8. API Reference C

https://github.com/ethereum/wiki/wiki/JSON-RPC

Incubed Documentation, Release 1.2

FAST_MATH

Math optimizations used in the EVM. This will also increase the filesize.

Type: BOOL , Default-Value: OFF

IN3API

build the USN-API which offer better interfaces and additional functions on top of the pure verification

Type: BOOL , Default-Value: ON

IN3_LIB

if true a shared anmd static library with all in3-modules will be build.

Type: BOOL , Default-Value: ON

IN3_SERVER

support proxy server

Type: BOOL , Default-Value: OFF

IN3_STAGING

if true, the client will use the staging-network instead of the live ones

Type: BOOL , Default-Value: ON

JAVA

build the java-binding (shared-lib and jar-file)

Type: BOOL , Default-Value: OFF

SEGGER_RTT

Use the segger real time transfer terminal as the logging mechanism

Type: BOOL , Default-Value: OFF

TAG_VERSION

the tagged version, which should be used

Type: BOOL , Default-Value: OFF

8.2. Building 85

Incubed Documentation, Release 1.2

TEST

builds the tests and also adds special memory-management, which detects memory leaks, but will cause slower per-
formance

Type: BOOL , Default-Value: OFF

TRANSPORTS

builds transports, which may require extra libraries.

Type: BOOL , Default-Value: ON

USE_CURL

if true

Type: BOOL , Default-Value: ON

USE_SCRYPT

if scrypt is installed, it will link dynamicly to the shared scrypt lib.

Type: BOOL , Default-Value: OFF

WASM

Includes the WASM-Build. In order to build it you need emscripten as toolchain. Usually you also want to turn off
other builds in this case.

Type: BOOL , Default-Value: OFF

8.3 Examples

The full list of examples can be found here: https://git.slock.it/in3/c/in3-core/tree/develop/examples/c

8.3.1 Creating an Incubed Instance

creating always follow these steps:

#include <client/client.h> // the core client
#include <eth_full.h> // the full ethereum verifier containing the EVM
#include <in3_curl.h> // transport implementation

// register verifiers, in this case a full verifier allowing eth_call
// this needs to be called only once.
in3_register_eth_full();

// use curl as the default for sending out requests
// this needs to be called only once.
in3_register_curl();

(continues on next page)

86 Chapter 8. API Reference C

https://git.slock.it/in3/c/in3-core/tree/develop/examples/c

Incubed Documentation, Release 1.2

(continued from previous page)

// create new client
in3_t* client = in3_new();

// ready to use ...

8.3.2 Calling a Function

// define a address (20byte)
address_t contract;

// copy the hexcoded string into this address
hex2byte_arr("0x845E484b505443814B992Bf0319A5e8F5e407879", -1, contract, 20);

// ask for the number of servers registered
json_ctx_t* response = eth_call_fn(client, contract, "totalServers():uint256");

// handle response
if (!response) {

printf("Could not get the response: %s", eth_last_error());
return;

}

// convert the result to a integer
int number_of_servers = d_int(response->result);

// don't forget to free the response!
free_json(response);

// out put result
printf("Found %i servers registered : \n", number_of_servers);

// now we call a function with a complex result...
for (int i = 0; i < number_of_servers; i++) {

// get all the details for one server.
response = eth_call_fn(c, contract, "servers(uint256):(string,address,uint,uint,

→˓uint,address)", to_uint256(i));

// handle error
if (!response) {
printf("Could not get the response: %s", eth_last_error());
return;

}

// decode data
char* url = d_get_string_at(response->result, 0); // get the first item of

→˓the result (the url)
bytes_t* owner = d_get_bytes_at(response->result, 1); // get the second item of

→˓the result (the owner)
uint64_t deposit = d_get_long_at(response->result, 2); // get the third item of

→˓the result (the deposit)

// print values
printf("Server %i : %s owner = ", i, url);

(continues on next page)

8.3. Examples 87

Incubed Documentation, Release 1.2

(continued from previous page)

ba_print(owner->data, owner->len);
printf(", deposit = %" PRIu64 "\n", deposit);

// clean up
free_json(response);

}

8.4 Module api/eth1

8.4.1 eth_api.h

Ethereum API.

This header-file defines easy to use function, which are preparing the JSON-RPC-Request, which is then executed and
verified by the incubed-client.

Location: src/api/eth1/eth_api.h

BLKNUM (blk)

Initializer macros for eth_blknum_t.

#define BLKNUM (blk) ((eth_blknum_t){.u64 = blk, .is_u64 = true})

BLKNUM_LATEST ()

#define BLKNUM_LATEST () ((eth_blknum_t){.def = BLK_LATEST, .is_u64 = false})

BLKNUM_EARLIEST ()

#define BLKNUM_EARLIEST () ((eth_blknum_t){.def = BLK_EARLIEST, .is_u64 = false})

BLKNUM_PENDING ()

#define BLKNUM_PENDING () ((eth_blknum_t){.def = BLK_PENDING, .is_u64 = false})

eth_blknum_def_t

Abstract type for holding a block number.

The enum type contains the following values:

BLK_LATEST 0
BLK_EARLIEST 1
BLK_PENDING 2

88 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

eth_tx_t

A transaction.

The stuct contains following fields:

bytes32_t hash the blockhash
bytes32_t block_hash hash of ther containnig block
uint64_t block_number number of the containing block
address_t from sender of the tx
uint64_t gas gas send along
uint64_t gas_price gas price used
bytes_t data data send along with the transaction
uint64_t nonce nonce of the transaction
address_t to receiver of the address 0x0000.

. -Address is used for contract creation.
uint256_t value the value in wei send
int transaction_index the transaction index
uint8_t signature signature of the transaction

eth_block_t

An Ethereum Block.

The stuct contains following fields:

uint64_t number the blockNumber
bytes32_t hash the blockhash
uint64_t gasUsed gas used by all the transactions
uint64_t gasLimit gasLimit
address_t author the author of the block.
uint256_t difficulty the difficulty of the block.
bytes_t extra_data the extra_data of the block.
uint8_t logsBloom the logsBloom-data
bytes32_t parent_hash the hash of the parent-block
bytes32_t sha3_uncles root hash of the uncle-trie
bytes32_t state_root root hash of the state-trie
bytes32_t receipts_root root of the receipts trie
bytes32_t transaction_root root of the transaction trie
int tx_count number of transactions in the block
eth_tx_t * tx_data array of transaction data or NULL if not requested
bytes32_t * tx_hashes array of transaction hashes or NULL if not requested
uint64_t timestamp the unix timestamp of the block
bytes_t * seal_fields sealed fields
int seal_fields_count number of seal fields

eth_log_t

A linked list of Ethereum Logs.

The stuct contains following fields:

8.4. Module api/eth1 89

Incubed Documentation, Release 1.2

bool removed true when the log was removed, due to a chain reorganization.
false if its a valid log

size_t log_index log index position in the block
size_t transac-

tion_index
transactions index position log was created from

bytes32_t transac-
tion_hash

hash of the transactions this log was created from

bytes32_t block_hash hash of the block where this log was in
uint64_t block_number the block number where this log was in
address_t address address from which this log originated
bytes_t data non-indexed arguments of the log
bytes32_t * topics array of 0 to 4 32 Bytes DATA of indexed log arguments
size_t topic_count counter for topics
eth_logstruct ,
*

next pointer to next log in list or NULL

eth_tx_receipt_t

A transaction receipt.

The stuct contains following fields:

bytes32_t transaction_hash the transaction hash
int transaction_index the transaction index
bytes32_t block_hash hash of ther containnig block
uint64_t block_number number of the containing block
uint64_t cumula-

tive_gas_used
total amount of gas used by block

uint64_t gas_used amount of gas used by this specific transaction
bytes_t * contract_address contract address created (if the transaction was a contract creation) or

NULL
bool status 1 if transaction succeeded, 0 otherwise.
eth_log_t * logs array of log objects, which this transaction generated

DEFINE_OPTIONAL_T

DEFINE_OPTIONAL_T(uint64_t);

Optional types.

arguments:

uint64_t

returns: ‘‘

90 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

DEFINE_OPTIONAL_T

DEFINE_OPTIONAL_T(bytes_t);

arguments:

bytes_t

returns: ‘‘

DEFINE_OPTIONAL_T

DEFINE_OPTIONAL_T(address_t);

arguments:

address_t

returns: ‘‘

DEFINE_OPTIONAL_T

DEFINE_OPTIONAL_T(uint256_t);

arguments:

uint256_t

returns: ‘‘

eth_getStorageAt

uint256_t eth_getStorageAt(in3_t *in3, address_t account, bytes32_t key, eth_blknum_t
→˓block);

Returns the storage value of a given address.

arguments:

in3_t * in3
address_t account
bytes32_t key
eth_blknum_t block

returns: uint256_t

8.4. Module api/eth1 91

Incubed Documentation, Release 1.2

eth_getCode

bytes_t eth_getCode(in3_t *in3, address_t account, eth_blknum_t block);

Returns the code of the account of given address.

(Make sure you free the data-point of the result after use.)

arguments:

in3_t * in3
address_t account
eth_blknum_t block

returns: bytes_t

eth_getBalance

uint256_t eth_getBalance(in3_t *in3, address_t account, eth_blknum_t block);

Returns the balance of the account of given address.

arguments:

in3_t * in3
address_t account
eth_blknum_t block

returns: uint256_t

eth_blockNumber

uint64_t eth_blockNumber(in3_t *in3);

Returns the current price per gas in wei.

arguments:

in3_t * in3

returns: uint64_t

eth_gasPrice

uint64_t eth_gasPrice(in3_t *in3);

Returns the current blockNumber, if bn==0 an error occured and you should check eth_last_error()

arguments:

in3_t * in3

92 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

returns: uint64_t

eth_getBlockByNumber

eth_block_t* eth_getBlockByNumber(in3_t *in3, eth_blknum_t number, bool include_tx);

Returns the block for the given number (if number==0, the latest will be returned).

If result is null, check eth_last_error()! otherwise make sure to free the result after using it!

arguments:

in3_t * in3
eth_blknum_t number
bool include_tx

returns: eth_block_t *

eth_getBlockByHash

eth_block_t* eth_getBlockByHash(in3_t *in3, bytes32_t hash, bool include_tx);

Returns the block for the given hash.

If result is null, check eth_last_error()! otherwise make sure to free the result after using it!

arguments:

in3_t * in3
bytes32_t hash
bool include_tx

returns: eth_block_t *

eth_getLogs

eth_log_t* eth_getLogs(in3_t *in3, char *fopt);

Returns a linked list of logs.

If result is null, check eth_last_error()! otherwise make sure to free the log, its topics and data after using it!

arguments:

in3_t * in3
char * fopt

returns: eth_log_t *

8.4. Module api/eth1 93

Incubed Documentation, Release 1.2

eth_newFilter

in3_ret_t eth_newFilter(in3_t *in3, json_ctx_t *options);

Creates a new event filter with specified options and returns its id (>0) on success or 0 on failure.

arguments:

in3_t * in3
json_ctx_t * options

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_newBlockFilter

in3_ret_t eth_newBlockFilter(in3_t *in3);

Creates a new block filter with specified options and returns its id (>0) on success or 0 on failure.

arguments:

in3_t * in3

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_newPendingTransactionFilter

in3_ret_t eth_newPendingTransactionFilter(in3_t *in3);

Creates a new pending txn filter with specified options and returns its id on success or 0 on failure.

arguments:

in3_t * in3

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_uninstallFilter

bool eth_uninstallFilter(in3_t *in3, size_t id);

Uninstalls a filter and returns true on success or false on failure.

arguments:

in3_t * in3
size_t id

94 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

returns: bool

eth_getFilterChanges

in3_ret_t eth_getFilterChanges(in3_t *in3, size_t id, bytes32_t **block_hashes, eth_
→˓log_t **logs);

Sets the logs (for event filter) or blockhashes (for block filter) that match a filter; returns <0 on error, otherwise no.

of block hashes matched (for block filter) or 0 (for log filter)

arguments:

in3_t * in3
size_t id
bytes32_t ** block_hashes
eth_log_t ** logs

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_getFilterLogs

in3_ret_t eth_getFilterLogs(in3_t *in3, size_t id, eth_log_t **logs);

Sets the logs (for event filter) or blockhashes (for block filter) that match a filter; returns <0 on error, otherwise no.

of block hashes matched (for block filter) or 0 (for log filter)

arguments:

in3_t * in3
size_t id
eth_log_t ** logs

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_chainId

uint64_t eth_chainId(in3_t *in3);

Returns the currently configured chain id.

arguments:

in3_t * in3

returns: uint64_t

8.4. Module api/eth1 95

Incubed Documentation, Release 1.2

eth_getBlockTransactionCountByHash

uint64_t eth_getBlockTransactionCountByHash(in3_t *in3, bytes32_t hash);

Returns the number of transactions in a block from a block matching the given block hash.

arguments:

in3_t * in3
bytes32_t hash

returns: uint64_t

eth_getBlockTransactionCountByNumber

uint64_t eth_getBlockTransactionCountByNumber(in3_t *in3, eth_blknum_t block);

Returns the number of transactions in a block from a block matching the given block number.

arguments:

in3_t * in3
eth_blknum_t block

returns: uint64_t

eth_call_fn

json_ctx_t* eth_call_fn(in3_t *in3, address_t contract, eth_blknum_t block, char *fn_
→˓sig,...);

Returns the result of a function_call.

If result is null, check eth_last_error()! otherwise make sure to free the result after using it with free_json()!

arguments:

in3_t * in3
address_t contract
eth_blknum_t block
char * fn_sig
...

returns: json_ctx_t *

eth_estimate_fn

uint64_t eth_estimate_fn(in3_t *in3, address_t contract, eth_blknum_t block, char *fn_
→˓sig,...);

96 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

Returns the result of a function_call.

If result is null, check eth_last_error()! otherwise make sure to free the result after using it with free_json()!

arguments:

in3_t * in3
address_t contract
eth_blknum_t block
char * fn_sig
...

returns: uint64_t

eth_getTransactionByHash

eth_tx_t* eth_getTransactionByHash(in3_t *in3, bytes32_t tx_hash);

Returns the information about a transaction requested by transaction hash.

If result is null, check eth_last_error()! otherwise make sure to free the result after using it!

arguments:

in3_t * in3
bytes32_t tx_hash

returns: eth_tx_t *

eth_getTransactionByBlockHashAndIndex

eth_tx_t* eth_getTransactionByBlockHashAndIndex(in3_t *in3, bytes32_t block_hash,
→˓size_t index);

Returns the information about a transaction by block hash and transaction index position.

If result is null, check eth_last_error()! otherwise make sure to free the result after using it!

arguments:

in3_t * in3
bytes32_t block_hash
size_t index

returns: eth_tx_t *

eth_getTransactionByBlockNumberAndIndex

eth_tx_t* eth_getTransactionByBlockNumberAndIndex(in3_t *in3, eth_blknum_t block,
→˓size_t index);

8.4. Module api/eth1 97

Incubed Documentation, Release 1.2

Returns the information about a transaction by block number and transaction index position.

If result is null, check eth_last_error()! otherwise make sure to free the result after using it!

arguments:

in3_t * in3
eth_blknum_t block
size_t index

returns: eth_tx_t *

eth_getTransactionCount

uint64_t eth_getTransactionCount(in3_t *in3, address_t address, eth_blknum_t block);

Returns the number of transactions sent from an address.

arguments:

in3_t * in3
address_t address
eth_blknum_t block

returns: uint64_t

eth_getUncleByBlockNumberAndIndex

eth_block_t* eth_getUncleByBlockNumberAndIndex(in3_t *in3, bytes32_t hash, size_t
→˓index);

Returns information about a uncle of a block by number and uncle index position.

If result is null, check eth_last_error()! otherwise make sure to free the result after using it!

arguments:

in3_t * in3
bytes32_t hash
size_t index

returns: eth_block_t *

eth_getUncleCountByBlockHash

uint64_t eth_getUncleCountByBlockHash(in3_t *in3, bytes32_t hash);

Returns the number of uncles in a block from a block matching the given block hash.

arguments:

in3_t * in3
bytes32_t hash

98 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

returns: uint64_t

eth_getUncleCountByBlockNumber

uint64_t eth_getUncleCountByBlockNumber(in3_t *in3, eth_blknum_t block);

Returns the number of uncles in a block from a block matching the given block number.

arguments:

in3_t * in3
eth_blknum_t block

returns: uint64_t

eth_sendTransaction

bytes_t* eth_sendTransaction(in3_t *in3, address_t from, address_t to, OPTIONAL_
→˓T(uint64_t) gas, OPTIONAL_T(uint64_t) gas_price, OPTIONAL_T(uint256_t) value,
→˓OPTIONAL_T(bytes_t) data, OPTIONAL_T(uint64_t) nonce);

Creates new message call transaction or a contract creation.

Returns (32 Bytes) - the transaction hash, or the zero hash if the transaction is not yet available. Free result after use
with b_free().

arguments:

in3_t * in3
address_t from
address_t to
OPTIONAL_T(uint64_t) gas
OPTIONAL_T(uint64_t) gas_price
uint256_tOPTIONAL_T(,) value
bytes_tOPTIONAL_T(,) data
OPTIONAL_T(uint64_t) nonce

returns: bytes_t *

eth_sendRawTransaction

bytes_t* eth_sendRawTransaction(in3_t *in3, bytes_t data);

Creates new message call transaction or a contract creation for signed transactions.

Returns (32 Bytes) - the transaction hash, or the zero hash if the transaction is not yet available. Free after use with
b_free().

arguments:

in3_t * in3
bytes_t data

8.4. Module api/eth1 99

Incubed Documentation, Release 1.2

returns: bytes_t *

eth_getTransactionReceipt

eth_tx_receipt_t* eth_getTransactionReceipt(in3_t *in3, bytes32_t tx_hash);

Returns the receipt of a transaction by transaction hash.

Free result after use with free_tx_receipt()

arguments:

in3_t * in3
bytes32_t tx_hash

returns: eth_tx_receipt_t *

eth_wait_for_receipt

char* eth_wait_for_receipt(in3_t *in3, bytes32_t tx_hash);

Waits for receipt of a transaction requested by transaction hash.

arguments:

in3_t * in3
bytes32_t tx_hash

returns: char *

eth_last_error

char* eth_last_error();

The current error or null if all is ok.

returns: char *

as_double

long double as_double(uint256_t d);

Converts a uint256_t in a long double.

Important: since a long double stores max 16 byte, there is no guarantee to have the full precision.

Converts a uint256_t in a long double.

arguments:

uint256_t d

returns: long double

100 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

as_long

uint64_t as_long(uint256_t d);

Converts a uint256_t in a long .

Important: since a long double stores 8 byte, this will only use the last 8 byte of the value.

Converts a uint256_t in a long .

arguments:

uint256_t d

returns: uint64_t

to_uint256

uint256_t to_uint256(uint64_t value);

Converts a uint64_t into its uint256_t representation.

arguments:

uint64_t value

returns: uint256_t

decrypt_key

in3_ret_t decrypt_key(d_token_t *key_data, char *password, bytes32_t dst);

Decrypts the private key from a json keystore file using PBKDF2 or SCRYPT (if enabled)

arguments:

d_token_t * key_data
char * password
bytes32_t dst

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

free_log

void free_log(eth_log_t *log);

Frees a eth_log_t object.

arguments:

eth_log_t * log

8.4. Module api/eth1 101

Incubed Documentation, Release 1.2

free_tx_receipt

void free_tx_receipt(eth_tx_receipt_t *txr);

Frees a eth_tx_receipt_t object.

arguments:

eth_tx_receipt_t * txr

8.5 Module api/usn

8.5.1 usn_api.h

USN API.

This header-file defines easy to use function, which are verifying USN-Messages.

Location: src/api/usn/usn_api.h

usn_msg_type_t

The enum type contains the following values:

USN_ACTION 0
USN_REQUEST 1
USN_RESPONSE 2

usn_event_type_t

The enum type contains the following values:

BOOKING_NONE 0
BOOKING_START 1
BOOKING_STOP 2

usn_booking_handler

typedef int(* usn_booking_handler) (usn_event_t *)

returns: int(*

usn_verify_message

usn_msg_result_t usn_verify_message(usn_device_conf_t *conf, char *message);

102 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

arguments:

usn_device_conf_t * conf
char * message

returns: usn_msg_result_t

usn_register_device

in3_ret_t usn_register_device(usn_device_conf_t *conf, char *url);

arguments:

usn_device_conf_t * conf
char * url

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

usn_parse_url

usn_url_t usn_parse_url(char *url);

arguments:

char * url

returns: usn_url_t

usn_update_state

unsigned int usn_update_state(usn_device_conf_t *conf, unsigned int wait_time);

arguments:

usn_device_conf_t * conf
unsigned int wait_time

returns: unsigned int

usn_update_bookings

in3_ret_t usn_update_bookings(usn_device_conf_t *conf);

arguments:

usn_device_conf_t * conf

8.5. Module api/usn 103

Incubed Documentation, Release 1.2

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

usn_remove_old_bookings

void usn_remove_old_bookings(usn_device_conf_t *conf);

arguments:

usn_device_conf_t * conf

usn_get_next_event

usn_event_t usn_get_next_event(usn_device_conf_t *conf);

arguments:

usn_device_conf_t * conf

returns: usn_event_t

usn_rent

in3_ret_t usn_rent(in3_t *c, address_t contract, address_t token, char *url, uint32_t
→˓seconds, bytes32_t tx_hash);

arguments:

in3_t * c
address_t contract
address_t token
char * url
uint32_t seconds
bytes32_t tx_hash

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

usn_return

in3_ret_t usn_return(in3_t *c, address_t contract, char *url, bytes32_t tx_hash);

arguments:

in3_t * c
address_t contract
char * url
bytes32_t tx_hash

104 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

usn_price

in3_ret_t usn_price(in3_t *c, address_t contract, address_t token, char *url, uint32_
→˓t seconds, address_t controller, bytes32_t price);

arguments:

in3_t * c
address_t contract
address_t token
char * url
uint32_t seconds
address_t controller
bytes32_t price

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

8.6 Module cmd/in3

8.6.1 in3_storage.h

storage handler storing cache in the home-dir/.in3

Location: src/cmd/in3/in3_storage.h

storage_get_item

bytes_t* storage_get_item(void *cptr, char *key);

arguments:

void * cptr
char * key

returns: bytes_t *

storage_set_item

void storage_set_item(void *cptr, char *key, bytes_t *content);

arguments:

8.6. Module cmd/in3 105

Incubed Documentation, Release 1.2

void * cptr
char * key
bytes_t * content

8.7 Module core

8.7.1 cache.h

handles caching and storage.

storing nodelists and other caches with the storage handler as specified in the client. If no storage handler is specified
nothing will be cached.

Location: src/core/client/cache.h

in3_cache_update_nodelist

in3_ret_t in3_cache_update_nodelist(in3_t *c, in3_chain_t *chain);

reads the nodelist from cache.

This function is usually called internally to fill the weights and nodelist from the the cache. If you call
in3_cache_init there is no need to call this explicitly.

arguments:

in3_t * c the incubed client
in3_chain_t * chain chain to configure

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_cache_store_nodelist

in3_ret_t in3_cache_store_nodelist(in3_ctx_t *ctx, in3_chain_t *chain);

stores the nodelist to thes cache.

It will automaticly called if the nodelist has changed and read from the nodes or the wirght of a node changed.

arguments:

in3_ctx_t * ctx the current incubed context
in3_chain_t * chain the chain upating to cache

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

106 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

8.7.2 client.h

incubed main client file.

This includes the definition of the client and used enum values.

Location: src/core/client/client.h

IN3_PROTO_VER

#define IN3_PROTO_VER 0x2

ETH_CHAIN_ID_MAINNET

#define ETH_CHAIN_ID_MAINNET 0x01L

ETH_CHAIN_ID_KOVAN

#define ETH_CHAIN_ID_KOVAN 0x2aL

ETH_CHAIN_ID_TOBALABA

#define ETH_CHAIN_ID_TOBALABA 0x44dL

ETH_CHAIN_ID_GOERLI

#define ETH_CHAIN_ID_GOERLI 0x5L

ETH_CHAIN_ID_EVAN

#define ETH_CHAIN_ID_EVAN 0x4b1L

ETH_CHAIN_ID_IPFS

#define ETH_CHAIN_ID_IPFS 0x7d0

ETH_CHAIN_ID_VOLTA

#define ETH_CHAIN_ID_VOLTA 0x12046

8.7. Module core 107

Incubed Documentation, Release 1.2

ETH_CHAIN_ID_LOCAL

#define ETH_CHAIN_ID_LOCAL 0xFFFFL

IN3_SIGN_ERR_REJECTED

return value used by the signer if the the signature-request was rejected.

#define IN3_SIGN_ERR_REJECTED -1

IN3_SIGN_ERR_ACCOUNT_NOT_FOUND

return value used by the signer if the requested account was not found.

#define IN3_SIGN_ERR_ACCOUNT_NOT_FOUND -2

IN3_SIGN_ERR_INVALID_MESSAGE

return value used by the signer if the message was invalid.

#define IN3_SIGN_ERR_INVALID_MESSAGE -3

IN3_SIGN_ERR_GENERAL_ERROR

return value used by the signer for unspecified errors.

#define IN3_SIGN_ERR_GENERAL_ERROR -4

in3_chain_type_t

the type of the chain.

for incubed a chain can be any distributed network or database with incubed support. Depending on this chain-type
the previously registered verifyer will be choosen and used.

The enum type contains the following values:

CHAIN_ETH 0 Ethereum chain.
CHAIN_SUBSTRATE 1 substrate chain
CHAIN_IPFS 2 ipfs verifiaction
CHAIN_BTC 3 Bitcoin chain.
CHAIN_IOTA 4 IOTA chain.
CHAIN_GENERIC 5 other chains

108 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

in3_proof_t

the type of proof.

Depending on the proof-type different levels of proof will be requested from the node.

The enum type contains the following values:

PROOF_NONE 0 No Verification.
PROOF_STANDARD 1 Standard Verification of the important properties.
PROOF_FULL 2 All field will be validated including uncles.

in3_verification_t

verification as delivered by the server.

This will be part of the in3-request and will be generated based on the prooftype.

The enum type contains the following values:

VERIFICATION_NEVER 0 No Verifacation.
VERIFICATION_PROOF 1 Includes the proof of the data.
VERIFICATION_PROOF_WITH_SIGNATURE 2 Proof + Signatures.

d_signature_type_t

type of the requested signature

The enum type contains the following values:

SIGN_EC_RAW 0 sign the data directly
SIGN_EC_HASH 1 hash and sign the data

in3_filter_type_t

The enum type contains the following values:

FILTER_EVENT 0 Event filter.
FILTER_BLOCK 1 Block filter.
FILTER_PENDING 2 Pending filter (Unsupported)

in3_request_config_t

the configuration as part of each incubed request.

This will be generated for each request based on the client-configuration. the verifier may access this during verifica-
tion in order to check against the request.

The stuct contains following fields:

8.7. Module core 109

Incubed Documentation, Release 1.2

uint64_t chainId the chain to be used.
this is holding the integer-value of the hexstring.

uint8_t includeCode if true the code needed will always be devlivered.
uint8_t useFullProof this flaqg is set, if the proof is set to “PROOF_FULL”
uint8_t useBinary this flaqg is set, the client should use binary-format
bytes_t * verifiedHashes a list of blockhashes already verified.

The Server will not send any proof for them again .
uint16_t verifiedHash-

esCount
number of verified blockhashes

uint16_t latestBlock the last blocknumber the nodelistz changed
uint16_t finality number of signatures(in percent) needed in order to reach finality.
in3_verification_tverification Verification-type.
bytes_t * clientSignature the signature of the client with the client key
bytes_t * signatures the addresses of servers requested to sign the blockhash
uint8_t signaturesCount number or addresses

in3_node_t

incubed node-configuration.

These information are read from the Registry contract and stored in this struct representing a server or node.

The stuct contains following fields:

uint32_t index index within the nodelist, also used in the contract as key
bytes_t * address address of the server
uint64_t deposit the deposit stored in the registry contract, which this would lose if it sends a wrong

blockhash
uint32_t capac-

ity
the maximal capacity able to handle

uint64_t props a bit set used to identify the cabalilities of the server.
char * url the url of the node

in3_node_weight_t

Weight or reputation of a node.

Based on the past performance of the node a weight is calulcated given faster nodes a heigher weight and chance when
selecting the next node from the nodelist. These weights will also be stored in the cache (if available)

The stuct contains following fields:

float weight current weight
uint32_t response_count counter for responses
uint32_t total_response_time total of all response times
uint64_t blacklistedUntil if >0 this node is blacklisted until k.

k is a unix timestamp

in3_chain_t

Chain definition inside incubed.

110 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

for incubed a chain can be any distributed network or database with incubed support.

The stuct contains following fields:

uint64_t chainId chainId, which could be a free or based on the public ethereum networkId
in3_chain_type_t type chaintype
uint64_t lastBlock last blocknumber the nodeList was updated, which is used to detect changed in

the nodelist
bool needsUp-

date
if true the nodelist should be updated and will trigger a in3_nodeList-request
before the next request is send.

int nodeListLengthnumber of nodes in the nodeList
in3_node_t * nodeList array of nodes
in3_node_weight_t
*

weights stats and weights recorded for each node

bytes_t ** initAd-
dresses

array of addresses of nodes that should always part of the nodeList

bytes_t * contract the address of the registry contract
bytes32_t registry_id the identifier of the registry
uint8_t version version of the chain
json_ctx_t * spec optional chain specification, defining the transaitions and forks

in3_storage_get_item

storage handler function for reading from cache.

typedef bytes_t*(* in3_storage_get_item) (void *cptr, char *key)

returns: bytes_t *(* : the found result. if the key is found this function should return the values as bytes otherwise
NULL.

in3_storage_set_item

storage handler function for writing to the cache.

typedef void(* in3_storage_set_item) (void *cptr, char *key, bytes_t *value)

in3_storage_handler_t

storage handler to handle cache.

The stuct contains following fields:

in3_storage_get_item get_item function pointer returning a stored value for the given key.
in3_storage_set_item set_item function pointer setting a stored value for the given key.
void * cptr custom pointer which will will be passed to functions

in3_sign

signing function.

8.7. Module core 111

Incubed Documentation, Release 1.2

signs the given data and write the signature to dst. the return value must be the number of bytes written to dst. In case
of an error a negativ value must be returned. It should be one of the IN3_SIGN_ERR. . . values.

typedef in3_ret_t(* in3_sign) (void *wallet, d_signature_type_t type, bytes_t message,
→˓ bytes_t account, uint8_t *dst)

returns: in3_ret_t(* the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_signer_t

The stuct contains following fields:

in3_sign sign
void * wallet

in3_response_t

response-object.

if the error has a length>0 the response will be rejected

The stuct contains following fields:

sb_t error a stringbuilder to add any errors!
sb_t result a stringbuilder to add the result

in3_transport_send

the transport function to be implemented by the transport provider.

typedef in3_ret_t(* in3_transport_send) (char **urls, int urls_len, char *payload,
→˓in3_response_t *results)

returns: in3_ret_t(* the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_filter_t

The stuct contains following fields:

in3_filter_type_t type filter type: (event, block or pending)
char * options associated filter options
uint64_t last_block block no.

when filter was created OR eth_getFilterChanges was called
void(* release method to release owned resources

112 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

in3_filter_handler_t

The stuct contains following fields:

in3_filter_t ** array
size_t count array of filters

in3_t

Incubed Configuration.

This struct holds the configuration and also point to internal resources such as filters or chain configs.

The stuct contains following fields:

uint32_t cacheTime-
out

number of seconds requests can be cached.

uint16_t nodeLimit the limit of nodes to store in the client.
bytes_t * key the client key to sign requests
uint32_t maxCode-

Cache
number of max bytes used to cache the code in memory

uint32_t maxBlock-
Cache

number of number of blocks cached in memory

in3_proof_t proof the type of proof used
uint8_t request-

Count
the number of request send when getting a first answer

uint8_t signature-
Count

the number of signatures used to proof the blockhash.

uint64_t minDeposit min stake of the server.
Only nodes owning at least this amount will be chosen.

uint16_t replaceLat-
estBlock

if specified, the blocknumber latest will be replaced by blockNumber- specified
value

uint16_t finality the number of signatures in percent required for the request
uint16_t max_attempts the max number of attempts before giving up
uint32_t timeout specifies the number of milliseconds before the request times out.

increasing may be helpful if the device uses a slow connection.
uint64_t chainId servers to filter for the given chain.

The chain-id based on EIP-155.
uint8_t autoUp-

dateList
if true the nodelist will be automaticly updated if the lastBlock is newer

in3_storage_handler_t
*

cacheStor-
age

a cache handler offering 2 functions (setItem(string,string), getItem(string))

in3_signer_t * signer signer-struct managing a wallet
in3_transport_sendtransport the transporthandler sending requests
uint8_t include-

Code
includes the code when sending eth_call-requests

uint8_t use_binary if true the client will use binary format
uint8_t use_http if true the client will try to use http instead of https
in3_chain_t * chains chain spec and nodeList definitions
uint16_t chain-

sCount
number of configured chains

in3_filter_handler_t
*

filters filter handler

8.7. Module core 113

Incubed Documentation, Release 1.2

in3_new

in3_t* in3_new();

creates a new Incubes configuration and returns the pointer.

you need to free this instance with in3_free after use!

Before using the client you still need to set the tramsport and optional the storage handlers:

• example of initialization:

// register verifiers
in3_register_eth_full();

// create new client
in3_t* client = in3_new();

// configure storage...
in3_storage_handler_t storage_handler;
storage_handler.get_item = storage_get_item;
storage_handler.set_item = storage_set_item;

// configure transport
client->transport = send_curl;

// configure storage
client->cacheStorage = &storage_handler;

// init cache
in3_cache_init(client);

// ready to use ...

returns: in3_t * : the incubed instance.

in3_client_rpc

in3_ret_t in3_client_rpc(in3_t *c, char *method, char *params, char **result, char
→˓**error);

sends a request and stores the result in the provided buffer

arguments:

in3_t * c the pointer to the incubed client config.
char

*

method the name of the rpc-funcgtion to call.

char

*

params docs for input parameter v.

char

**

re-
sult

pointer to string which will be set if the request was successfull. This will hold the result as
json-rpc-string. (make sure you free this after use!)

char

**

er-
ror

pointer to a string containg the error-message. (make sure you free it after use!)

returns: in3_ret_t the result-status of the function.

114 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

Please make sure you check if it was successfull (==IN3_OK)

in3_client_register_chain

in3_ret_t in3_client_register_chain(in3_t *client, uint64_t chain_id, in3_chain_type_
→˓t type, address_t contract, bytes32_t registry_id, uint8_t version, json_ctx_t
→˓*spec);

registers a new chain or replaces a existing (but keeps the nodelist)

arguments:

in3_t * client the pointer to the incubed client config.
uint64_t chain_id the chain id.
in3_chain_type_t type the verification type of the chain.
address_t contract contract of the registry.
bytes32_t registry_id the identifier of the registry.
uint8_t version the chain version.
json_ctx_t * spec chainspec or NULL.

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_client_add_node

in3_ret_t in3_client_add_node(in3_t *client, uint64_t chain_id, char *url, uint64_t
→˓props, address_t address);

adds a node to a chain ore updates a existing node

[in] public address of the signer.

arguments:

in3_t * client the pointer to the incubed client config.
uint64_t chain_id the chain id.
char * url url of the nodes.
uint64_t props properties of the node.
address_t address

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_client_remove_node

in3_ret_t in3_client_remove_node(in3_t *client, uint64_t chain_id, address_t address);

removes a node from a nodelist

[in] public address of the signer.

arguments:

8.7. Module core 115

Incubed Documentation, Release 1.2

in3_t * client the pointer to the incubed client config.
uint64_t chain_id the chain id.
address_t address

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_client_clear_nodes

in3_ret_t in3_client_clear_nodes(in3_t *client, uint64_t chain_id);

removes all nodes from the nodelist

[in] the chain id.

arguments:

in3_t * client the pointer to the incubed client config.
uint64_t chain_id

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_free

void in3_free(in3_t *a);

frees the references of the client

arguments:

in3_t * a the pointer to the incubed client config to free.

in3_cache_init

in3_ret_t in3_cache_init(in3_t *c);

inits the cache.

arguments:

in3_t * c the incubed client

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

116 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

in3_configure

in3_ret_t in3_configure(in3_t *c, char *config);

configures the clent based on a json-config.

For details about the structure of ther config see https://in3.readthedocs.io/en/develop/api-ts.html#type-in3config

arguments:

in3_t * c
char * config

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_set_default_transport

void in3_set_default_transport(in3_transport_send transport);

defines a default transport which is used when creating a new client.

arguments:

in3_transport_send transport

in3_set_default_storage

void in3_set_default_storage(in3_storage_handler_t *cacheStorage);

defines a default storage handler which is used when creating a new client.

arguments:

in3_storage_handler_t * cacheStorage

in3_set_default_signer

void in3_set_default_signer(in3_signer_t *signer);

defines a default signer which is used when creating a new client.

arguments:

in3_signer_t * signer

8.7. Module core 117

https://in3.readthedocs.io/en/develop/api-ts.html#type-in3config

Incubed Documentation, Release 1.2

8.7.3 context.h

Request Context.

This is used for each request holding request and response-pointers.

Location: src/core/client/context.h

node_weight_t

the weight of a ceertain node as linked list

The stuct contains following fields:

in3_node_t * node the node definition including the url
in3_node_weight_t * weight the current weight and blacklisting-stats
float s The starting value.
float w weight value
weightstruct , * next next in the linkedlistt or NULL if this is the last element

new_ctx

in3_ctx_t* new_ctx(in3_t *client, char *req_data);

creates a new context.

the request data will be parsed and represented in the context.

arguments:

in3_t * client
char * req_data

returns: in3_ctx_t *

ctx_parse_response

in3_ret_t ctx_parse_response(in3_ctx_t *ctx, char *response_data, int len);

arguments:

in3_ctx_t * ctx
char * response_data
int len

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

118 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

free_ctx

void free_ctx(in3_ctx_t *ctx);

arguments:

in3_ctx_t * ctx

ctx_create_payload

in3_ret_t ctx_create_payload(in3_ctx_t *c, sb_t *sb);

arguments:

in3_ctx_t * c
sb_t * sb

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

ctx_set_error

in3_ret_t ctx_set_error(in3_ctx_t *c, char *msg, in3_ret_t errnumber);

arguments:

in3_ctx_t * c
char * msg
in3_ret_t errnumber

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

ctx_get_error

in3_ret_t ctx_get_error(in3_ctx_t *ctx, int id);

arguments:

in3_ctx_t * ctx
int id

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

8.7. Module core 119

Incubed Documentation, Release 1.2

in3_client_rpc_ctx

in3_ctx_t* in3_client_rpc_ctx(in3_t *c, char *method, char *params);

sends a request and returns a context used to access the result or errors.

This context MUST be freed with free_ctx(ctx) after usage to release the resources.

arguments:

in3_t * c
char * method
char * params

returns: in3_ctx_t *

free_ctx_nodes

void free_ctx_nodes(node_weight_t *c);

arguments:

node_weight_t * c

ctx_nodes_len

int ctx_nodes_len(node_weight_t *root);

arguments:

node_weight_t * root

returns: int

8.7.4 nodelist.h

handles nodelists.

Location: src/core/client/nodelist.h

in3_nodelist_clear

void in3_nodelist_clear(in3_chain_t *chain);

removes all nodes and their weights from the nodelist

arguments:

in3_chain_t * chain

120 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

in3_node_list_get

in3_ret_t in3_node_list_get(in3_ctx_t *ctx, uint64_t chain_id, bool update, in3_node_
→˓t **nodeList, int *nodeListLength, in3_node_weight_t **weights);

check if the nodelist is up to date.

if not it will fetch a new version first (if the needs_update-flag is set).

arguments:

in3_ctx_t * ctx
uint64_t chain_id
bool update
in3_node_t ** nodeList
int * nodeListLength
in3_node_weight_t ** weights

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_node_list_fill_weight

node_weight_t* in3_node_list_fill_weight(in3_t *c, in3_node_t *all_nodes, in3_node_
→˓weight_t *weights, int len, _time_t now, float *total_weight, int *total_found);

filters and fills the weights on a returned linked list.

arguments:

in3_t * c
in3_node_t * all_nodes
in3_node_weight_t * weights
int len
_time_t now
float * total_weight
int * total_found

returns: node_weight_t *

in3_node_list_pick_nodes

in3_ret_t in3_node_list_pick_nodes(in3_ctx_t *ctx, node_weight_t **nodes);

picks (based on the config) a random number of nodes and returns them as weightslist.

arguments:

in3_ctx_t * ctx
node_weight_t ** nodes

returns: in3_ret_t the result-status of the function.

8.7. Module core 121

Incubed Documentation, Release 1.2

Please make sure you check if it was successfull (==IN3_OK)

8.7.5 send.h

handles caching and storage.

handles the request.

Location: src/core/client/send.h

in3_send_ctx

in3_ret_t in3_send_ctx(in3_ctx_t *ctx);

executes a request context by picking nodes and sending it.

arguments:

in3_ctx_t * ctx

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

8.7.6 verifier.h

Verification Context.

This context is passed to the verifier.

Location: src/core/client/verifier.h

in3_verify

function to verify the result.

typedef in3_ret_t(* in3_verify) (in3_vctx_t *c)

returns: in3_ret_t(* the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_pre_handle

typedef in3_ret_t(* in3_pre_handle) (in3_ctx_t *ctx, in3_response_t **response)

returns: in3_ret_t(* the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

122 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

in3_verifier_t

The stuct contains following fields:

in3_verify verify
in3_pre_handle pre_handle
in3_chain_type_t type
verifierstruct , * next

in3_get_verifier

in3_verifier_t* in3_get_verifier(in3_chain_type_t type);

returns the verifier for the given chainType

arguments:

in3_chain_type_t type

returns: in3_verifier_t *

in3_register_verifier

void in3_register_verifier(in3_verifier_t *verifier);

arguments:

in3_verifier_t * verifier

vc_err

in3_ret_t vc_err(in3_vctx_t *vc, char *msg);

arguments:

in3_vctx_t * vc
char * msg

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

8.7.7 bytes.h

util helper on byte arrays.

Location: src/core/util/bytes.h

8.7. Module core 123

Incubed Documentation, Release 1.2

bb_new ()

#define bb_new () bb_newl(32)

bb_read (bb,i,vptr)

#define bb_read (_bb_,_i_,_vptr_) bb_readl((_bb_), (_i_), (_vptr_), sizeof(*_vptr_))

bb_read_next (bb,iptr,vptr)

#define bb_read_next (_bb_,_iptr_,_vptr_) do {
→˓ \

size_t _l_ = sizeof(*_vptr_); \
bb_readl((_bb_), *(_iptr_), (_vptr_), _l_); \

*(_iptr_) += _l_; \
} while (0)

bb_readl (bb,i,vptr,l)

#define bb_readl (_bb_,_i_,_vptr_,_l_) memcpy((_vptr_), (_bb_)->b.data + (_i_), _l_)

b_read (b,i,vptr)

#define b_read (_b_,_i_,_vptr_) b_readl((_b_), (_i_), _vptr_, sizeof(*_vptr_))

b_readl (b,i,vptr,l)

#define b_readl (_b_,_i_,_vptr_,_l_) memcpy(_vptr_, (_b_)->data + (_i_), (_l_))

address_t

pointer to a 20byte address

typedef uint8_t address_t[20]

bytes32_t

pointer to a 32byte word

typedef uint8_t bytes32_t[32]

124 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

wlen_t

number of bytes within a word (min 1byte but usually a uint)

typedef uint_fast8_t wlen_t

bytes_t

a byte array

The stuct contains following fields:

uint32_t len the length of the array ion bytes
uint8_t * data the byte-data

b_new

bytes_t* b_new(char *data, int len);

allocates a new byte array with 0 filled

arguments:

char * data
int len

returns: bytes_t *

b_print

void b_print(bytes_t *a);

prints a the bytes as hex to stdout

arguments:

bytes_t * a

ba_print

void ba_print(uint8_t *a, size_t l);

prints a the bytes as hex to stdout

arguments:

uint8_t * a
size_t l

8.7. Module core 125

Incubed Documentation, Release 1.2

b_cmp

int b_cmp(bytes_t *a, bytes_t *b);

compares 2 byte arrays and returns 1 for equal and 0 for not equal

arguments:

bytes_t * a
bytes_t * b

returns: int

bytes_cmp

int bytes_cmp(bytes_t a, bytes_t b);

compares 2 byte arrays and returns 1 for equal and 0 for not equal

arguments:

bytes_t a
bytes_t b

returns: int

b_free

void b_free(bytes_t *a);

frees the data

arguments:

bytes_t * a

b_dup

bytes_t* b_dup(bytes_t *a);

clones a byte array

arguments:

bytes_t * a

returns: bytes_t *

126 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

b_read_byte

uint8_t b_read_byte(bytes_t *b, size_t *pos);

reads a byte on the current position and updates the pos afterwards.

arguments:

bytes_t * b
size_t * pos

returns: uint8_t

b_read_short

uint16_t b_read_short(bytes_t *b, size_t *pos);

reads a short on the current position and updates the pos afterwards.

arguments:

bytes_t * b
size_t * pos

returns: uint16_t

b_read_int

uint32_t b_read_int(bytes_t *b, size_t *pos);

reads a integer on the current position and updates the pos afterwards.

arguments:

bytes_t * b
size_t * pos

returns: uint32_t

b_read_int_be

uint32_t b_read_int_be(bytes_t *b, size_t *pos, size_t len);

reads a unsigned integer as bigendian on the current position and updates the pos afterwards.

arguments:

bytes_t * b
size_t * pos
size_t len

returns: uint32_t

8.7. Module core 127

Incubed Documentation, Release 1.2

b_read_long

uint64_t b_read_long(bytes_t *b, size_t *pos);

reads a long on the current position and updates the pos afterwards.

arguments:

bytes_t * b
size_t * pos

returns: uint64_t

b_new_chars

char* b_new_chars(bytes_t *b, size_t *pos);

creates a new string (needs to be freed) on the current position and updates the pos afterwards.

arguments:

bytes_t * b
size_t * pos

returns: char *

b_new_dyn_bytes

bytes_t* b_new_dyn_bytes(bytes_t *b, size_t *pos);

reads bytesn (which have the length stored as prefix) on the current position and updates the pos afterwards.

arguments:

bytes_t * b
size_t * pos

returns: bytes_t *

b_new_fixed_bytes

bytes_t* b_new_fixed_bytes(bytes_t *b, size_t *pos, int len);

reads bytes with a fixed length on the current position and updates the pos afterwards.

arguments:

bytes_t * b
size_t * pos
int len

returns: bytes_t *

128 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

bb_newl

bytes_builder_t* bb_newl(size_t l);

arguments:

size_t l

returns: bytes_builder_t *

bb_free

void bb_free(bytes_builder_t *bb);

frees a bytebuilder and its content.

arguments:

bytes_builder_t * bb

bb_check_size

int bb_check_size(bytes_builder_t *bb, size_t len);

internal helper to increase the buffer if needed

arguments:

bytes_builder_t * bb
size_t len

returns: int

bb_write_chars

void bb_write_chars(bytes_builder_t *bb, char *c, int len);

writes a string to the builder.

arguments:

bytes_builder_t * bb
char * c
int len

bb_write_dyn_bytes

void bb_write_dyn_bytes(bytes_builder_t *bb, bytes_t *src);

8.7. Module core 129

Incubed Documentation, Release 1.2

writes bytes to the builder with a prefixed length.

arguments:

bytes_builder_t * bb
bytes_t * src

bb_write_fixed_bytes

void bb_write_fixed_bytes(bytes_builder_t *bb, bytes_t *src);

writes fixed bytes to the builder.

arguments:

bytes_builder_t * bb
bytes_t * src

bb_write_int

void bb_write_int(bytes_builder_t *bb, uint32_t val);

writes a ineteger to the builder.

arguments:

bytes_builder_t * bb
uint32_t val

bb_write_long

void bb_write_long(bytes_builder_t *bb, uint64_t val);

writes s long to the builder.

arguments:

bytes_builder_t * bb
uint64_t val

bb_write_long_be

void bb_write_long_be(bytes_builder_t *bb, uint64_t val, int len);

writes any integer value with the given length of bytes

arguments:

bytes_builder_t * bb
uint64_t val
int len

130 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

bb_write_byte

void bb_write_byte(bytes_builder_t *bb, uint8_t val);

writes a single byte to the builder.

arguments:

bytes_builder_t * bb
uint8_t val

bb_write_short

void bb_write_short(bytes_builder_t *bb, uint16_t val);

writes a short to the builder.

arguments:

bytes_builder_t * bb
uint16_t val

bb_write_raw_bytes

void bb_write_raw_bytes(bytes_builder_t *bb, void *ptr, size_t len);

writes the bytes to the builder.

arguments:

bytes_builder_t * bb
void * ptr
size_t len

bb_clear

void bb_clear(bytes_builder_t *bb);

resets the content of the builder.

arguments:

bytes_builder_t * bb

bb_replace

void bb_replace(bytes_builder_t *bb, int offset, int delete_len, uint8_t *data, int
→˓data_len);

8.7. Module core 131

Incubed Documentation, Release 1.2

replaces or deletes a part of the content.

arguments:

bytes_builder_t * bb
int offset
int delete_len
uint8_t * data
int data_len

bb_move_to_bytes

bytes_t* bb_move_to_bytes(bytes_builder_t *bb);

frees the builder and moves the content in a newly created bytes struct (which needs to be freed later).

arguments:

bytes_builder_t * bb

returns: bytes_t *

bb_push

void bb_push(bytes_builder_t *bb, uint8_t *data, uint8_t len);

arguments:

bytes_builder_t * bb
uint8_t * data
uint8_t len

bb_read_long

uint64_t bb_read_long(bytes_builder_t *bb, size_t *i);

arguments:

bytes_builder_t * bb
size_t * i

returns: uint64_t

bb_read_int

uint32_t bb_read_int(bytes_builder_t *bb, size_t *i);

132 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

arguments:

bytes_builder_t * bb
size_t * i

returns: uint32_t

bytes

static bytes_t bytes(uint8_t *a, uint32_t len);

arguments:

uint8_t * a
uint32_t len

returns: bytes_t

cloned_bytes

bytes_t cloned_bytes(bytes_t data);

arguments:

bytes_t data

returns: bytes_t

b_optimize_len

static void b_optimize_len(bytes_t *b);

arguments:

bytes_t * b

8.7.8 data.h

json-parser.

The parser can read from :

• json

• bin

When reading from json all ‘0x’. . . values will be stored as bytes_t. If the value is lower than 0xFFFFFFF, it is
converted as integer.

Location: src/core/util/data.h

8.7. Module core 133

Incubed Documentation, Release 1.2

DATA_DEPTH_MAX

the max DEPTH of the JSON-data allowed.

It will throw an error if reached.

#define DATA_DEPTH_MAX 11

printX

#define printX printf

fprintX

#define fprintX fprintf

snprintX

#define snprintX snprintf

vprintX

#define vprintX vprintf

d_type_t

type of a token.

The enum type contains the following values:

T_BYTES 0 content is stored as data ptr.
T_STRING 1 content is stored a c-str
T_ARRAY 2 the node is an array with the length stored in length
T_OBJECT 3 the node is an object with properties
T_BOOLEAN 4 boolean with the value stored in len
T_INTEGER 5 a integer with the value stored
T_NULL 6 a NULL-value

d_key_t

typedef uint16_t d_key_t

134 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

d_token_t

a token holding any kind of value.

use d_type, d_len or the cast-function to get the value.

The stuct contains following fields:

uint32_t len the length of the content (or number of properties) depending + type.
uint8_t * data the byte or string-data
d_key_t key the key of the property.

str_range_t

internal type used to represent the a range within a string.

The stuct contains following fields:

char * data pointer to the start of the string
size_t len len of the characters

json_ctx_t

parser for json or binary-data.

it needs to freed after usage.

The stuct contains following fields:

d_token_t * result the list of all tokens.
the first token is the main-token as returned by the parser.

size_t allocated
size_t len amount of tokens allocated result
size_t depth number of tokens in result
char * c max depth of tokens in result

d_iterator_t

iterator over elements of a array opf object.

usage:

for (d_iterator_t iter = d_iter(parent); iter.left ; d_iter_next(&iter)) {
uint32_t val = d_int(iter.token);

}

The stuct contains following fields:

int left number of result left
d_token_t * token current token

8.7. Module core 135

Incubed Documentation, Release 1.2

d_to_bytes

bytes_t d_to_bytes(d_token_t *item);

returns the byte-representation of token.

In case of a number it is returned as bigendian. booleans as 0x01 or 0x00 and NULL as 0x. Objects or arrays will
return 0x.

arguments:

d_token_t * item

returns: bytes_t

d_bytes_to

int d_bytes_to(d_token_t *item, uint8_t *dst, const int max);

writes the byte-representation to the dst.

details see d_to_bytes.

arguments:

d_token_t * item
uint8_t * dst
const int max

returns: int

d_bytes

bytes_t* d_bytes(const d_token_t *item);

returns the value as bytes (Carefully, make sure that the token is a bytes-type!)

arguments:

d_token_tconst , * item

returns: bytes_t *

d_bytesl

bytes_t* d_bytesl(d_token_t *item, size_t l);

returns the value as bytes with length l (may reallocates)

arguments:

136 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

d_token_t * item
size_t l

returns: bytes_t *

d_string

char* d_string(const d_token_t *item);

converts the value as string.

Make sure the type is string!

arguments:

d_token_tconst , * item

returns: char *

d_int

uint32_t d_int(const d_token_t *item);

returns the value as integer.

only if type is integer

arguments:

d_token_tconst , * item

returns: uint32_t

d_intd

uint32_t d_intd(const d_token_t *item, const uint32_t def_val);

returns the value as integer or if NULL the default.

only if type is integer

arguments:

d_token_tconst , * item
const uint32_t def_val

returns: uint32_t

8.7. Module core 137

Incubed Documentation, Release 1.2

d_long

uint64_t d_long(const d_token_t *item);

returns the value as long.

only if type is integer or bytes, but short enough

arguments:

d_token_tconst , * item

returns: uint64_t

d_longd

uint64_t d_longd(const d_token_t *item, const uint64_t def_val);

returns the value as long or if NULL the default.

only if type is integer or bytes, but short enough

arguments:

d_token_tconst , * item
const uint64_t def_val

returns: uint64_t

d_create_bytes_vec

bytes_t** d_create_bytes_vec(const d_token_t *arr);

arguments:

d_token_tconst , * arr

returns: bytes_t **

d_type

static d_type_t d_type(const d_token_t *item);

creates a array of bytes from JOSN-array

type of the token

arguments:

d_token_tconst , * item

returns: d_type_t

138 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

d_len

static int d_len(const d_token_t *item);

number of elements in the token (only for object or array, other will return 0)

arguments:

d_token_tconst , * item

returns: int

d_eq

bool d_eq(const d_token_t *a, const d_token_t *b);

compares 2 token and if the value is equal

arguments:

d_token_tconst , * a
d_token_tconst , * b

returns: bool

keyn

d_key_t keyn(const char *c, const int len);

generates the keyhash for the given stringrange as defined by len

arguments:

const char * c
const int len

returns: d_key_t

d_get

d_token_t* d_get(d_token_t *item, const uint16_t key);

returns the token with the given propertyname (only if item is a object)

arguments:

d_token_t * item
const uint16_t key

returns: d_token_t *

8.7. Module core 139

Incubed Documentation, Release 1.2

d_get_or

d_token_t* d_get_or(d_token_t *item, const uint16_t key1, const uint16_t key2);

returns the token with the given propertyname or if not found, tries the other.

(only if item is a object)

arguments:

d_token_t * item
const uint16_t key1
const uint16_t key2

returns: d_token_t *

d_get_at

d_token_t* d_get_at(d_token_t *item, const uint32_t index);

returns the token of an array with the given index

arguments:

d_token_t * item
const uint32_t index

returns: d_token_t *

d_next

d_token_t* d_next(d_token_t *item);

returns the next sibling of an array or object

arguments:

d_token_t * item

returns: d_token_t *

d_prev

d_token_t* d_prev(d_token_t *item);

returns the prev sibling of an array or object

arguments:

d_token_t * item

returns: d_token_t *

140 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

d_serialize_binary

void d_serialize_binary(bytes_builder_t *bb, d_token_t *t);

write the token as binary data into the builder

arguments:

bytes_builder_t * bb
d_token_t * t

parse_binary

json_ctx_t* parse_binary(bytes_t *data);

parses the data and returns the context with the token, which needs to be freed after usage!

arguments:

bytes_t * data

returns: json_ctx_t *

parse_binary_str

json_ctx_t* parse_binary_str(char *data, int len);

parses the data and returns the context with the token, which needs to be freed after usage!

arguments:

char * data
int len

returns: json_ctx_t *

parse_json

json_ctx_t* parse_json(char *js);

parses json-data, which needs to be freed after usage!

arguments:

char * js

returns: json_ctx_t *

8.7. Module core 141

Incubed Documentation, Release 1.2

free_json

void free_json(json_ctx_t *parser_ctx);

frees the parse-context after usage

arguments:

json_ctx_t * parser_ctx

d_to_json

str_range_t d_to_json(d_token_t *item);

returns the string for a object or array.

This only works for json as string. For binary it will not work!

arguments:

d_token_t * item

returns: str_range_t

d_create_json

char* d_create_json(d_token_t *item);

creates a json-string.

It does not work for objects if the parsed data were binary!

arguments:

d_token_t * item

returns: char *

json_create

json_ctx_t* json_create();

returns: json_ctx_t *

json_create_null

d_token_t* json_create_null(json_ctx_t *jp);

142 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

arguments:

json_ctx_t * jp

returns: d_token_t *

json_create_bool

d_token_t* json_create_bool(json_ctx_t *jp, bool value);

arguments:

json_ctx_t * jp
bool value

returns: d_token_t *

json_create_int

d_token_t* json_create_int(json_ctx_t *jp, uint64_t value);

arguments:

json_ctx_t * jp
uint64_t value

returns: d_token_t *

json_create_string

d_token_t* json_create_string(json_ctx_t *jp, char *value);

arguments:

json_ctx_t * jp
char * value

returns: d_token_t *

json_create_bytes

d_token_t* json_create_bytes(json_ctx_t *jp, bytes_t value);

arguments:

json_ctx_t * jp
bytes_t value

returns: d_token_t *

8.7. Module core 143

Incubed Documentation, Release 1.2

json_create_object

d_token_t* json_create_object(json_ctx_t *jp);

arguments:

json_ctx_t * jp

returns: d_token_t *

json_create_array

d_token_t* json_create_array(json_ctx_t *jp);

arguments:

json_ctx_t * jp

returns: d_token_t *

json_object_add_prop

d_token_t* json_object_add_prop(d_token_t *object, d_key_t key, d_token_t *value);

arguments:

d_token_t * object
d_key_t key
d_token_t * value

returns: d_token_t *

json_array_add_value

d_token_t* json_array_add_value(d_token_t *object, d_token_t *value);

arguments:

d_token_t * object
d_token_t * value

returns: d_token_t *

json_get_int_value

int json_get_int_value(char *js, char *prop);

144 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

parses the json and return the value as int.

arguments:

char * js
char * prop

returns: int

json_get_str_value

void json_get_str_value(char *js, char *prop, char *dst);

parses the json and return the value as string.

arguments:

char * js
char * prop
char * dst

json_get_json_value

char* json_get_json_value(char *js, char *prop);

parses the json and return the value as json-string.

arguments:

char * js
char * prop

returns: char *

d_get_keystr

char* d_get_keystr(d_key_t k);

returns the string for a key.

This only works track_keynames was activated before!

arguments:

d_key_t k

returns: char *

8.7. Module core 145

Incubed Documentation, Release 1.2

d_track_keynames

void d_track_keynames(uint8_t v);

activates the keyname-cache, which stores the string for the keys when parsing.

arguments:

uint8_t v

d_clear_keynames

void d_clear_keynames();

delete the cached keynames

key

static d_key_t key(const char *c);

arguments:

const char * c

returns: d_key_t

d_get_stringk

static char* d_get_stringk(d_token_t *r, d_key_t k);

reads token of a property as string.

arguments:

d_token_t * r
d_key_t k

returns: char *

d_get_string

static char* d_get_string(d_token_t *r, char *k);

reads token of a property as string.

arguments:

d_token_t * r
char * k

146 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

returns: char *

d_get_string_at

static char* d_get_string_at(d_token_t *r, uint32_t pos);

reads string at given pos of an array.

arguments:

d_token_t * r
uint32_t pos

returns: char *

d_get_intk

static uint32_t d_get_intk(d_token_t *r, d_key_t k);

reads token of a property as int.

arguments:

d_token_t * r
d_key_t k

returns: uint32_t

d_get_intkd

static uint32_t d_get_intkd(d_token_t *r, d_key_t k, uint32_t d);

reads token of a property as int.

arguments:

d_token_t * r
d_key_t k
uint32_t d

returns: uint32_t

d_get_int

static uint32_t d_get_int(d_token_t *r, char *k);

reads token of a property as int.

arguments:

8.7. Module core 147

Incubed Documentation, Release 1.2

d_token_t * r
char * k

returns: uint32_t

d_get_int_at

static uint32_t d_get_int_at(d_token_t *r, uint32_t pos);

reads a int at given pos of an array.

arguments:

d_token_t * r
uint32_t pos

returns: uint32_t

d_get_longk

static uint64_t d_get_longk(d_token_t *r, d_key_t k);

reads token of a property as long.

arguments:

d_token_t * r
d_key_t k

returns: uint64_t

d_get_longkd

static uint64_t d_get_longkd(d_token_t *r, d_key_t k, uint64_t d);

reads token of a property as long.

arguments:

d_token_t * r
d_key_t k
uint64_t d

returns: uint64_t

148 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

d_get_long

static uint64_t d_get_long(d_token_t *r, char *k);

reads token of a property as long.

arguments:

d_token_t * r
char * k

returns: uint64_t

d_get_long_at

static uint64_t d_get_long_at(d_token_t *r, uint32_t pos);

reads long at given pos of an array.

arguments:

d_token_t * r
uint32_t pos

returns: uint64_t

d_get_bytesk

static bytes_t* d_get_bytesk(d_token_t *r, d_key_t k);

reads token of a property as bytes.

arguments:

d_token_t * r
d_key_t k

returns: bytes_t *

d_get_bytes

static bytes_t* d_get_bytes(d_token_t *r, char *k);

reads token of a property as bytes.

arguments:

d_token_t * r
char * k

returns: bytes_t *

8.7. Module core 149

Incubed Documentation, Release 1.2

d_get_bytes_at

static bytes_t* d_get_bytes_at(d_token_t *r, uint32_t pos);

reads bytes at given pos of an array.

arguments:

d_token_t * r
uint32_t pos

returns: bytes_t *

d_is_binary_ctx

static bool d_is_binary_ctx(json_ctx_t *ctx);

check if the parser context was created from binary data.

arguments:

json_ctx_t * ctx

returns: bool

d_get_byteskl

bytes_t* d_get_byteskl(d_token_t *r, d_key_t k, uint32_t minl);

arguments:

d_token_t * r
d_key_t k
uint32_t minl

returns: bytes_t *

d_getl

d_token_t* d_getl(d_token_t *item, uint16_t k, uint32_t minl);

arguments:

d_token_t * item
uint16_t k
uint32_t minl

returns: d_token_t *

150 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

d_iter

static d_iterator_t d_iter(d_token_t *parent);

creates a iterator for a object or array

arguments:

d_token_t * parent

returns: d_iterator_t

d_iter_next

static bool d_iter_next(d_iterator_t *const iter);

fetched the next token an returns a boolean indicating whther there is a next or not.

arguments:

d_iterator_t *const iter

returns: bool

8.7.9 debug.h

logs debug data only if the DEBUG-flag is set.

Location: src/core/util/debug.h

dbg_log (msg,. . .)

dbg_log_raw (msg,. . .)

msg_dump

void msg_dump(const char *s, unsigned char *data, unsigned len);

arguments:

const char * s
unsigned char * data
unsigned len

8.7.10 error.h

defines the return-values of a function call.

Location: src/core/util/error.h

8.7. Module core 151

Incubed Documentation, Release 1.2

OPTIONAL_T (t)

#define OPTIONAL_T (t) opt_##t

DEFINE_OPTIONAL_T (t)

#define DEFINE_OPTIONAL_T (t) typedef struct { \
t value; \
bool defined; \

} OPTIONAL_T(t)

OPTIONAL_T_UNDEFINED (t)

#define OPTIONAL_T_UNDEFINED (t) ((OPTIONAL_T(t)){.defined = false})

OPTIONAL_T_VALUE (t,v)

#define OPTIONAL_T_VALUE (t,v) ((OPTIONAL_T(t)){.value = v, .defined = true})

in3_ret_t

ERROR types used as return values.

All values (except IN3_OK) indicate an error.

The enum type contains the following values:

IN3_OK 0 Success.
IN3_EUNKNOWN -1 Unknown error - usually accompanied with specific error msg.
IN3_ENOMEM -2 No memory.
IN3_ENOTSUP -3 Not supported.
IN3_EINVAL -4 Invalid value.
IN3_EFIND -5 Not found.
IN3_ECONFIG -6 Invalid config.
IN3_ELIMIT -7 Limit reached.
IN3_EVERS -8 Version mismatch.
IN3_EINVALDT -9 Data invalid, eg.

invalid/incomplete JSON
IN3_EPASS -10 Wrong password.
IN3_ERPC -11 RPC error (i.e.

in3_ctx_t::error set)
IN3_ERPCNRES -12 RPC no response.
IN3_EUSNURL -13 USN URL parse error.
IN3_ETRANS -14 Transport error.
IN3_ERANGE -15 Not in range.

152 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

8.7.11 scache.h

util helper on byte arrays.

Location: src/core/util/scache.h

cache_entry_t

The stuct contains following fields:

bytes_t key
bytes_t value
uint8_t must_free
uint8_t buffer
cache_entrystruct , * next

in3_cache_get_entry

bytes_t* in3_cache_get_entry(cache_entry_t *cache, bytes_t *key);

arguments:

cache_entry_t * cache
bytes_t * key

returns: bytes_t *

in3_cache_add_entry

cache_entry_t* in3_cache_add_entry(cache_entry_t *cache, bytes_t key, bytes_t value);

arguments:

cache_entry_t * cache
bytes_t key
bytes_t value

returns: cache_entry_t *

in3_cache_free

void in3_cache_free(cache_entry_t *cache);

arguments:

cache_entry_t * cache

8.7. Module core 153

Incubed Documentation, Release 1.2

8.7.12 stringbuilder.h

simple string buffer used to dynamicly add content.

Location: src/core/util/stringbuilder.h

sb_add_hexuint (sb,i)

#define sb_add_hexuint (sb,i) sb_add_hexuint_l(sb, i, sizeof(i))

sb_t

The stuct contains following fields:

char * data
size_t allocted
size_t len

sb_new

sb_t* sb_new(char *chars);

arguments:

char * chars

returns: sb_t *

sb_init

sb_t* sb_init(sb_t *sb);

arguments:

sb_t * sb

returns: sb_t *

sb_free

void sb_free(sb_t *sb);

arguments:

sb_t * sb

154 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

sb_add_char

sb_t* sb_add_char(sb_t *sb, char c);

arguments:

sb_t * sb
char c

returns: sb_t *

sb_add_chars

sb_t* sb_add_chars(sb_t *sb, char *chars);

arguments:

sb_t * sb
char * chars

returns: sb_t *

sb_add_range

sb_t* sb_add_range(sb_t *sb, const char *chars, int start, int len);

arguments:

sb_t * sb
const char * chars
int start
int len

returns: sb_t *

sb_add_key_value

sb_t* sb_add_key_value(sb_t *sb, char *key, char *value, int lv, bool as_string);

arguments:

sb_t * sb
char * key
char * value
int lv
bool as_string

returns: sb_t *

8.7. Module core 155

Incubed Documentation, Release 1.2

sb_add_bytes

sb_t* sb_add_bytes(sb_t *sb, char *prefix, bytes_t *bytes, int len, bool as_array);

arguments:

sb_t * sb
char * prefix
bytes_t * bytes
int len
bool as_array

returns: sb_t *

sb_add_hexuint_l

sb_t* sb_add_hexuint_l(sb_t *sb, uintmax_t uint, size_t l);

Other types not supported

arguments:

sb_t * sb
uintmax_t uint
size_t l

returns: sb_t *

8.7.13 utils.h

utility functions.

Location: src/core/util/utils.h

SWAP (a,b)

#define SWAP (a,b) { \
void* p = a; \
a = b; \
b = p; \

}

min (a,b)

#define min (a,b) ((a) < (b) ? (a) : (b))

156 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

max (a,b)

#define max (a,b) ((a) > (b) ? (a) : (b))

IS_APPROX (n1,n2,err)

#define IS_APPROX (n1,n2,err) ((n1 > n2) ? ((n1 - n2) <= err) : ((n2 - n1) <= err))

optimize_len (a,l)

#define optimize_len (a,l) while (l > 1 && *a == 0) { \
l--; \
a++; \

}

TRY (exp)

#define TRY (exp) { \
int _r = (exp); \
if (_r < 0) return _r; \

}

TRY_SET (var,exp)

#define TRY_SET (var,exp) { \
var = (exp); \
if (var < 0) return var; \

}

TRY_GOTO (exp)

#define TRY_GOTO (exp) { \
res = (exp); \
if (res < 0) goto clean; \

}

pb_size_t

typedef uint32_t pb_size_t

pb_byte_t

typedef uint_least8_t pb_byte_t

8.7. Module core 157

Incubed Documentation, Release 1.2

bytes_to_long

uint64_t bytes_to_long(uint8_t *data, int len);

converts the bytes to a unsigned long (at least the last max len bytes)

arguments:

uint8_t * data
int len

returns: uint64_t

bytes_to_int

static uint32_t bytes_to_int(uint8_t *data, int len);

converts the bytes to a unsigned int (at least the last max len bytes)

arguments:

uint8_t * data
int len

returns: uint32_t

c_to_long

uint64_t c_to_long(char *a, int l);

converts a character into a uint64_t

arguments:

char * a
int l

returns: uint64_t

size_of_bytes

int size_of_bytes(int str_len);

the number of bytes used for a conerting a hex into bytes.

arguments:

int str_len

returns: int

158 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

strtohex

uint8_t strtohex(char c);

converts a hexchar to byte (4bit)

arguments:

char c

returns: uint8_t

u64tostr

const unsigned char* u64tostr(uint64_t value, char *pBuf, int szBuf);

converts a uint64_t to string (char*); buffer-size min.

21 bytes

arguments:

uint64_t value
char * pBuf
int szBuf

returns: const unsigned char *

hex2byte_arr

int hex2byte_arr(char *buf, int len, uint8_t *out, int outbuf_size);

convert a c string to a byte array storing it into a existing buffer

arguments:

char * buf
int len
uint8_t * out
int outbuf_size

returns: int

hex2long

uint64_t hex2long(char *buf);

convert hex to long

arguments:

char * buf

8.7. Module core 159

Incubed Documentation, Release 1.2

returns: uint64_t

hex2byte_new_bytes

bytes_t* hex2byte_new_bytes(char *buf, int len);

convert a c string to a byte array creating a new buffer

arguments:

char * buf
int len

returns: bytes_t *

bytes_to_hex

int bytes_to_hex(uint8_t *buffer, int len, char *out);

convefrts a bytes into hex

arguments:

uint8_t * buffer
int len
char * out

returns: int

sha3

bytes_t* sha3(bytes_t *data);

hashes the bytes and creates a new bytes_t

arguments:

bytes_t * data

returns: bytes_t *

sha3_to

int sha3_to(bytes_t *data, void *dst);

writes 32 bytes to the pointer.

arguments:

bytes_t * data
void * dst

160 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

returns: int

long_to_bytes

void long_to_bytes(uint64_t val, uint8_t *dst);

converts a long to 8 bytes

arguments:

uint64_t val
uint8_t * dst

int_to_bytes

void int_to_bytes(uint32_t val, uint8_t *dst);

converts a int to 4 bytes

arguments:

uint32_t val
uint8_t * dst

hash_cmp

int hash_cmp(uint8_t *a, uint8_t *b);

compares 32 bytes and returns 0 if equal

arguments:

uint8_t * a
uint8_t * b

returns: int

_strdupn

char* _strdupn(char *src, int len);

duplicate the string

arguments:

char * src
int len

returns: char *

8.7. Module core 161

Incubed Documentation, Release 1.2

min_bytes_len

int min_bytes_len(uint64_t val);

calculate the min number of byte to represents the len

arguments:

uint64_t val

returns: int

uint256_set

void uint256_set(uint8_t *src, wlen_t src_len, uint8_t dst[32]);

sets a variable value to 32byte word.

arguments:

uint8_t * src
wlen_t src_len
uint8_t dst

str_replace

char* str_replace(char *orig, char *rep, char *with);

arguments:

char * orig
char * rep
char * with

returns: char *

str_replace_pos

char* str_replace_pos(char *orig, size_t pos, size_t len, const char *rep);

arguments:

char * orig
size_t pos
size_t len
const char * rep

returns: char *

162 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

str_find

char* str_find(char *haystack, const char *needle);

arguments:

char * haystack
const char * needle

returns: char *

8.8 Module transport/curl

8.8.1 in3_curl.h

transport-handler using libcurl.

Location: src/transport/curl/in3_curl.h

send_curl

in3_ret_t send_curl(char **urls, int urls_len, char *payload, in3_response_t *result);

the transport function using curl.

arguments:

char ** urls
int urls_len
char * payload
in3_response_t * result

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_register_curl

void in3_register_curl();

registers curl as a default transport.

8.9 Module transport/http

8.9.1 in3_http.h

transport-handler using simple http.

Location: src/transport/http/in3_http.h

8.8. Module transport/curl 163

Incubed Documentation, Release 1.2

send_http

in3_ret_t send_http(char **urls, int urls_len, char *payload, in3_response_t *result);

arguments:

char ** urls
int urls_len
char * payload
in3_response_t * result

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

8.10 Module verifier/eth1/basic

8.10.1 eth_basic.h

Ethereum Nanon verification.

Location: src/verifier/eth1/basic/eth_basic.h

in3_verify_eth_basic

in3_ret_t in3_verify_eth_basic(in3_vctx_t *v);

entry-function to execute the verification context.

arguments:

in3_vctx_t * v

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_verify_tx_values

in3_ret_t eth_verify_tx_values(in3_vctx_t *vc, d_token_t *tx, bytes_t *raw);

verifies internal tx-values.

arguments:

in3_vctx_t * vc
d_token_t * tx
bytes_t * raw

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

164 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

eth_verify_eth_getTransaction

in3_ret_t eth_verify_eth_getTransaction(in3_vctx_t *vc, bytes_t *tx_hash);

verifies a transaction.

arguments:

in3_vctx_t * vc
bytes_t * tx_hash

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_verify_account_proof

in3_ret_t eth_verify_account_proof(in3_vctx_t *vc);

verify account-proofs

arguments:

in3_vctx_t * vc

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_verify_eth_getBlock

in3_ret_t eth_verify_eth_getBlock(in3_vctx_t *vc, bytes_t *block_hash, uint64_t
→˓blockNumber);

verifies a block

arguments:

in3_vctx_t * vc
bytes_t * block_hash
uint64_t blockNumber

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_register_eth_basic

void in3_register_eth_basic();

this function should only be called once and will register the eth-nano verifier.

8.10. Module verifier/eth1/basic 165

Incubed Documentation, Release 1.2

eth_verify_eth_getLog

in3_ret_t eth_verify_eth_getLog(in3_vctx_t *vc, int l_logs);

verify logs

arguments:

in3_vctx_t * vc
int l_logs

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_handle_intern

in3_ret_t eth_handle_intern(in3_ctx_t *ctx, in3_response_t **response);

this is called before a request is send

arguments:

in3_ctx_t * ctx
in3_response_t ** response

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

8.10.2 signer.h

Ethereum Nano verification.

Location: src/verifier/eth1/basic/signer.h

eth_set_pk_signer

in3_ret_t eth_set_pk_signer(in3_t *in3, bytes32_t pk);

sets the signer and a pk to the client

arguments:

in3_t * in3
bytes32_t pk

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

166 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

8.10.3 trie.h

Patricia Merkle Tree Imnpl.

Location: src/verifier/eth1/basic/trie.h

trie_node_type_t

Node types.

The enum type contains the following values:

NODE_EMPTY 0 empty node
NODE_BRANCH 1 a Branch
NODE_LEAF 2 a leaf containing the value.
NODE_EXT 3 a extension

in3_hasher_t

hash-function

typedef void(* in3_hasher_t) (bytes_t *src, uint8_t *dst)

in3_codec_add_t

codec to organize the encoding of the nodes

typedef void(* in3_codec_add_t) (bytes_builder_t *bb, bytes_t *val)

in3_codec_finish_t

typedef void(* in3_codec_finish_t) (bytes_builder_t *bb, bytes_t *dst)

in3_codec_decode_size_t

typedef int(* in3_codec_decode_size_t) (bytes_t *src)

returns: int(*

in3_codec_decode_index_t

typedef int(* in3_codec_decode_index_t) (bytes_t *src, int index, bytes_t *dst)

returns: int(*

8.10. Module verifier/eth1/basic 167

Incubed Documentation, Release 1.2

trie_node_t

single node in the merkle trie.

The stuct contains following fields:

uint8_t hash the hash of the node
bytes_t data the raw data
bytes_t items the data as list
uint8_t own_memory if true this is a embedded node with own memory
trie_node_type_t type type of the node
trie_nodestruct , * next used as linked list

trie_codec_t

the codec used to encode nodes.

The stuct contains following fields:

in3_codec_add_t encode_add
in3_codec_finish_t encode_finish
in3_codec_decode_size_t decode_size
in3_codec_decode_index_t decode_item

trie_t

a merkle trie implementation.

This is a Patricia Merkle Tree.

The stuct contains following fields:

in3_hasher_t hasher hash-function.
trie_codec_t * codec encoding of the nocds.
uint8_t root The root-hash.
trie_node_t * nodes linked list of containes nodes

trie_new

trie_t* trie_new();

creates a new Merkle Trie.

returns: trie_t *

trie_free

void trie_free(trie_t *val);

168 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

frees all resources of the trie.

arguments:

trie_t * val

trie_set_value

void trie_set_value(trie_t *t, bytes_t *key, bytes_t *value);

sets a value in the trie.

The root-hash will be updated automaticly.

arguments:

trie_t * t
bytes_t * key
bytes_t * value

8.11 Module verifier/eth1/evm

8.11.1 big.h

Ethereum Nanon verification.

Location: src/verifier/eth1/evm/big.h

big_is_zero

uint8_t big_is_zero(uint8_t *data, wlen_t l);

arguments:

uint8_t * data
wlen_t l

returns: uint8_t

big_shift_left

void big_shift_left(uint8_t *a, wlen_t len, int bits);

arguments:

uint8_t * a
wlen_t len
int bits

8.11. Module verifier/eth1/evm 169

Incubed Documentation, Release 1.2

big_shift_right

void big_shift_right(uint8_t *a, wlen_t len, int bits);

arguments:

uint8_t * a
wlen_t len
int bits

big_cmp

int big_cmp(const uint8_t *a, const wlen_t len_a, const uint8_t *b, const wlen_t len_
→˓b);

arguments:

const uint8_t * a
wlen_tconst len_a
const uint8_t * b
wlen_tconst len_b

returns: int

big_signed

int big_signed(uint8_t *val, wlen_t len, uint8_t *dst);

returns 0 if the value is positive or 1 if negavtive.

in this case the absolute value is copied to dst.

arguments:

uint8_t * val
wlen_t len
uint8_t * dst

returns: int

big_int

int32_t big_int(uint8_t *val, wlen_t len);

arguments:

uint8_t * val
wlen_t len

returns: int32_t

170 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

big_add

int big_add(uint8_t *a, wlen_t len_a, uint8_t *b, wlen_t len_b, uint8_t *out, wlen_t
→˓max);

arguments:

uint8_t * a
wlen_t len_a
uint8_t * b
wlen_t len_b
uint8_t * out
wlen_t max

returns: int

big_sub

int big_sub(uint8_t *a, wlen_t len_a, uint8_t *b, wlen_t len_b, uint8_t *out);

arguments:

uint8_t * a
wlen_t len_a
uint8_t * b
wlen_t len_b
uint8_t * out

returns: int

big_mul

int big_mul(uint8_t *a, wlen_t la, uint8_t *b, wlen_t lb, uint8_t *res, wlen_t max);

arguments:

uint8_t * a
wlen_t la
uint8_t * b
wlen_t lb
uint8_t * res
wlen_t max

returns: int

big_div

int big_div(uint8_t *a, wlen_t la, uint8_t *b, wlen_t lb, wlen_t sig, uint8_t *res);

8.11. Module verifier/eth1/evm 171

Incubed Documentation, Release 1.2

arguments:

uint8_t * a
wlen_t la
uint8_t * b
wlen_t lb
wlen_t sig
uint8_t * res

returns: int

big_mod

int big_mod(uint8_t *a, wlen_t la, uint8_t *b, wlen_t lb, wlen_t sig, uint8_t *res);

arguments:

uint8_t * a
wlen_t la
uint8_t * b
wlen_t lb
wlen_t sig
uint8_t * res

returns: int

big_exp

int big_exp(uint8_t *a, wlen_t la, uint8_t *b, wlen_t lb, uint8_t *res);

arguments:

uint8_t * a
wlen_t la
uint8_t * b
wlen_t lb
uint8_t * res

returns: int

big_log256

int big_log256(uint8_t *a, wlen_t len);

arguments:

uint8_t * a
wlen_t len

returns: int

172 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

8.11.2 code.h

code cache.

Location: src/verifier/eth1/evm/code.h

in3_get_code

cache_entry_t* in3_get_code(in3_vctx_t *vc, uint8_t *address);

arguments:

in3_vctx_t * vc
uint8_t * address

returns: cache_entry_t *

8.11.3 evm.h

main evm-file.

Location: src/verifier/eth1/evm/evm.h

gas_options

EVM_ERROR_EMPTY_STACK

the no more elements on the stack

#define EVM_ERROR_EMPTY_STACK -1

EVM_ERROR_INVALID_OPCODE

the opcode is not supported

#define EVM_ERROR_INVALID_OPCODE -2

EVM_ERROR_BUFFER_TOO_SMALL

reading data from a position, which is not initialized

#define EVM_ERROR_BUFFER_TOO_SMALL -3

EVM_ERROR_ILLEGAL_MEMORY_ACCESS

the memory-offset does not exist

#define EVM_ERROR_ILLEGAL_MEMORY_ACCESS -4

8.11. Module verifier/eth1/evm 173

Incubed Documentation, Release 1.2

EVM_ERROR_INVALID_JUMPDEST

the jump destination is not marked as valid destination

#define EVM_ERROR_INVALID_JUMPDEST -5

EVM_ERROR_INVALID_PUSH

the push data is empy

#define EVM_ERROR_INVALID_PUSH -6

EVM_ERROR_UNSUPPORTED_CALL_OPCODE

error handling the call, usually because static-calls are not allowed to change state

#define EVM_ERROR_UNSUPPORTED_CALL_OPCODE -7

EVM_ERROR_TIMEOUT

the evm ran into a loop

#define EVM_ERROR_TIMEOUT -8

EVM_ERROR_INVALID_ENV

the enviroment could not deliver the data

#define EVM_ERROR_INVALID_ENV -9

EVM_ERROR_OUT_OF_GAS

not enough gas to exewcute the opcode

#define EVM_ERROR_OUT_OF_GAS -10

EVM_ERROR_BALANCE_TOO_LOW

not enough funds to transfer the requested value.

#define EVM_ERROR_BALANCE_TOO_LOW -11

EVM_ERROR_STACK_LIMIT

stack limit reached

#define EVM_ERROR_STACK_LIMIT -12

174 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

EVM_PROP_FRONTIER

#define EVM_PROP_FRONTIER 1

EVM_PROP_EIP150

#define EVM_PROP_EIP150 2

EVM_PROP_EIP158

#define EVM_PROP_EIP158 4

EVM_PROP_CONSTANTINOPL

#define EVM_PROP_CONSTANTINOPL 16

EVM_PROP_NO_FINALIZE

#define EVM_PROP_NO_FINALIZE 32768

EVM_PROP_STATIC

#define EVM_PROP_STATIC 256

EVM_ENV_BALANCE

#define EVM_ENV_BALANCE 1

EVM_ENV_CODE_SIZE

#define EVM_ENV_CODE_SIZE 2

EVM_ENV_CODE_COPY

#define EVM_ENV_CODE_COPY 3

EVM_ENV_BLOCKHASH

#define EVM_ENV_BLOCKHASH 4

8.11. Module verifier/eth1/evm 175

Incubed Documentation, Release 1.2

EVM_ENV_STORAGE

#define EVM_ENV_STORAGE 5

EVM_ENV_BLOCKHEADER

#define EVM_ENV_BLOCKHEADER 6

EVM_ENV_CODE_HASH

#define EVM_ENV_CODE_HASH 7

EVM_ENV_NONCE

#define EVM_ENV_NONCE 8

MATH_ADD

#define MATH_ADD 1

MATH_SUB

#define MATH_SUB 2

MATH_MUL

#define MATH_MUL 3

MATH_DIV

#define MATH_DIV 4

MATH_SDIV

#define MATH_SDIV 5

MATH_MOD

#define MATH_MOD 6

176 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

MATH_SMOD

#define MATH_SMOD 7

MATH_EXP

#define MATH_EXP 8

MATH_SIGNEXP

#define MATH_SIGNEXP 9

CALL_CALL

#define CALL_CALL 0

CALL_CODE

#define CALL_CODE 1

CALL_DELEGATE

#define CALL_DELEGATE 2

CALL_STATIC

#define CALL_STATIC 3

OP_AND

#define OP_AND 0

OP_OR

#define OP_OR 1

OP_XOR

#define OP_XOR 2

8.11. Module verifier/eth1/evm 177

Incubed Documentation, Release 1.2

EVM_DEBUG_BLOCK (. . .)

OP_LOG (. . .)

#define OP_LOG (...) EVM_ERROR_UNSUPPORTED_CALL_OPCODE

OP_SLOAD_GAS (. . .)

OP_CREATE (. . .)

#define OP_CREATE (...) EVM_ERROR_UNSUPPORTED_CALL_OPCODE

OP_ACCOUNT_GAS (. . .)

#define OP_ACCOUNT_GAS (...) 0

OP_SELFDESTRUCT (. . .)

#define OP_SELFDESTRUCT (...) EVM_ERROR_UNSUPPORTED_CALL_OPCODE

OP_EXTCODECOPY_GAS (evm)

OP_SSTORE (. . .)

#define OP_SSTORE (...) EVM_ERROR_UNSUPPORTED_CALL_OPCODE

EVM_CALL_MODE_STATIC

#define EVM_CALL_MODE_STATIC 1

EVM_CALL_MODE_DELEGATE

#define EVM_CALL_MODE_DELEGATE 2

EVM_CALL_MODE_CALLCODE

#define EVM_CALL_MODE_CALLCODE 3

EVM_CALL_MODE_CALL

#define EVM_CALL_MODE_CALL 4

178 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

evm_state

the current state of the evm

The enum type contains the following values:

EVM_STATE_INIT 0 just initialised, but not yet started
EVM_STATE_RUNNING 1 started and still running
EVM_STATE_STOPPED 2 successfully stopped
EVM_STATE_REVERTED 3 stopped, but results must be reverted

evm_state_t

the current state of the evm

The stuct contains following fields:

evm_get_env

This function provides data from the enviroment.

depending on the key the function will set the out_data-pointer to the result. This means the enviroment is responsible
for memory management and also to clean up resources afterwards.

typedef int(* evm_get_env) (void *evm, uint16_t evm_key, uint8_t *in_data, int in_len,
→˓ uint8_t **out_data, int offset, int len)

returns: int(*

storage_t

The stuct contains following fields:

bytes32_t key
bytes32_t value
account_storagestruct , * next

logs_t

The stuct contains following fields:

bytes_t topics
bytes_t data
logsstruct , * next

account_t

The stuct contains following fields:

8.11. Module verifier/eth1/evm 179

Incubed Documentation, Release 1.2

address_t address
bytes32_t balance
bytes32_t nonce
bytes_t code
storage_t * storage
accountstruct , * next

evm_t

The stuct contains following fields:

bytes_builder_t stack
bytes_builder_t memory
int stack_size
bytes_t code
uint32_t pos
evm_state_t state
bytes_t last_returned
bytes_t return_data
uint32_t * invalid_jumpdest
uint32_t properties
evm_get_env env
void * env_ptr
uint8_t * address the address of the current storage
uint8_t * account the address of the code
uint8_t * origin the address of original sender of the root-transaction
uint8_t * caller the address of the parent sender
bytes_t call_value value send
bytes_t call_data data send in the tx
bytes_t gas_price current gasprice
uint64_t gas

gas_options

evm_stack_push

int evm_stack_push(evm_t *evm, uint8_t *data, uint8_t len);

arguments:

evm_t * evm
uint8_t * data
uint8_t len

returns: int

180 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

evm_stack_push_ref

int evm_stack_push_ref(evm_t *evm, uint8_t **dst, uint8_t len);

arguments:

evm_t * evm
uint8_t ** dst
uint8_t len

returns: int

evm_stack_push_int

int evm_stack_push_int(evm_t *evm, uint32_t val);

arguments:

evm_t * evm
uint32_t val

returns: int

evm_stack_push_long

int evm_stack_push_long(evm_t *evm, uint64_t val);

arguments:

evm_t * evm
uint64_t val

returns: int

evm_stack_get_ref

int evm_stack_get_ref(evm_t *evm, uint8_t pos, uint8_t **dst);

arguments:

evm_t * evm
uint8_t pos
uint8_t ** dst

returns: int

8.11. Module verifier/eth1/evm 181

Incubed Documentation, Release 1.2

evm_stack_pop

int evm_stack_pop(evm_t *evm, uint8_t *dst, uint8_t len);

arguments:

evm_t * evm
uint8_t * dst
uint8_t len

returns: int

evm_stack_pop_ref

int evm_stack_pop_ref(evm_t *evm, uint8_t **dst);

arguments:

evm_t * evm
uint8_t ** dst

returns: int

evm_stack_pop_byte

int evm_stack_pop_byte(evm_t *evm, uint8_t *dst);

arguments:

evm_t * evm
uint8_t * dst

returns: int

evm_stack_pop_int

int32_t evm_stack_pop_int(evm_t *evm);

arguments:

evm_t * evm

returns: int32_t

182 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

evm_stack_peek_len

int evm_stack_peek_len(evm_t *evm);

arguments:

evm_t * evm

returns: int

evm_run

int evm_run(evm_t *evm, address_t code_address);

arguments:

evm_t * evm
address_t code_address

returns: int

evm_sub_call

int evm_sub_call(evm_t *parent, uint8_t address[20], uint8_t account[20], uint8_t
→˓*value, wlen_t l_value, uint8_t *data, uint32_t l_data, uint8_t caller[20], uint8_t
→˓origin[20], uint64_t gas, wlen_t mode, uint32_t out_offset, uint32_t out_len);

handle internal calls.

arguments:

evm_t * parent
uint8_t address
uint8_t account
uint8_t * value
wlen_t l_value
uint8_t * data
uint32_t l_data
uint8_t caller
uint8_t origin
uint64_t gas
wlen_t mode
uint32_t out_offset
uint32_t out_len

returns: int

8.11. Module verifier/eth1/evm 183

Incubed Documentation, Release 1.2

evm_ensure_memory

int evm_ensure_memory(evm_t *evm, uint32_t max_pos);

arguments:

evm_t * evm
uint32_t max_pos

returns: int

in3_get_env

int in3_get_env(void *evm_ptr, uint16_t evm_key, uint8_t *in_data, int in_len, uint8_
→˓t **out_data, int offset, int len);

arguments:

void * evm_ptr
uint16_t evm_key
uint8_t * in_data
int in_len
uint8_t ** out_data
int offset
int len

returns: int

evm_call

int evm_call(void *vc, uint8_t address[20], uint8_t *value, wlen_t l_value, uint8_t
→˓*data, uint32_t l_data, uint8_t caller[20], uint64_t gas, bytes_t **result);

run a evm-call

arguments:

void * vc
uint8_t address
uint8_t * value
wlen_t l_value
uint8_t * data
uint32_t l_data
uint8_t caller
uint64_t gas
bytes_t ** result

returns: int

184 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

evm_print_stack

void evm_print_stack(evm_t *evm, uint64_t last_gas, uint32_t pos);

arguments:

evm_t * evm
uint64_t last_gas
uint32_t pos

evm_free

void evm_free(evm_t *evm);

arguments:

evm_t * evm

evm_run_precompiled

int evm_run_precompiled(evm_t *evm, uint8_t address[20]);

arguments:

evm_t * evm
uint8_t address

returns: int

evm_is_precompiled

uint8_t evm_is_precompiled(evm_t *evm, uint8_t address[20]);

arguments:

evm_t * evm
uint8_t address

returns: uint8_t

uint256_set

void uint256_set(uint8_t *src, wlen_t src_len, uint8_t dst[32]);

sets a variable value to 32byte word.

arguments:

8.11. Module verifier/eth1/evm 185

Incubed Documentation, Release 1.2

uint8_t * src
wlen_t src_len
uint8_t dst

evm_execute

int evm_execute(evm_t *evm);

arguments:

evm_t * evm

returns: int

8.11.4 gas.h

evm gas defines.

Location: src/verifier/eth1/evm/gas.h

op_exec (m,gas)

#define op_exec (m,gas) return m;

subgas (g)

GAS_CC_NET_SSTORE_NOOP_GAS

Once per SSTORE operation if the value doesn’t change.

#define GAS_CC_NET_SSTORE_NOOP_GAS 200

GAS_CC_NET_SSTORE_INIT_GAS

Once per SSTORE operation from clean zero.

#define GAS_CC_NET_SSTORE_INIT_GAS 20000

GAS_CC_NET_SSTORE_CLEAN_GAS

Once per SSTORE operation from clean non-zero.

#define GAS_CC_NET_SSTORE_CLEAN_GAS 5000

186 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

GAS_CC_NET_SSTORE_DIRTY_GAS

Once per SSTORE operation from dirty.

#define GAS_CC_NET_SSTORE_DIRTY_GAS 200

GAS_CC_NET_SSTORE_CLEAR_REFUND

Once per SSTORE operation for clearing an originally existing storage slot.

#define GAS_CC_NET_SSTORE_CLEAR_REFUND 15000

GAS_CC_NET_SSTORE_RESET_REFUND

Once per SSTORE operation for resetting to the original non-zero value.

#define GAS_CC_NET_SSTORE_RESET_REFUND 4800

GAS_CC_NET_SSTORE_RESET_CLEAR_REFUND

Once per SSTORE operation for resetting to the original zero valuev.

#define GAS_CC_NET_SSTORE_RESET_CLEAR_REFUND 19800

G_ZERO

Nothing is paid for operations of the set Wzero.

#define G_ZERO 0

G_JUMPDEST

JUMP DEST.

#define G_JUMPDEST 1

G_BASE

This is the amount of gas to pay for operations of the set Wbase.

#define G_BASE 2

G_VERY_LOW

This is the amount of gas to pay for operations of the set Wverylow.

#define G_VERY_LOW 3

8.11. Module verifier/eth1/evm 187

Incubed Documentation, Release 1.2

G_LOW

This is the amount of gas to pay for operations of the set Wlow.

#define G_LOW 5

G_MID

This is the amount of gas to pay for operations of the set Wmid.

#define G_MID 8

G_HIGH

This is the amount of gas to pay for operations of the set Whigh.

#define G_HIGH 10

G_EXTCODE

This is the amount of gas to pay for operations of the set Wextcode.

#define G_EXTCODE 700

G_BALANCE

This is the amount of gas to pay for a BALANCE operation.

#define G_BALANCE 400

G_SLOAD

This is paid for an SLOAD operation.

#define G_SLOAD 200

G_SSET

This is paid for an SSTORE operation when the storage value is set to non-zero from zero.

#define G_SSET 20000

G_SRESET

This is the amount for an SSTORE operation when the storage value’s zeroness remains unchanged or is set to zero.

#define G_SRESET 5000

188 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

R_SCLEAR

This is the refund given (added into the refund counter) when the storage value is set to zero from non-zero.

#define R_SCLEAR 15000

R_SELFDESTRUCT

This is the refund given (added into the refund counter) for self-destructing an account.

#define R_SELFDESTRUCT 24000

G_SELFDESTRUCT

This is the amount of gas to pay for a SELFDESTRUCT operation.

#define G_SELFDESTRUCT 5000

G_CREATE

This is paid for a CREATE operation.

#define G_CREATE 32000

G_CODEDEPOSIT

This is paid per byte for a CREATE operation to succeed in placing code into the state.

#define G_CODEDEPOSIT 200

G_CALL

This is paid for a CALL operation.

#define G_CALL 700

G_CALLVALUE

This is paid for a non-zero value transfer as part of the CALL operation.

#define G_CALLVALUE 9000

G_CALLSTIPEND

This is a stipend for the called contract subtracted from Gcallvalue for a non-zero value transfer.

#define G_CALLSTIPEND 2300

8.11. Module verifier/eth1/evm 189

Incubed Documentation, Release 1.2

G_NEWACCOUNT

This is paid for a CALL or for a SELFDESTRUCT operation which creates an account.

#define G_NEWACCOUNT 25000

G_EXP

This is a partial payment for an EXP operation.

#define G_EXP 10

G_EXPBYTE

This is a partial payment when multiplied by dlog256(exponent)e for the EXP operation.

#define G_EXPBYTE 50

G_MEMORY

This is paid for every additional word when expanding memory.

#define G_MEMORY 3

G_TXCREATE

This is paid by all contract-creating transactions after the Homestead transition.

#define G_TXCREATE 32000

G_TXDATA_ZERO

This is paid for every zero byte of data or code for a transaction.

#define G_TXDATA_ZERO 4

G_TXDATA_NONZERO

This is paid for every non-zero byte of data or code for a transaction.

#define G_TXDATA_NONZERO 68

G_TRANSACTION

This is paid for every transaction.

#define G_TRANSACTION 21000

190 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

G_LOG

This is a partial payment for a LOG operation.

#define G_LOG 375

G_LOGDATA

This is paid for each byte in a LOG operation’s data.

#define G_LOGDATA 8

G_LOGTOPIC

This is paid for each topic of a LOG operation.

#define G_LOGTOPIC 375

G_SHA3

This is paid for each SHA3 operation.

#define G_SHA3 30

G_SHA3WORD

This is paid for each word (rounded up) for input data to a SHA3 operation.

#define G_SHA3WORD 6

G_COPY

This is a partial payment for *COPY operations, multiplied by the number of words copied, rounded up.

#define G_COPY 3

G_BLOCKHASH

This is a payment for a BLOCKHASH operation.

#define G_BLOCKHASH 20

G_PRE_EC_RECOVER

Precompile EC RECOVER.

#define G_PRE_EC_RECOVER 3000

8.11. Module verifier/eth1/evm 191

Incubed Documentation, Release 1.2

G_PRE_SHA256

Precompile SHA256.

#define G_PRE_SHA256 60

G_PRE_SHA256_WORD

Precompile SHA256 per word.

#define G_PRE_SHA256_WORD 12

G_PRE_RIPEMD160

Precompile RIPEMD160.

#define G_PRE_RIPEMD160 600

G_PRE_RIPEMD160_WORD

Precompile RIPEMD160 per word.

#define G_PRE_RIPEMD160_WORD 120

G_PRE_IDENTITY

Precompile IDENTIY (copyies data)

#define G_PRE_IDENTITY 15

G_PRE_IDENTITY_WORD

Precompile IDENTIY per word.

#define G_PRE_IDENTITY_WORD 3

G_PRE_MODEXP_GQUAD_DIVISOR

Gquaddivisor from modexp precompile for gas calculation.

#define G_PRE_MODEXP_GQUAD_DIVISOR 20

G_PRE_ECADD

Gas costs for curve addition precompile.

#define G_PRE_ECADD 500

192 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

G_PRE_ECMUL

Gas costs for curve multiplication precompile.

#define G_PRE_ECMUL 40000

G_PRE_ECPAIRING

Base gas costs for curve pairing precompile.

#define G_PRE_ECPAIRING 100000

G_PRE_ECPAIRING_WORD

Gas costs regarding curve pairing precompile input length.

#define G_PRE_ECPAIRING_WORD 80000

EVM_STACK_LIMIT

max elements of the stack

#define EVM_STACK_LIMIT 1024

EVM_MAX_CODE_SIZE

max size of the code

#define EVM_MAX_CODE_SIZE 24576

FRONTIER_G_EXPBYTE

fork values

This is a partial payment when multiplied by dlog256(exponent)e for the EXP operation.

#define FRONTIER_G_EXPBYTE 10

FRONTIER_G_SLOAD

This is a partial payment when multiplied by dlog256(exponent)e for the EXP operation.

#define FRONTIER_G_SLOAD 50

8.11. Module verifier/eth1/evm 193

Incubed Documentation, Release 1.2

FREE_EVM (. . .)

INIT_EVM (. . .)

INIT_GAS (. . .)

SUBGAS (. . .)

FINALIZE_SUBCALL_GAS (. . .)

UPDATE_SUBCALL_GAS (. . .)

FINALIZE_AND_REFUND_GAS (. . .)

KEEP_TRACK_GAS (evm)

#define KEEP_TRACK_GAS (evm) 0

SELFDESTRUCT_GAS (evm,g)

#define SELFDESTRUCT_GAS (evm,g) EVM_ERROR_UNSUPPORTED_CALL_OPCODE

UPDATE_ACCOUNT_CODE (. . .)

8.12 Module verifier/eth1/full

8.12.1 eth_full.h

Ethereum Nanon verification.

Location: src/verifier/eth1/full/eth_full.h

in3_verify_eth_full

int in3_verify_eth_full(in3_vctx_t *v);

entry-function to execute the verification context.

arguments:

in3_vctx_t * v

returns: int

in3_register_eth_full

void in3_register_eth_full();

this function should only be called once and will register the eth-full verifier.

194 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

8.13 Module verifier/eth1/nano

8.13.1 chainspec.h

Ethereum chain specification.

Location: src/verifier/eth1/nano/chainspec.h

BLOCK_LATEST

#define BLOCK_LATEST 0xFFFFFFFFFFFFFFFF

eth_consensus_type_t

the consensus type.

The enum type contains the following values:

ETH_POW 0 Pro of Work (Ethash)
ETH_POA_AURA 1 Proof of Authority using Aura.
ETH_POA_CLIQUE 2 Proof of Authority using clique.

eip_transition_t

The stuct contains following fields:

uint64_t transition_block
eip_t eips

consensus_transition_t

The stuct contains following fields:

uint64_t transition_block
eth_consensus_type_t type
bytes_t validators
uint8_t * contract

chainspec_t

The stuct contains following fields:

uint64_t network_id
uint64_t account_start_nonce
uint32_t eip_transitions_len
eip_transition_t * eip_transitions
uint32_t consensus_transitions_len
consensus_transition_t * consensus_transitions

8.13. Module verifier/eth1/nano 195

Incubed Documentation, Release 1.2

attribute

struct __attribute__((__packed__)) eip_;

defines the flags for the current activated EIPs.

Since it does not make sense to support a evm defined before Homestead, homestead EIP is always turned on!

< REVERT instruction

< Bitwise shifting instructions in EVM

< Gas cost changes for IO-heavy operations

< Simple replay attack protection

< EXP cost increase

< Contract code size limit

< Precompiled contracts for addition and scalar multiplication on the elliptic curve alt_bn128

< Precompiled contracts for optimal ate pairing check on the elliptic curve alt_bn128

< Big integer modular exponentiation

< New opcodes: RETURNDATASIZE and RETURNDATACOPY

< New opcode STATICCALL

< Embedding transaction status code in receipts

< Skinny CREATE2

< EXTCODEHASH opcode

< Net gas metering for SSTORE without dirty maps

arguments:

(__packed__)

returns: struct

chainspec_create_from_json

chainspec_t* chainspec_create_from_json(d_token_t *data);

arguments:

d_token_t * data

returns: chainspec_t *

chainspec_get_eip

eip_t chainspec_get_eip(chainspec_t *spec, uint64_t block_number);

196 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

arguments:

chainspec_t * spec
uint64_t block_number

returns: eip_t

chainspec_get_consensus

consensus_transition_t* chainspec_get_consensus(chainspec_t *spec, uint64_t block_
→˓number);

arguments:

chainspec_t * spec
uint64_t block_number

returns: consensus_transition_t *

chainspec_to_bin

in3_ret_t chainspec_to_bin(chainspec_t *spec, bytes_builder_t *bb);

arguments:

chainspec_t * spec
bytes_builder_t * bb

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

chainspec_from_bin

chainspec_t* chainspec_from_bin(void *raw);

arguments:

void * raw

returns: chainspec_t *

chainspec_get

chainspec_t* chainspec_get(uint64_t chain_id);

8.13. Module verifier/eth1/nano 197

Incubed Documentation, Release 1.2

arguments:

uint64_t chain_id

returns: chainspec_t *

chainspec_put

void chainspec_put(uint64_t chain_id, chainspec_t *spec);

arguments:

uint64_t chain_id
chainspec_t * spec

8.13.2 eth_nano.h

Ethereum Nanon verification.

Location: src/verifier/eth1/nano/eth_nano.h

in3_verify_eth_nano

in3_ret_t in3_verify_eth_nano(in3_vctx_t *v);

entry-function to execute the verification context.

arguments:

in3_vctx_t * v

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_verify_blockheader

in3_ret_t eth_verify_blockheader(in3_vctx_t *vc, bytes_t *header, bytes_t *expected_
→˓blockhash);

verifies a blockheader.

verifies a blockheader.

arguments:

in3_vctx_t * vc
bytes_t * header
bytes_t * expected_blockhash

returns: in3_ret_t the result-status of the function.

198 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

Please make sure you check if it was successfull (==IN3_OK)

eth_verify_signature

int eth_verify_signature(in3_vctx_t *vc, bytes_t *msg_hash, d_token_t *sig);

verifies a single signature blockheader.

This function will return a positive integer with a bitmask holding the bit set according to the address that signed it.
This is based on the signatiures in the request-config.

arguments:

in3_vctx_t * vc
bytes_t * msg_hash
d_token_t * sig

returns: int

ecrecover_signature

bytes_t* ecrecover_signature(bytes_t *msg_hash, d_token_t *sig);

returns the address of the signature if the msg_hash is correct

arguments:

bytes_t * msg_hash
d_token_t * sig

returns: bytes_t *

eth_verify_eth_getTransactionReceipt

in3_ret_t eth_verify_eth_getTransactionReceipt(in3_vctx_t *vc, bytes_t *tx_hash);

verifies a transaction receipt.

arguments:

in3_vctx_t * vc
bytes_t * tx_hash

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

8.13. Module verifier/eth1/nano 199

Incubed Documentation, Release 1.2

eth_verify_in3_nodelist

in3_ret_t eth_verify_in3_nodelist(in3_vctx_t *vc, uint32_t node_limit, bytes_t *seed,
→˓d_token_t *required_addresses);

verifies the nodelist.

arguments:

in3_vctx_t * vc
uint32_t node_limit
bytes_t * seed
d_token_t * required_addresses

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_register_eth_nano

void in3_register_eth_nano();

this function should only be called once and will register the eth-nano verifier.

create_tx_path

bytes_t* create_tx_path(uint32_t index);

helper function to rlp-encode the transaction_index.

The result must be freed after use!

arguments:

uint32_t index

returns: bytes_t *

8.13.3 merkle.h

Merkle Proof Verification.

Location: src/verifier/eth1/nano/merkle.h

MERKLE_DEPTH_MAX

#define MERKLE_DEPTH_MAX 64

200 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

trie_verify_proof

int trie_verify_proof(bytes_t *rootHash, bytes_t *path, bytes_t **proof, bytes_t
→˓*expectedValue);

verifies a merkle proof.

expectedValue == NULL : value must not exist expectedValue.data ==NULL : please copy the data I want to evaluate
it afterwards. expectedValue.data !=NULL : the value must match the data.

arguments:

bytes_t * rootHash
bytes_t * path
bytes_t ** proof
bytes_t * expectedValue

returns: int

trie_path_to_nibbles

uint8_t* trie_path_to_nibbles(bytes_t path, int use_prefix);

helper function split a path into 4-bit nibbles.

The result must be freed after use!

arguments:

bytes_t path
int use_prefix

returns: uint8_t * : the resulting bytes represent a 4bit-number each and are terminated with a 0xFF.

trie_matching_nibbles

int trie_matching_nibbles(uint8_t *a, uint8_t *b);

helper function to find the number of nibbles matching both paths.

arguments:

uint8_t * a
uint8_t * b

returns: int

trie_free_proof

void trie_free_proof(bytes_t **proof);

8.13. Module verifier/eth1/nano 201

Incubed Documentation, Release 1.2

used to free the NULL-terminated proof-array.

arguments:

bytes_t ** proof

8.13.4 rlp.h

RLP-En/Decoding as described in the Ethereum RLP-Spec.

This decoding works without allocating new memory.

Location: src/verifier/eth1/nano/rlp.h

rlp_decode

int rlp_decode(bytes_t *b, int index, bytes_t *dst);

this function decodes the given bytes and returns the element with the given index by updating the reference of dst.

the bytes will only hold references and do not need to be freed!

bytes_t* tx_raw = serialize_tx(tx);

bytes_t item;

// decodes the tx_raw by letting the item point to range of the first element, which
→˓should be the body of a list.
if (rlp_decode(tx_raw, 0, &item) !=2) return -1 ;

// now decode the 4th element (which is the value) and let item point to that range.
if (rlp_decode(&item, 4, &item) !=1) return -1 ;

arguments:

bytes_t * b
int index
bytes_t * dst

returns: int : - 0 : means item out of range

• 1 : item found

• 2 : list found (you can then decode the same bytes again)

rlp_decode_in_list

int rlp_decode_in_list(bytes_t *b, int index, bytes_t *dst);

this function expects a list item (like the blockheader as first item and will then find the item within this list).

It is a shortcut for

202 Chapter 8. API Reference C

https://github.com/ethereum/wiki/wiki/RLP

Incubed Documentation, Release 1.2

// decode the list
if (rlp_decode(b,0,dst)!=2) return 0;
// and the decode the item
return rlp_decode(dst,index,dst);

arguments:

bytes_t * b
int index
bytes_t * dst

returns: int : - 0 : means item out of range

• 1 : item found

• 2 : list found (you can then decode the same bytes again)

rlp_decode_len

int rlp_decode_len(bytes_t *b);

returns the number of elements found in the data.

arguments:

bytes_t * b

returns: int

rlp_decode_item_len

int rlp_decode_item_len(bytes_t *b, int index);

returns the number of bytes of the element specified by index.

arguments:

bytes_t * b
int index

returns: int : the number of bytes or 0 if not found.

rlp_decode_item_type

int rlp_decode_item_type(bytes_t *b, int index);

returns the type of the element specified by index.

arguments:

bytes_t * b
int index

8.13. Module verifier/eth1/nano 203

Incubed Documentation, Release 1.2

returns: int : - 0 : means item out of range

• 1 : item found

• 2 : list found (you can then decode the same bytes again)

rlp_encode_item

void rlp_encode_item(bytes_builder_t *bb, bytes_t *val);

encode a item as single string and add it to the bytes_builder.

arguments:

bytes_builder_t * bb
bytes_t * val

rlp_encode_list

void rlp_encode_list(bytes_builder_t *bb, bytes_t *val);

encode a the value as list of already encoded items.

arguments:

bytes_builder_t * bb
bytes_t * val

rlp_encode_to_list

bytes_builder_t* rlp_encode_to_list(bytes_builder_t *bb);

converts the data in the builder to a list.

This function is optimized to not increase the memory more than needed and is fastet than creating a second builder
to encode the data.

arguments:

bytes_builder_t * bb

returns: bytes_builder_t * : the same builder.

rlp_encode_to_item

bytes_builder_t* rlp_encode_to_item(bytes_builder_t *bb);

converts the data in the builder to a rlp-encoded item.

This function is optimized to not increase the memory more than needed and is fastet than creating a second builder
to encode the data.

arguments:

204 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

bytes_builder_t * bb

returns: bytes_builder_t * : the same builder.

rlp_add_length

void rlp_add_length(bytes_builder_t *bb, uint32_t len, uint8_t offset);

helper to encode the prefix for a value

arguments:

bytes_builder_t * bb
uint32_t len
uint8_t offset

8.13.5 serialize.h

serialization of ETH-Objects.

This incoming tokens will represent their values as properties based on JSON-RPC.

Location: src/verifier/eth1/nano/serialize.h

BLOCKHEADER_PARENT_HASH

#define BLOCKHEADER_PARENT_HASH 0

BLOCKHEADER_SHA3_UNCLES

#define BLOCKHEADER_SHA3_UNCLES 1

BLOCKHEADER_MINER

#define BLOCKHEADER_MINER 2

BLOCKHEADER_STATE_ROOT

#define BLOCKHEADER_STATE_ROOT 3

BLOCKHEADER_TRANSACTIONS_ROOT

#define BLOCKHEADER_TRANSACTIONS_ROOT 4

8.13. Module verifier/eth1/nano 205

https://github.com/ethereum/wiki/wiki/JSON-RPC

Incubed Documentation, Release 1.2

BLOCKHEADER_RECEIPT_ROOT

#define BLOCKHEADER_RECEIPT_ROOT 5

BLOCKHEADER_LOGS_BLOOM

#define BLOCKHEADER_LOGS_BLOOM 6

BLOCKHEADER_DIFFICULTY

#define BLOCKHEADER_DIFFICULTY 7

BLOCKHEADER_NUMBER

#define BLOCKHEADER_NUMBER 8

BLOCKHEADER_GAS_LIMIT

#define BLOCKHEADER_GAS_LIMIT 9

BLOCKHEADER_GAS_USED

#define BLOCKHEADER_GAS_USED 10

BLOCKHEADER_TIMESTAMP

#define BLOCKHEADER_TIMESTAMP 11

BLOCKHEADER_EXTRA_DATA

#define BLOCKHEADER_EXTRA_DATA 12

BLOCKHEADER_SEALED_FIELD1

#define BLOCKHEADER_SEALED_FIELD1 13

BLOCKHEADER_SEALED_FIELD2

#define BLOCKHEADER_SEALED_FIELD2 14

206 Chapter 8. API Reference C

Incubed Documentation, Release 1.2

BLOCKHEADER_SEALED_FIELD3

#define BLOCKHEADER_SEALED_FIELD3 15

serialize_tx_receipt

bytes_t* serialize_tx_receipt(d_token_t *receipt);

creates rlp-encoded raw bytes for a receipt.

The bytes must be freed with b_free after use!

arguments:

d_token_t * receipt

returns: bytes_t *

serialize_tx

bytes_t* serialize_tx(d_token_t *tx);

creates rlp-encoded raw bytes for a transaction.

The bytes must be freed with b_free after use!

arguments:

d_token_t * tx

returns: bytes_t *

serialize_tx_raw

bytes_t* serialize_tx_raw(bytes_t nonce, bytes_t gas_price, bytes_t gas_limit, bytes_
→˓t to, bytes_t value, bytes_t data, uint64_t v, bytes_t r, bytes_t s);

creates rlp-encoded raw bytes for a transaction from direct values.

The bytes must be freed with b_free after use!

arguments:

bytes_t nonce
bytes_t gas_price
bytes_t gas_limit
bytes_t to
bytes_t value
bytes_t data
uint64_t v
bytes_t r
bytes_t s

8.13. Module verifier/eth1/nano 207

Incubed Documentation, Release 1.2

returns: bytes_t *

serialize_account

bytes_t* serialize_account(d_token_t *a);

creates rlp-encoded raw bytes for a account.

The bytes must be freed with b_free after use!

arguments:

d_token_t * a

returns: bytes_t *

serialize_block_header

bytes_t* serialize_block_header(d_token_t *block);

creates rlp-encoded raw bytes for a blockheader.

The bytes must be freed with b_free after use!

arguments:

d_token_t * block

returns: bytes_t *

rlp_add

int rlp_add(bytes_builder_t *rlp, d_token_t *t, int ml);

adds the value represented by the token rlp-encoded to the byte_builder.

arguments:

bytes_builder_t * rlp
d_token_t * t
int ml

returns: int : 0 if added -1 if the value could not be handled.

208 Chapter 8. API Reference C

CHAPTER 9

API Reference Java

9.1 Installing

The Incubed Java client uses JNI in order to call native functions. But all the native-libraries are bundled inside the
jar-file. This jar file ha no dependencies and can even be used standalone:

like

java -cp in3.jar in3.IN3 eth_getBlockByNumber latest false

9.1.1 Downloading

Just download the latest jar-file here.

9.1.2 Building

For building the shared library you need to enable java by using the -DJAVA=true flag:

git clone git@github.com:slockit/in3-core.git
mkdir -p in3-core/build
cd in3-core/build
cmake -DJAVA=true .. && make

You will find the in3.jar in the build/lib - folder.

9.1.3 Android

In order to use incubed in android simply follow these steps:

Step 1: Create a top-level CMakeLists.txt in android project inside app folder and link this to gradle. Follow the steps
using this guide on howto link.

209

_downloads/in3.jar
https://developer.android.com/studio/projects/gradle-external-native-builds

Incubed Documentation, Release 1.2

The Content of the CMakeLists.txt should look like this:

cmake_minimum_required(VERSION 3.4.1)

turn off FAST_MATH in the evm.
ADD_DEFINITIONS(-DIN3_MATH_LITE)

loop through the required module and cretae the build-folders
foreach(module

core
verifier/eth1/nano
verifier/eth1/evm
verifier/eth1/basic
verifier/eth1/full
bindings/java
third-party/crypto
third-party/tommath
api/eth1)

file(MAKE_DIRECTORY in3-core/src/${module}/outputs)
add_subdirectory(in3-core/src/${module} in3-core/src/${module}/outputs)

endforeach()

Step 2: clone in3-core into the app-folder or use this script to clone and update incubed:

#!/usr/bin/env sh

#github-url for in3-core
IN3_SRC=git@github.com:SlockItEarlyAccess/in3-core.git

cd app

if it exists we only call git pull
if [-d in3-core]; then

cd in3-core
git pull
cd ..

else
if not we clone it

git clone $IN3_SRC
fi

copy the java-sources to the main java path
cp -r in3-core/src/bindings/java/in3 src/main/java/
but not the native libs, since these will be build
rm -rf src/main/java/in3/native

Step 3: Use methods available in app/src/main/java/in3/IN3.java from android activity to access IN3 functions.

Here is example how to use it:

https://github.com/SlockItEarlyAccess/in3-android-example

210 Chapter 9. API Reference Java

https://git.slock.it/in3/c/in3-core.git
https://github.com/SlockItEarlyAccess/in3-android-example

Incubed Documentation, Release 1.2

9.2 Examples

9.2.1 Using Incubed directly

import in3.IN3;

public class HelloIN3 {
//
public static void main(String[] args) {

String blockNumber = args[0];

// create incubed
IN3 in3 = new IN3();

// configure
in3.setChainId(0x1); // set it to mainnet (which is also dthe default)

// execute the request
String jsonResult = in3.sendRPC("eth_getBlockByNumber",new Object[]{

→˓blockNumber ,true});

....
}

}

9.2.2 Using the API

Incubed also offers a API for getting Information directly in a structured way.

Reading Blocks

import java.util.*;
import in3.*;
import in3.eth1.*;

public class HelloIN3 {
//
public static void main(String[] args) throws Exception {

// create incubed
IN3 in3 = new IN3();

// configure
in3.setChainId(0x1); // set it to mainnet (which is also dthe default)

// read the latest Block including all Transactions.
Block latestBlock = in3.getEth1API().getBlockByNumber(Block.LATEST, true);

// Use the getters to retrieve all containing data
System.out.println("current BlockNumber : " + latestBlock.getNumber());
System.out.println("minded at : " + new Date(latestBlock.getTimeStamp()) + "

→˓by " + latestBlock.getAuthor());

// get all Transaction of the Block

(continues on next page)

9.2. Examples 211

Incubed Documentation, Release 1.2

(continued from previous page)

Transaction[] transactions = latestBlock.getTransactions();

BigInteger sum = BigInteger.valueOf(0);
for (int i = 0; i < transactions.length; i++)

sum = sum.add(transactions[i].getValue());

System.out.println("total Value transfered in all Transactions : " + sum + "
→˓wei");

}

}

Calling Functions of Contracts

This Example shows how to call functions and use the decoded results. Here we get the struct from the registry.

import in3.*;
import in3.eth1.*;

public class HelloIN3 {
//
public static void main(String[] args) {

// create incubed
IN3 in3 = new IN3();

// configure
in3.setChainId(0x1); // set it to mainnet (which is also dthe default)

// call a contract, which uses eth_call to get the result.
Object[] result = (Object[]) in3.getEth1API().call(

→˓ // call a function of a contract
"0x2736D225f85740f42D17987100dc8d58e9e16252", //

→˓address of the contract
"servers(uint256):(string,address,uint256,uint256,uint256,address)",//

→˓function signature
1); //

→˓first argument, which is the index of the node we are looking for.

System.out.println("url : " + result[0]);
System.out.println("owner : " + result[1]);
System.out.println("deposit : " + result[2]);
System.out.println("props : " + result[3]);

....
}

}

Sending Transactions

In order to send, you need a Signer. The SimpleWallet class is a basic implementation which can be used.

package in3;

(continues on next page)

212 Chapter 9. API Reference Java

Incubed Documentation, Release 1.2

(continued from previous page)

import java.io.IOException;
import java.math.BigInteger;
import java.nio.charset.StandardCharsets;
import java.nio.file.Files;
import java.nio.file.Paths;

import in3.*;
import in3.eth1.*;

public class Example {
//
public static void main(String[] args) throws IOException{

// create incubed
IN3 in3 = new IN3();

// configure
in3.setChainId(0x1); // set it to mainnet (which is also dthe default)

// create a wallet managing the private keys
SimpleWallet wallet = new SimpleWallet();

// add accounts by adding the private keys
String keyFile = "myKey.json";
String myPassphrase = "<secrect>";

// read the keyfile and decoded the private key
String account = wallet.addKeyStore(

Files.readString(Paths.get(keyFile)),
myPassphrase);

// use the wallet as signer
in3.setSigner(wallet);

String receipient = "0x1234567890123456789012345678901234567890";
BigInteger value = BigInteger.valueOf(100000);

// create a Transaction
TransactionRequest tx = new TransactionRequest();
tx.from = account;
tx.to = "0x1234567890123456789012345678901234567890";
tx.function = "transfer(address,uint256)";
tx.params = new Object[] { receipient, value };

String txHash = in3.getEth1API().sendTransaction(tx);

System.out.println("Transaction sent with hash = " + txHash);

}
}

9.2. Examples 213

Incubed Documentation, Release 1.2

9.3 Package in3

9.3.1 class IN3

This is the main class creating the incubed client.

The client can then be configured.

getCacheTimeout

number of seconds requests can be cached.

public native int getCacheTimeout();

setCacheTimeout

sets number of seconds requests can be cached.

public native void setCacheTimeout(int val);

arguments:

int val

getNodeLimit

the limit of nodes to store in the client.

public native int getNodeLimit();

setNodeLimit

sets the limit of nodes to store in the client.

public native void setNodeLimit(int val);

arguments:

int val

getKey

the client key to sign requests

public native byte [] getKey();

214 Chapter 9. API Reference Java

Incubed Documentation, Release 1.2

setKey

sets the client key to sign requests

public native void setKey(byte[] val);

arguments:

byte [] val

setKey

sets the client key as hexstring to sign requests

public void setKey(String val);

arguments:

String val

getMaxCodeCache

number of max bytes used to cache the code in memory

public native int getMaxCodeCache();

setMaxCodeCache

sets number of max bytes used to cache the code in memory

public native void setMaxCodeCache(int val);

arguments:

int val

getMaxBlockCache

number of blocks cached in memory

public native int getMaxBlockCache();

setMaxBlockCache

sets the number of blocks cached in memory

public native void setMaxBlockCache(int val);

arguments:

int val

9.3. Package in3 215

Incubed Documentation, Release 1.2

getProof

the type of proof used

public Proofnative getProof();

setProof

sets the type of proof used

public native void setProof(Proof val);

arguments:

Proof val

getRequestCount

the number of request send when getting a first answer

public native int getRequestCount();

setRequestCount

sets the number of requests send when getting a first answer

public native void setRequestCount(int val);

arguments:

int val

getSignatureCount

the number of signatures used to proof the blockhash.

public native int getSignatureCount();

setSignatureCount

sets the number of signatures used to proof the blockhash.

public native void setSignatureCount(int val);

arguments:

int val

216 Chapter 9. API Reference Java

Incubed Documentation, Release 1.2

getMinDeposit

min stake of the server.

Only nodes owning at least this amount will be chosen.

public native long getMinDeposit();

setMinDeposit

sets min stake of the server.

Only nodes owning at least this amount will be chosen.

public native void setMinDeposit(long val);

arguments:

long val

getReplaceLatestBlock

if specified, the blocknumber latest will be replaced by blockNumber- specified value

public native int getReplaceLatestBlock();

setReplaceLatestBlock

replaces the latest with blockNumber- specified value

public native void setReplaceLatestBlock(int val);

arguments:

int val

getFinality

the number of signatures in percent required for the request

public native int getFinality();

setFinality

sets the number of signatures in percent required for the request

public native void setFinality(int val);

arguments:

int val

9.3. Package in3 217

Incubed Documentation, Release 1.2

getMaxAttempts

the max number of attempts before giving up

public native int getMaxAttempts();

setMaxAttempts

sets the max number of attempts before giving up

public native void setMaxAttempts(int val);

arguments:

int val

getSigner

returns the signer or wallet.

public Signer getSigner();

getEth1API

gets the ethereum-api

public in3.eth1.API getEth1API();

setSigner

sets the signer or wallet.

public void setSigner(Signer signer);

arguments:

Signer signer

getTimeout

specifies the number of milliseconds before the request times out.

increasing may be helpful if the device uses a slow connection.

public native int getTimeout();

setTimeout

specifies the number of milliseconds before the request times out.

increasing may be helpful if the device uses a slow connection.

public native void setTimeout(int val);

218 Chapter 9. API Reference Java

Incubed Documentation, Release 1.2

arguments:

int val

getChainId

servers to filter for the given chain.

The chain-id based on EIP-155.

public native long getChainId();

setChainId

sets the chain to be used.

The chain-id based on EIP-155.

public native void setChainId(long val);

arguments:

long val

isAutoUpdateList

if true the nodelist will be automaticly updated if the lastBlock is newer

public native boolean isAutoUpdateList();

setAutoUpdateList

activates the auto update.if true the nodelist will be automaticly updated if the lastBlock is newer

public native void setAutoUpdateList(boolean val);

arguments:

boolean val

getStorageProvider

provides the ability to cache content

public StorageProvider getStorageProvider();

setStorageProvider

provides the ability to cache content like nodelists, contract codes and validatorlists

public void setStorageProvider(StorageProvider val);

9.3. Package in3 219

Incubed Documentation, Release 1.2

arguments:

StorageProvider val

send

send a request.

The request must a valid json-string with method and params

public native String send(String request);

arguments:

String request

sendobject

send a request but returns a object like array or map with the parsed response.

The request must a valid json-string with method and params

public native Object sendobject(String request);

arguments:

String request

sendRPC

send a RPC request by only passing the method and params.

It will create the raw request from it and return the result.

public String sendRPC(String method, Object[] params);

arguments:

String method
Object [] params

sendRPCasObject

send a RPC request by only passing the method and params.

It will create the raw request from it and return the result.

public Object sendRPCasObject(String method, Object[] params);

arguments:

String method
Object [] params

220 Chapter 9. API Reference Java

Incubed Documentation, Release 1.2

IN3

constrcutor.

creates a new Incubed client.

public IN3();

main

public static void main(String[] args);

arguments:

String [] args

9.3.2 class JSON

internal helper tool to represent a JSON-Object.

Since the internal representation of JSON in incubed uses hashes instead of name, the getter will creates these hashes.

get

gets the property

public Object get(String prop);

arguments:

String prop the name of the property.

returns: Object : the raw object.

put

adds values.

This function will be called from the JNI-Iterface.

Internal use only!

public void put(int key, Object val);

arguments:

int key the hash of the key
Object val the value object

9.3. Package in3 221

Incubed Documentation, Release 1.2

getLong

returns the property as long

public long getLong(String key);

arguments:

String key the propertyName

returns: long : the long value

getBigInteger

returns the property as BigInteger

public BigInteger getBigInteger(String key);

arguments:

String key the propertyName

returns: BigInteger : the BigInteger value

getStringArray

returns the property as StringArray

public String [] getStringArray(String key);

arguments:

String key the propertyName

returns: String [] : the array or null

getString

returns the property as String or in case of a number as hexstring.

public String getString(String key);

arguments:

String key the propertyName

returns: String : the hexstring

222 Chapter 9. API Reference Java

Incubed Documentation, Release 1.2

asStringArray

public String [] asStringArray(Object o);

arguments:

Object o

toString

public String toString();

asBigInteger

public static BigInteger asBigInteger(Object o);

arguments:

Object o

asLong

public static long asLong(Object o);

arguments:

Object o

asInt

public static int asInt(Object o);

arguments:

Object o

asString

public static String asString(Object o);

arguments:

Object o

9.3. Package in3 223

Incubed Documentation, Release 1.2

toJson

public static String toJson(Object ob);

arguments:

Object ob

appendKey

public static void appendKey(StringBuilder sb, String key, Object value);

arguments:

StringBuilder sb
String key
Object value

9.3.3 class Loader

loadLibrary

public static void loadLibrary();

9.3.4 class TempStorageProvider

a simple Storage Provider storing the cache in the temp-folder.

getItem

returns a item from cache ()

public byte [] getItem(String key);

arguments:

String key

returns: byte [] : the bytes or null if not found.

setItem

stores a item in the cache.

public void setItem(String key, byte[] content);

arguments:

String key
byte [] content

224 Chapter 9. API Reference Java

Incubed Documentation, Release 1.2

9.3.5 enum Proof

The Proof type indicating how much proof is required.

The enum type contains the following values:

none 0 No Verification.
standard 1 Standard Verification of the important properties.
full 2 Full Verification including even uncles wich leads to higher payload.

9.3.6 interface Signer

a Interface responsible for signing data or transactions.

prepareTransaction

optiional method which allows to change the transaction-data before sending it.

This can be used for redirecting it through a multisig.

public TransactionRequest prepareTransaction(IN3 in3, TransactionRequest tx);

arguments:

IN3 in3
TransactionRequest tx

hasAccount

returns true if the account is supported (or unlocked)

public boolean hasAccount(String address);

arguments:

String address

sign

signing of the raw data.

public String sign(String data, String address);

arguments:

String data
String address

9.3.7 interface StorageProvider

Provider methods to cache data.

These data could be nodelists, contract codes or validator changes.

9.3. Package in3 225

Incubed Documentation, Release 1.2

getItem

returns a item from cache ()

public byte [] getItem(String key);

arguments:

String key the key for the item

returns: byte [] : the bytes or null if not found.

setItem

stores a item in the cache.

public void setItem(String key, byte[] content);

arguments:

String key the key for the item
byte [] content the value to store

9.4 Package in3.eth1

9.4.1 class API

a Wrapper for the incubed client offering Type-safe Access and additional helper functions.

API

creates a API using the given incubed instance.

public API(IN3 in3);

arguments:

IN3 in3

getBlockByNumber

finds the Block as specified by the number.

use Block.LATEST for getting the lastest block.

public Block getBlockByNumber(long block, boolean includeTransactions);

arguments:

long block
boolean includeTransac-

tions
< the Blocknumber < if true all Transactions will be includes, if not only the
transactionhashes

226 Chapter 9. API Reference Java

Incubed Documentation, Release 1.2

getBlockByHash

Returns information about a block by hash.

public Block getBlockByHash(String blockHash, boolean includeTransactions);

arguments:

String blockHash
boolean includeTransac-

tions
< the Blocknumber < if true all Transactions will be includes, if not only the
transactionhashes

getBlockNumber

the current BlockNumber.

public long getBlockNumber();

getGasPrice

the current Gas Price.

public long getGasPrice();

getChainId

Returns the EIP155 chain ID used for transaction signing at the current best block.

Null is returned if not available.

public String getChainId();

call

calls a function of a smart contract and returns the result.

public Object call(TransactionRequest request, long block);

arguments:

TransactionRequest request
long block < the transaction to call. < the Block used to for the state.

returns: Object : the decoded result. if only one return value is expected the Object will be returned, if not an array
of objects will be the result.

estimateGas

Makes a call or transaction, which won’t be added to the blockchain and returns the used gas, which can be used for
estimating the used gas.

public long estimateGas(TransactionRequest request, long block);

9.4. Package in3.eth1 227

Incubed Documentation, Release 1.2

arguments:

TransactionRequest request
long block < the transaction to call. < the Block used to for the state.

returns: long : the gas required to call the function.

getBalance

Returns the balance of the account of given address in wei.

public BigInteger getBalance(String address, long block);

arguments:

String address
long block

getCode

Returns code at a given address.

public String getCode(String address, long block);

arguments:

String address
long block

getStorageAt

Returns the value from a storage position at a given address.

public String getStorageAt(String address, BigInteger position, long block);

arguments:

String address
BigInteger position
long block

getBlockTransactionCountByHash

Returns the number of transactions in a block from a block matching the given block hash.

public long getBlockTransactionCountByHash(String blockHash);

arguments:

String blockHash

228 Chapter 9. API Reference Java

Incubed Documentation, Release 1.2

getBlockTransactionCountByNumber

Returns the number of transactions in a block from a block matching the given block number.

public long getBlockTransactionCountByNumber(long block);

arguments:

long block

getFilterChangesFromLogs

Polling method for a filter, which returns an array of logs which occurred since last poll.

public Log [] getFilterChangesFromLogs(long id);

arguments:

long id

getFilterChangesFromBlocks

Polling method for a filter, which returns an array of logs which occurred since last poll.

public Block [] getFilterChangesFromBlocks(long id);

arguments:

long id

getFilterLogs

Polling method for a filter, which returns an array of logs which occurred since last poll.

public Log [] getFilterLogs(long id);

arguments:

long id

getLogs

Polling method for a filter, which returns an array of logs which occurred since last poll.

public Log [] getLogs(LogFilter filter);

arguments:

LogFilter filter

9.4. Package in3.eth1 229

Incubed Documentation, Release 1.2

getTransactionByBlockHashAndIndex

Returns information about a transaction by block hash and transaction index position.

public Transaction getTransactionByBlockHashAndIndex(String blockHash, int index);

arguments:

String blockHash
int index

getTransactionByBlockNumberAndIndex

Returns information about a transaction by block number and transaction index position.

public Transaction getTransactionByBlockNumberAndIndex(long block, int index);

arguments:

long block
int index

getTransactionByHash

Returns the information about a transaction requested by transaction hash.

public Transaction getTransactionByHash(String transactionHash);

arguments:

String transactionHash

getTransactionCount

Returns the number of transactions sent from an address.

public BigInteger getTransactionCount(String address, long block);

arguments:

String address
long block

getTransactionReceipt

Returns the number of transactions sent from an address.

public TransactionReceipt getTransactionReceipt(String transactionHash);

arguments:

String transactionHash

230 Chapter 9. API Reference Java

Incubed Documentation, Release 1.2

getUncleByBlockNumberAndIndex

Returns information about a uncle of a block number and uncle index position.

Note: An uncle doesn’t contain individual transactions.

public Block getUncleByBlockNumberAndIndex(long block, int pos);

arguments:

long block
int pos

getUncleCountByBlockHash

Returns the number of uncles in a block from a block matching the given block hash.

public long getUncleCountByBlockHash(String block);

arguments:

String block

getUncleCountByBlockNumber

Returns the number of uncles in a block from a block matching the given block hash.

public long getUncleCountByBlockNumber(long block);

arguments:

long block

newBlockFilter

Creates a filter in the node, to notify when a new block arrives.

To check if the state has changed, call eth_getFilterChanges.

public long newBlockFilter();

newLogFilter

Creates a filter object, based on filter options, to notify when the state changes (logs).

To check if the state has changed, call eth_getFilterChanges.

A note on specifying topic filters: Topics are order-dependent. A transaction with a log with topics [A, B] will be
matched by the following topic filters:

[] “anything” [A] “A in first position (and anything after)” [null, B] “anything in first position AND B in second
position (and anything after)” [A, B] “A in first position AND B in second position (and anything after)” [[A, B], [A,
B]] “(A OR B) in first position AND (A OR B) in second position (and anything after)”

public long newLogFilter(LogFilter filter);

9.4. Package in3.eth1 231

Incubed Documentation, Release 1.2

arguments:

LogFilter filter

uninstallFilter

uninstall filter.

public long uninstallFilter(long filter);

arguments:

long filter

sendRawTransaction

Creates new message call transaction or a contract creation for signed transactions.

public String sendRawTransaction(String data);

arguments:

String data

returns: String : transactionHash

sendTransaction

sends a Transaction as desribed by the TransactionRequest.

This will require a signer to be set in order to sign the transaction.

public String sendTransaction(TransactionRequest tx);

arguments:

TransactionRequest tx

call

the current Gas Price.

public Object call(String to, String function, Object... params);

arguments:

String to
String function
Object... params

returns: Object : the decoded result. if only one return value is expected the Object will be returned, if not an array
of objects will be the result.

232 Chapter 9. API Reference Java

Incubed Documentation, Release 1.2

9.4.2 class Block

represents a Block in ethereum.

LATEST

The latest Block Number.

Type: static long

EARLIEST

The Genesis Block.

Type: static long

getTotalDifficulty

returns the total Difficulty as a sum of all difficulties starting from genesis.

public BigInteger getTotalDifficulty();

getGasLimit

the gas limit of the block.

public BigInteger getGasLimit();

getExtraData

the extra data of the block.

public String getExtraData();

getDifficulty

the difficulty of the block.

public BigInteger getDifficulty();

getAuthor

the author or miner of the block.

public String getAuthor();

getTransactionsRoot

the roothash of the merkletree containing all transaction of the block.

public String getTransactionsRoot();

9.4. Package in3.eth1 233

Incubed Documentation, Release 1.2

getTransactionReceiptsRoot

the roothash of the merkletree containing all transaction receipts of the block.

public String getTransactionReceiptsRoot();

getStateRoot

the roothash of the merkletree containing the complete state.

public String getStateRoot();

getTransactionHashes

the transaction hashes of the transactions in the block.

public String [] getTransactionHashes();

getTransactions

the transactions of the block.

public Transaction [] getTransactions();

getTimeStamp

the unix timestamp in seconds since 1970.

public long getTimeStamp();

getSha3Uncles

the roothash of the merkletree containing all uncles of the block.

public String getSha3Uncles();

getSize

the size of the block.

public long getSize();

getSealFields

the seal fields used for proof of authority.

public String [] getSealFields();

getHash

the block hash of the of the header.

public String getHash();

234 Chapter 9. API Reference Java

Incubed Documentation, Release 1.2

getLogsBloom

the bloom filter of the block.

public String getLogsBloom();

getMixHash

the mix hash of the block.

(only valid of proof of work)

public String getMixHash();

getNonce

the mix hash of the block.

(only valid of proof of work)

public String getNonce();

getNumber

the block number

public long getNumber();

getParentHash

the hash of the parent-block.

public String getParentHash();

getUncles

returns the blockhashes of all uncles-blocks.

public String [] getUncles();

9.4.3 class Log

a log entry of a transaction receipt.

isRemoved

true when the log was removed, due to a chain reorganization.

false if its a valid log.

public boolean isRemoved();

9.4. Package in3.eth1 235

Incubed Documentation, Release 1.2

getLogIndex

integer of the log index position in the block.

null when its pending log.

public int getLogIndex();

gettTansactionIndex

integer of the transactions index position log was created from.

null when its pending log.

public int gettTansactionIndex();

getTransactionHash

Hash, 32 Bytes - hash of the transactions this log was created from.

null when its pending log.

public String getTransactionHash();

getBlockHash

Hash, 32 Bytes - hash of the block where this log was in.

null when its pending. null when its pending log.

public String getBlockHash();

getBlockNumber

the block number where this log was in.

null when its pending. null when its pending log.

public long getBlockNumber();

getAddress

20 Bytes - address from which this log originated.

public String getAddress();

getTopics

Array of 0 to 4 32 Bytes DATA of indexed log arguments.

(In solidity: The first topic is the hash of the signature of the event (e.g. Deposit(address,bytes32,uint256)), except
you declared the event with the anonymous specifier.)

public String [] getTopics();

236 Chapter 9. API Reference Java

Incubed Documentation, Release 1.2

9.4.4 class LogFilter

Log configuration for search logs.

toString

creates a JSON-String.

public String toString();

9.4.5 class SimpleWallet

a simple Implementation for holding private keys to sing data or transactions.

addRawKey

adds a key to the wallet and returns its public address.

public String addRawKey(String data);

arguments:

String data

addKeyStore

adds a key to the wallet and returns its public address.

public String addKeyStore(String jsonData, String passphrase);

arguments:

String jsonData
String passphrase

prepareTransaction

optiional method which allows to change the transaction-data before sending it.

This can be used for redirecting it through a multisig.

public TransactionRequest prepareTransaction(IN3 in3, TransactionRequest tx);

arguments:

IN3 in3
TransactionRequest tx

9.4. Package in3.eth1 237

Incubed Documentation, Release 1.2

hasAccount

returns true if the account is supported (or unlocked)

public boolean hasAccount(String address);

arguments:

String address

sign

signing of the raw data.

public String sign(String data, String address);

arguments:

String data
String address

9.4.6 class Transaction

represents a Transaction in ethereum.

getBlockHash

the blockhash of the block containing this transaction.

public String getBlockHash();

getBlockNumber

the block number of the block containing this transaction.

public long getBlockNumber();

getChainId

the chainId of this transaction.

public String getChainId();

getCreatedContractAddress

the address of the deployed contract (if successfull)

public String getCreatedContractAddress();

238 Chapter 9. API Reference Java

Incubed Documentation, Release 1.2

getFrom

the address of the sender.

public String getFrom();

getHash

the Transaction hash.

public String getHash();

getData

the Transaction data or input data.

public String getData();

getNonce

the nonce used in the transaction.

public long getNonce();

getPublicKey

the public key of the sender.

public String getPublicKey();

getValue

the value send in wei.

public BigInteger getValue();

getRaw

the raw transaction as rlp encoded data.

public String getRaw();

getTo

the address of the receipient or contract.

public String getTo();

getSignature

the signature of the sender - a array of the [r, s, v]

public String [] getSignature();

9.4. Package in3.eth1 239

Incubed Documentation, Release 1.2

getGasPrice

the gas price provided by the sender.

public long getGasPrice();

getGas

the gas provided by the sender.

public long getGas();

9.4.7 class TransactionReceipt

represents a Transaction receipt in ethereum.

getBlockHash

the blockhash of the block containing this transaction.

public String getBlockHash();

getBlockNumber

the block number of the block containing this transaction.

public long getBlockNumber();

getCreatedContractAddress

the address of the deployed contract (if successfull)

public String getCreatedContractAddress();

getFrom

the address of the sender.

public String getFrom();

getTransactionHash

the Transaction hash.

public String getTransactionHash();

getTransactionIndex

the Transaction index.

public int getTransactionIndex();

240 Chapter 9. API Reference Java

Incubed Documentation, Release 1.2

getTo

20 Bytes - The address of the receiver.

null when it’s a contract creation transaction.

public String getTo();

getGasUsed

The amount of gas used by this specific transaction alone.

public long getGasUsed();

getLogs

Array of log objects, which this transaction generated.

public Log [] getLogs();

getLogsBloom

256 Bytes - A bloom filter of logs/events generated by contracts during transaction execution.

Used to efficiently rule out transactions without expected logs

public String getLogsBloom();

getRoot

32 Bytes - Merkle root of the state trie after the transaction has been executed (optional after Byzantium hard fork
EIP609).

public String getRoot();

getStatus

success of a Transaction.

true indicates transaction failure , false indicates transaction success. Set for blocks mined after Byzantium hard fork
EIP609, null before.

public boolean getStatus();

9.4.8 class TransactionRequest

represents a Transaction Request which should be send or called.

from

the from address

Type: String

9.4. Package in3.eth1 241

Incubed Documentation, Release 1.2

to

the recipients address

Type: String

data

the data

Type: String

value

the value of the transaction

Type: BigInteger

nonce

the nonce (transactionCount of the sender)

Type: long

gas

the gas to use

Type: long

gasPrice

the gas price to use

Type: long

function

the signature for the function to call

Type: String

params

the params to use for encoding in the data

Type: Object []

getData

creates the data based on the function/params values.

public String getData();

242 Chapter 9. API Reference Java

Incubed Documentation, Release 1.2

getTransactionJson

public String getTransactionJson();

getResult

public Object getResult(String data);

arguments:

String data

9.4. Package in3.eth1 243

Incubed Documentation, Release 1.2

244 Chapter 9. API Reference Java

CHAPTER 10

API Reference CMD

Incubed can be used as a command-line utility or as a tool in Bash scripts. This tool will execute a JSON-RPC request
and write the result to standard output.

10.1 Usage

in3 [options] method [arguments]

-c, -chain The chain to use currently:

mainnet Mainnet

kovan Kovan testnet

tobalaba EWF testchain

goerli Goerli testchain using Clique

btc Bitcoin (still experimental)

local Use the local client on http://localhost:8545

RPCURL If any other RPC-URL is passed as chain name, this is
used but without verification

-p, -proof Specifies the verification level:

none No proof

standard Standard verification (default)

full Full verification

-np Short for -p none.

-s, -signs Number of signatures to use when verifying.

245

http://localhost:8545

Incubed Documentation, Release 1.2

-b, -block The block number to use when making calls. Could be either latest (default),
earliest, or a hex number.

-l, -latest replaces latest with latest BlockNumber - the number of blocks given.

-pk The path to the private key as keystore file.

-pwd Password to unlock the key. (Warning: since the passphrase must be kept private,
make sure that this key may not appear in the bash_history)

-to The target address of the call.

-st, -sigtype the type of the signature data : eth_sign (use the prefix and hash it), raw (hash
the raw data), hash (use the already hashed data). Default: raw

-port specifies the port to run incubed as a server. Opening port 8545 may replace a
local parity or geth client.

-d, -data The data for a transaction.

This can be a file path, a 0x-hexvalue, or - to read it from standard input. If
a method signature is given with the data, they will be combined and used as
constructor arguments when deploying.

-gas The gas limit to use when sending transactions (default: 100000).

-value The value to send when conducting a transaction. Can be a hex value or a
float/integer with the suffix eth or wei like 1.8eth (default: 0).

-w, -wait If given, eth_sendTransaction or eth_sendRawTransaction will
not only return the transaction hash after sending but also wait until the trans-
action is mined and returned to the transaction receipt.

-json If given, the result will be returned as JSON, which is especially important for
eth_call, which results in complex structres.

-hex If given, the result will be returned as hex.

-debug If given, Incubed will output debug information when executing.

-ri Reads the response from standard input instead of sending the request, allowing
for offline use cases.

-ro Writes the raw response from the node to standard output.

10.2 Install

10.2.1 From Binaries

You can download the from the latest release-page:

https://github.com/slockit/in3-c/releases

These release files contain the sources, precompiled libraries and executables, headerfiles and documentation.

10.2.2 From Package Managers

We currently support

246 Chapter 10. API Reference CMD

https://github.com/slockit/in3-c/releases

Incubed Documentation, Release 1.2

10.3 Ubuntu Launchpad (Linux)

Installs libs and binaries on IoT devices or Linux-Systems

Add the slock.it ppa to your system
sudo add-apt-repository ppa:devops-slock-it/in3

install the commandline tool in3
apt-get install in3

install shared and static libs and header files
apt-get install in3-dev

10.4 Brew (MacOS)

This is the easiest way to install it on your mac using brew

Add a brew tap
brew tap slockit/in3

install all binaries and libraries
brew install in3

10.4.1 From Sources

Before building, make sure you have these components installed:

• CMake (should be installed as part of the build-essential: apt-get install build-essential)

• libcurl (for Ubuntu, use either sudo apt-get install libcurl4-gnutls-dev or apt-get
install libcurl4-openssl-dev)

• If libcurl cannot be found, Conan is used to fetch and build curl

clone the sources
git clone https://github.com/slockit/in3-core.git

create build-folder
cd in3-core
mkdir build && cd build

configure and build
cmake -DCMAKE_BUILD_TYPE=Release .. && make in3

install
sudo make install

When building from source, CMake accepts the flags which help to optimize. For more details just look at the CMake-
Options .

10.4.2 From Docker

Incubed can be run as docker container. For this pull the container:

10.3. Ubuntu Launchpad (Linux) 247

api-c.html#cmake-options
api-c.html#cmake-options

Incubed Documentation, Release 1.2

run a simple statement
docker run slockit/in3:latest eth_blockNumber

to start it as a server
docker run -p 8545:8545 slockit/in3:latest -port 8545

mount the cache in order to cache nodelists, validatorlists and contract code.
docker run -v $(pwd)/cache:/root/.in3 -p 8545:8545 slockit/in3:latest -port 8545

10.5 Environment Variables

The following environment variables may be used to define defaults:

IN3_PK The raw private key used for signing. This should be used with caution, since all subprocesses have access
to it!

IN3_CHAIN The chain to use (default: mainnet) (same as -c). If a URL is passed, this server will be used instead.

10.6 Methods

As methods, the following can be used:

<JSON-RPC>-method All officially supported JSON-RPC methods may be used.

send <signature> . . . args Based on the -to, -value, and -pk, a transaction is built, signed, and sent. If there
is another argument after send, this would be taken as a function signature of the smart contract followed by
optional arguments of the function.

Send some ETH (requires setting the IN3_PK-variable before).
in3 send -to 0x1234556 -value 0.5eth
Send a text to a function.
in3 -to 0x5a0b54d5dc17e0aadc383d2db43b0a0d3e029c4c -gas 1000000 send
→˓"registerServer(string,uint256)" "https://in3.slock.it/kovan1" 0xFF

sign <data> signs the data and returns the signature (65byte as hex). Use the -sigtype to specify the creation of the
hash.

call <signature> . . . args eth_call to call a function. After the call argument, the function signature and its
arguments must follow.

in3_nodeList Returns the NodeList of the Incubed NodeRegistry as JSON.

in3_sign <blocknumber> Requests a node to sign. To specify the signer, you need to pass the URL like this:

Send a text to a function.
in3 in3_sign -c https://in3.slock.it/mainnet/nd-1 6000000

in3_stats Returns the stats of a node. Unless you specify the node with -c <rpcurl>, it will pick a random node.

abi_encode <signature> . . . args Encodes the arguments as described in the method signature using ABI encoding.

abi_decode <signature> data Decodes the data based on the signature.

pk2address <privatekey> Extracts the public address from a private key.

pk2public <privatekey> Extracts the public key from a private key.

248 Chapter 10. API Reference CMD

https://github.com/ethereum/wiki/wiki/JSON-RPC#json-rpc-methods

Incubed Documentation, Release 1.2

ecrecover <msg> <signature> Extracts the address and public key from a signature.

createkey Generates a random raw private key.

key <keyfile> Reads the private key from JSON keystore file from the first argument and returns the private key. This
may ask the user to enter the passphrase (unless provided with -pwd). To unlock the key to reuse it within the
shell, you can set the environment variable like this:

export IN3_PK=`in3 keystore mykeyfile.json`

10.7 Running as Server

While you can use in3 to execute a request, return a result and quit, you can also start it as a server using the specified
port (-port 8545) to serve RPC-requests. Thiss way you can replace your local parity or geth with a incubed
client. All Dapps can then connect to http://localhost:8545.

starts a server at the standard port for kovan.
in3 -c kovan -port 8545

10.8 Cache

Even though Incubed does not need a configuration or setup and runs completely statelessly, caching already verified
data can boost the performance. That’s why in3 uses a cache to store.

NodeLists List of all nodes as verified from the registry.

Reputations Holding the score for each node to improve weights for honest nodes.

Code For eth_call, Incubed needs the code of the contract, but this can be taken from a cache if possible.

Validators For PoA changes, the validators and their changes over time will be stored.

By default, Incubed will use ~/.in3 as a folder to cache data.

If you run the docker container, you need to mount /root/.in3 in to persist the cache.

10.9 Signing

While Incubed itself uses an abstract definition for signing, at the moment, the command-line utility only supports raw
private keys. There are two ways you can specify the private keys that Incubed should use to sign transactions:

1. Use the environment variable IN3_PK. This makes it easier to run multiple transaction.

Warning: Since the key is stored in an envirmoent variable all subpoccess have access to this. That’s why
this method is potentially unsafe.

#!/bin/sh

reads the key from the keyfile and asks the user for the passphrase.
IN3_PK = `in3 key my_keyfile.json`

(continues on next page)

10.7. Running as Server 249

http://localhost:8545

Incubed Documentation, Release 1.2

(continued from previous page)

you can can now use this private keys since it is stored in a enviroment-
→˓variable
in3 -to 0x27a37a1210df14f7e058393d026e2fb53b7cf8c1 -value 3.5eth -wait send
in3 -to 0x5a0b54d5dc17e0aadc383d2db43b0a0d3e029c4c -gas 1000000 send
→˓"registerServer(string,uint256)" "https://in3.slock.it/kovan1" 0xFF

2. Use the -pk option

This option takes the path to the keystore-file and will ask the user to unlock as needed. It will not store the
unlocked key anywhere.

in3 -pk my_keyfile.json -to 0x27a37a1210df14f7e058393d026e2fb53b7cf8c1 -value
→˓200eth -wait send

10.10 Autocompletion

If you want autocompletion, simply add these lines to your .bashrc or .bash_profile:

_IN3_WORDS=`in3 autocompletelist`
complete -W "$_IN3_WORDS" in3

10.11 Function Signatures

When using send or call, the next optional parameter is the function signature. This signature describes not only
the name of the function to call but also the types of arguments and return values.

In general, the signature is built by simply removing all names and only holding onto the types:

<FUNCTION_NAME>(<ARGUMENT_TYPES>):(<RETURN_TYPES>)

It is important to mention that the type names must always be the full Solidity names. Most Solidity functions use
aliases. They would need to be replaced with the full type name.

e.g., uint -> uint256

10.12 Examples

10.12.1 Getting the Current Block

On a command line:
in3 eth_blockNumber
> 8035324

For a different chain:
in3 -c kovan eth_blockNumber
> 11834906

Getting it as hex:
in3 -c kovan -hex eth_blockNumber

(continues on next page)

250 Chapter 10. API Reference CMD

Incubed Documentation, Release 1.2

(continued from previous page)

> 0xb49625

As part of shell script:
BLOCK_NUMBER=`in3 eth_blockNumber`

10.12.2 Using jq to Filter JSON

Get the timestamp of the latest block:
in3 eth_getBlockByNumber latest false | jq -r .timestamp
> 0x5d162a47

Get the first transaction of the last block:
in3 eth_getBlockByNumber latest true | jq '.transactions[0]'
> {

"blockHash": "0xe4edd75bf43cd8e334ca756c4df1605d8056974e2575f5ea835038c6d724ab14",
"blockNumber": "0x7ac96d",
"chainId": "0x1",
"condition": null,
"creates": null,
"from": "0x91fdebe2e1b68da999cb7d634fe693359659d967",
"gas": "0x5208",
"gasPrice": "0xba43b7400",
"hash": "0x4b0fe62b30780d089a3318f0e5e71f2b905d62111a4effe48992fcfda36b197f",
"input": "0x",
"nonce": "0x8b7",
"publicKey":

→˓"0x17f6413717c12dab2f0d4f4a033b77b4252204bfe4ae229a608ed724292d7172a19758e84110a2a926842457c351f8035ce7f6ac1c22ba1b6689fdd7c8eb2a5d
→˓",

"r": "0x1d04ee9e31727824a19a4fcd0c29c0ba5dd74a2f25c701bd5fdabbf5542c014c",
"raw":

→˓"0xf86e8208b7850ba43b7400825208947fb38d6a092bbdd476e80f00800b03c3f1b2d332883aefa89df48ed4008026a01d04ee9e31727824a19a4fcd0c29c0ba5dd74a2f25c701bd5fdabbf5542c014ca043f8df6c171e51bf05036c8fe8d978e182316785d0aace8ecc56d2add157a635
→˓",

"s": "0x43f8df6c171e51bf05036c8fe8d978e182316785d0aace8ecc56d2add157a635",
"standardV": "0x1",
"to": "0x7fb38d6a092bbdd476e80f00800b03c3f1b2d332",
"transactionIndex": "0x0",
"v": "0x26",
"value": "0x3aefa89df48ed400"
}

10.12.3 Calling a Function of a Smart Contract

Without arguments:
in3 -to 0x2736D225f85740f42D17987100dc8d58e9e16252 call "totalServers():uint256"
> 5

With arguments returning an array of values:
in3 -to 0x2736D225f85740f42D17987100dc8d58e9e16252 call "servers(uint256):(string,
→˓address,uint256,uint256,uint256,address)" 1
> https://in3.slock.it/mainnet/nd-1
> 0x784bfa9eb182c3a02dbeb5285e3dba92d717e07a
> 65535

(continues on next page)

10.12. Examples 251

Incubed Documentation, Release 1.2

(continued from previous page)

> 65535
> 0
> 0x00

With arguments returning an array of values as JSON:
in3 -to 0x2736D225f85740f42D17987100dc8d58e9e16252 -json call
→˓"servers(uint256):(string,address,uint256,uint256,uint256,address)" 1
> ["https://in3.slock.it/mainnet/nd-4","0xbc0ea09c1651a3d5d40bacb4356fb59159a99564",
→˓"0xffff","0xffff","0x00","0x00"]

10.12.4 Sending a Transaction

Sends a transaction to a register server function and signs it with the private key
→˓given :
in3 -pk mykeyfile.json -to 0x27a37a1210df14f7e058393d026e2fb53b7cf8c1 -gas 1000000
→˓send "registerServer(string,uint256)" "https://in3.slock.it/kovan1" 0xFF

10.12.5 Deploying a Contract

Compiling the Solidity code, filtering the binary, and sending it as a transaction
→˓returning the txhash:
solc --bin ServerRegistry.sol | in3 -gas 5000000 -pk my_private_key.json -d - send

If you want the address, you would need to wait until the text is mined before
→˓obtaining the receipt:
solc --bin ServerRegistry.sol | in3 -gas 5000000 -pk my_private_key.json -d - -wait
→˓send | jq -r .contractAddress

252 Chapter 10. API Reference CMD

CHAPTER 11

API Reference Node/Server

The term in3-server and in3-node are used interchangeably.

Nodes are the backend of Incubed. Each node serves RPC requests to Incubed clients. The node itself runs like a proxy
for an Ethereum client (Geth, Parity, etc.), but instead of simply passing the raw response, it will add the required proof
needed by the client to verify the response.

To run such a node, you need to have an Ethereum client running where you want to forward the request to. At the
moment, the minimum requirement is that this client needs to support eth_getProof (see http://eips.ethereum.org/
EIPS/eip-1186).

You can create your own docker compose file/docker command using our command line descriptions below. But you
can also use our tool in3-server-setup to help you through the process.

11.1 Command-line Arguments

--autoRegistry-capabilities-multiChain If true, this node is able to deliver multiple chains.

--autoRegistry-capabilities-proof If true, this node is able to deliver proofs.

--autoRegistry-capacity Max number of parallel requests.

--autoRegistry-deposit The deposit you want to store.

--autoRegistry-depositUnit Unit of the deposit value.

--autoRegistry-url The public URL to reach this node.

--cache Cache Merkle tries.

--chain ChainId.

--clientKeys A comma-separated list of client keys to use for simulating clients for the watch-
dog.

--db-database Name of the database.

--db-host Db-host (default: local host).

253

http://eips.ethereum.org/EIPS/eip-1186
http://eips.ethereum.org/EIPS/eip-1186

Incubed Documentation, Release 1.2

--db-password Password for db-access.

--db-user Username for the db.

--defaultChain The default chainId in case the request does not contain one.

--freeScore The score for requests without a valid signature.

--handler The implementation used to handle the calls.

--help Output usage information.

--id An identifier used in log files for reading the configuration from the database.

--ipfsUrl The URL of the IPFS client.

--logging-colors If true, colors will be used.

--logging-file The path to the log file.

--logging-host The host for custom logging.

--logging-level Log level.

--logging-name The name of the provider.

--logging-type The module of the provider.

--maxThreads The maximal number of threads running parallel to the processes.

--maxPointsPerMinute The Score for one client able to use within one minute, which is used as DOS-
Protection.

--maxBlocksSigned The max number of blocks signed per in3_sign-request

--maxSignatures The max number of signatures to sign per request

--minBlockHeight The minimal block height needed to sign.

--persistentFile The file name of the file keeping track of the last handled blockNumber.

--privateKey The path to the keystore-file for the signer key used to sign blockhashes.

--privateKeyPassphrase The password used to decrypt the private key.

--profile-comment Comments for the node.

--profile-icon URL to an icon or logo of a company offering this node.

--profile-name Name of the node or company.

--profile-noStats If active, the stats will not be shown (default: false).

--profile-url URL of the website of the company.

--registry The address of the server registry used to update the NodeList.

--registryRPC The URL of the client in case the registry is not on the same chain.

--rpcUrl The URL of the client.

--startBlock BlockNumber to start watching the registry.

--timeout Number of milliseconds needed to wait before a request times out.

--version Output of the version number.

--watchInterval The number of seconds before a new event.

--watchdogInterval Average time between sending requests to the same node. 0 turns it off (default).

254 Chapter 11. API Reference Node/Server

Incubed Documentation, Release 1.2

11.2 in3-server-setup tool

The in3-server-setup tool can be found both [online](https://in3-setup.slock.it) and on [DockerHub](https://hub.docker.
com/r/slockit/in3-server-setup). The DockerHub version can be used to avoid relying on our online service, a full
source will be released soon.

The tool can be used to generate the private key as well as the docker-compose file for use on the server.

Note: The below guide is a basic example of how to setup and in3 node, no assurances are made as to the security of
the setup. Please take measures to protect your private key and server.

Setting up a server on AWS:

1. Create an account on AWS and create a new EC2 instance

2. Save the key and SSH into the machine with `ssh -i "SSH_KEY.pem" user@IP`

3. Install docker and docker-compose on the EC2 instance

4. Use scp to transfer the docker-compose file and private key, `scp -i "SSH_KEY" FILE
user@IP:.`

5. Run the Ethereum client, for example parity and allow it to sync

6. Once the client is synced, run the docker-compose file with `docker-compose up`

7. Test the in3 node by making a request to the address

8. Consider using tools such as AWS Shield to protect your server from DOS attacks

11.3 Registering Your Own Incubed Node

If you want to participate in this network and register a node, you need to send a transaction to the registry contract,
calling registerServer(string _url, uint _props).

To run an Incubed node, you simply use docker-compose:

First run partiy, and allow the client to sync .. code-block:: yaml

version: ‘2’ services: incubed-parity:

image: parity:latest # Parity image with the proof function implemented. command: -
–auto-update=none # Do not automatically update the client. - –pruning=archive - –pruning-
memory=30000 # Limit storage. - –jsonrpc-experimental # Currently still needed until EIP
1186 is finalized.

Then run in3 with the below docker-compose file: .. code-block:: yaml

version: ‘2’ services: incubed-server:

image: slockit/in3-server:latest volumes: - $PWD/keys:/secure # Directory where the
private key is stored. ports: - 8500:8500/tcp # Open the port 8500 to be accessed by
the public. command: - –privateKey=/secure/myKey.json # Internal path to the key. -
–privateKeyPassphrase=dummy # Passphrase to unlock the key. - –chain=0x1 # Chain
(Kovan). - –rpcUrl=http://incubed-parity:8545 # URL of the Kovan client. - –reg-
istry=0xFdb0eA8AB08212A1fFfDB35aFacf37C3857083ca # URL of the Incubed reg-
istry. - –autoRegistry-url=http://in3.server:8500 # Check or register this node for this URL.
- –autoRegistry-deposit=2 # Deposit to use when registering.

11.2. in3-server-setup tool 255

https://in3-setup.slock.it
https://hub.docker.com/r/slockit/in3-server-setup
https://hub.docker.com/r/slockit/in3-server-setup

Incubed Documentation, Release 1.2

256 Chapter 11. API Reference Node/Server

CHAPTER 12

Concept

To enable smart devices of the internet of things to be connected to the Ethereum blockchain, an Ethereum client needs
to run on this hardware. The same applies to other blockchains, whether based on Ethereum or not. While current
notebooks or desktop computers with a broadband Internet connection are able to run a full node without any problems,
smaller devices such as tablets and smartphones with less powerful hardware or more restricted Internet connection
are capable of running a light node. However, many IoT devices are severely limited in terms of computing capacity,
connectivity and often also power supply. Connecting an IoT device to a remote node enables even low-performance
devices to be connected to blockchain. By using distinct remote nodes, the advantages of a decentralized network are
undermined without being forced to trust single players or there is a risk of malfunction or attack because there is a
single point of failure.

With the presented Trustless Incentivized Remote Node Network, in short INCUBED, it will be possible to establish a
decentralized and secure network of remote nodes, which enables trustworthy and fast access to blockchain for a large
number of low-performance IoT devices.

12.1 Situation

The number of IoT devices is increasing rapidly. This opens up many new possibilities for equipping these devices
with payment or sharing functionality. While desktop computers can run an Ethereum full client without any problems,
small devices are limited in terms of computing power, available memory, Internet connectivity and bandwidth. The
development of Ethereum light clients has significantly contributed to the connection of smaller devices with the
blockchain. Devices like smartphones or computers like Raspberry PI or Samsung Artik 5/7/10 are able to run light
clients. However, the requirements regarding the mentioned resources and the available power supply are not met by
a large number of IoT devices.

One option is to run the client on an external server, which is then used by the device as a remote client. However,
central advantages of the blockchain technology - decentralization rather than having to trust individual players - are
lost this way. There is also a risk that the service will fail due to the failure of individual nodes.

A possible solution for this may be a decentralized network of remote-nodes (netservice nodes) combined with a
protocol to secure access.

257

Incubed Documentation, Release 1.2

12.2 Low-Performance Hardware

There are several classes of IoT devices, for which running a full or light client is somehow problematic and a INNN
can be a real benefit or even a job enabler:

• Devices with insufficient calculation power or memory space

Today, the majority of IoT devices do not have processors capable of running a full client or a light client. To
run such a client, the computer needs to be able to synchronize the blockchain and calculate the state (or at least
the needed part thereof).

• Devices with insufficient power supply

If devices are mobile (for instance a bike lock or an environment sensor) and rely on a battery for power supply,
running a full or a light light, which needs to be constantly synchronized, is not possible.

• Devices which are not permanently connected to the Internet

Devices which are not permantently connected to the Internet, also have trouble running a full or a light client
as these clients need to be in sync before they can be used.

12.3 Scalability

One of the most important topics discussed regarding blockchain technology is scalability. Of course, a working
INCUBED does not solve the scaling problems that more transactions can be executed per second. However, it does
contribute to providing access to the Ethereum network for devices that could not be integrated into existing clients
(full client, light client) due to their lack of performance or availability of a continuous Internet connection with
sufficient bandwidth.

12.4 Use Cases

With the following use cases, some realistic scenarios should be designed in which the use of INCUBED will be at
least useful. These use cases are intended as real-life relevant examples only to envision the potential of this technology
but are by no means a somehow complete list of possible applications.

12.4.1 Publicly Accessible Environment Sensor

Description

An environment sensor, which measures some air quality characteristics, is installed in the city of Stuttgart. All
measuring data is stored locally and can be accessed via the Internet by paying a small fee. Also a hash of the current
data set is published to the public Ethereum blockchain to validate the integrity of the data.

The computational power of the control unit is restricted to collecting the measuring data from the sensors and storing
these data to the local storage. It is able to encrypt or cryptographically sign messages. As this sensor is one of thou-
sands throughout Europe, the energy consumption must be as low as possible. A special low-performance hardware is
installed. An Internet connection is provided, but the available bandwidth is not sufficient to synchrone a blockchain
client.

258 Chapter 12. Concept

Incubed Documentation, Release 1.2

Blockchain Integration

The connection to the blockchain is only needed if someone requests the data and sends the validation hash code to
the smart contract.

The installed hardware (available computational power) and the requirement to minimize energy consumption disable
the installation and operation of a light client without installing addition hardware (like a Samsung Artik 7) as PBCD
(Physical Blockchain Connection Device/Ethereum computer). Also, the available Internet bandwidth would need to
be enhanced to be able to synchronize properly with the blockchain.

Using a netservice-client connected to the INCUBED can be realized using the existing hardware and Internet connec-
tion. No additional hardware or Internet bandwidth is needed. The netservice-client connects to the INCUBED only
to send signed messages, to trigger transactions or to request information from the blockchain.

12.4.2 Smart Bike Lock

Description

A smart bike lock which enables sharing is installed on an e-bike. It is able to connect to the Internet to check if renting
is allowed and the current user is authorized to open the lock.

The computational power of the control unit is restricted to the control of the lock. Because the energy is provided
by the e-bike’s battery, the controller runs only when needed in order to save energy. For this reason, it is also not
possible to maintain a permanent Internet connection.

Blockchain Integration

Running a light-client on such a platform would consume far too much energy, but even synchronizing the client only
when needed would take too much time and require an Internet connection with the corresponding bandwidth, which
is not always the case. With a netservice-client running on the lock, a secure connection to the blockchain can be
established at the required times, even if the Internet connection only allows limited bandwidth. In times when there
is no rental process in action, neither computing power is needed nor data is transferred.

12.4.3 Smart Home - Smart Thermostat

Description

With smart home devices it is possible to realize new business models, e. g. for the energy supply. With smart
thermostats it is possible to bill heating energy pay-per-use. During operation, the thermostat must only be connected
to the blockchain if there is a heating requirement and a demand exists. Then the thermostat must check whether the
user is authorized and then also perform the transactions for payment.

Blockchain Integration

Similar to the cycle lock application, a thermostat does not need to be permanently connected to the blockchain to
keep a client in sync. Furthermore, its hardware is not able to run a full or light client. Here, too, it makes sense to use
a netservice-client. Such a client can be developed especially for this hardware.

12.4. Use Cases 259

Incubed Documentation, Release 1.2

12.4.4 Smartphone App

Description

The range of smartphone apps that can or should be connected to the blockchain is widely diversified. These can be
any apps with payment functions, apps that use blockchain as a notary service, apps that control or lend IoT devices,
apps that visualize data from the blockchain, and much more.

Often these apps only need sporadic access to the blockchain. Due to the limited battery power and limited data
volume, neither a full client nor a light client is really suitable for such applications, as these clients require a permanent
connection to keep the blockchain up-to-date.

Blockchain Integration

In order to minimize energy consumption and the amount of data to be transferred, it makes sense to implement
smartphone applications that do not necessarily require a permanent connection to the Internet and thus also to the
blockchain with a netservice-client. This makes it possible to dispense with a centralized remote server solution, but
only have access to the blockchain when it is needed without having to wait long before the client is synchronized.

12.4.5 Advantages

As has already been pointed out in the use cases, there are various advantages that speak in favor of using INCUBED:

• Devices with low computing power can communicate with the blockchain.

• Devices with a poor Internet connection or limited bandwidth can communicate with the blockchain.

• Devices with a limited power supply can be integrated.

• It is a decentralized solution that does not require a central service provider for remote nodes.

• A remote node does not need to be trusted, as there is a verification facility.

• Existing centralized remote services can be easily integrated.

• Net service clients for special and proprietary hardware can be implemented independently of current Ethereum
developments.

12.4.6 Challenges

Of course, there are several challenges that need to be solved in order to implement a working INCUBED.

Security

The biggest challenge for a decentralized and trust-free system is to ensure that one can make sure that the information
supplied is actually correct. If a full client runs on a device and is synchronized with the network, it can check the
correctness itself. A light client can also check if the block headers match, but does not have the transactions available
and requires a connection to a full client for this information. A remote client that communicates with a full client via
the REST API has no direct way to verify that the answer is correct. In a decentralized network of netservice-nodes
whose trustworthiness is not known, a way to be certain with a high probability that the answer is correct is required.
The INCUBED system provides the nodes that supply the information with additional nodes that serve as validators.

260 Chapter 12. Concept

Incubed Documentation, Release 1.2

Business models

In order to provide an incentive to provide nodes for a decentralized solution, any transaction or query that passes
through such a node would have to be remunerated with an additional fee for the operator of the node. However, this
would further increase the transaction costs, which are already a real problem for micro-payments. However, there are
also numerous non-monetary incentives that encourage participation in this infrastructure.

12.5 Architecture

12.5.1 Overview

An INCUBED network consists of several components:

1. The INCUBED registry (later called registry). This is a Smart Contract deployed on the Ethereum Main-Net
where all nodes that want to participate in the network must register and, if desired, store a security deposit.

2. The INCUBED or Netservice node (later called node), which are also full nodes for the blockchain. The nodes
act as information providers and validators.

3. The INCUBED or Netservice clients (later called client), which are installed e.g. in the IoT devices.

4. Watchdogs who as autonomous authorities (bots) ensure that misbehavior of nodes is uncovered and punished.

Initialization of a Client

Each client gets an initial list of boot nodes by default. Before its first “real” communication with the network, the
current list of nodes must be queried as they are registered in the registry (see section [subsec:IN3-Registry-Smart-
Contract]). Initially, this can only be done using an invalidated query (see figure [fig:unvalidated request]). In order to
have the maximum possible security, this query can and should be made to several or even all boot nodes in order to
obtain a valid list with great certainty.

This list must be updated at regular intervals to ensure that the current network is always available.

Unvalidated Requests / Transactions

Unvalidated queries and transactions are performed by the client by selecting one or more nodes from the registry and
sending them the request (see figure [fig:unvalidated request]). Although the responses cannot be verified directly, the
option to send the request to multiple nodes in parallel remains. The returned results can then be checked for consis-
tency by the client. Assuming that the majority will deliver the correct result (or execute the transaction correctly),
this will at least increase the likelihood of receiving the correct response (Proof of Majority).

There are other requests too that can only be returned as an unverified response. This could be the case, for example:

• Current block number (the node may not have synchronized the latest block yet or may be in a micro fork,. . .)

• Information from a block that has not yet been finalized

• Gas price

The multiple parallel query of several nodes and the verification of the results according to the majority principle is a
standard functionality of the client. With the number of nodes requested in parallel, a suitable compromise must be
made between increased data traffic, effort for processing the data (comparison) and higher security.

The selection of the nodes to be queried must be made at random. In particular, successive queries should always be
sent to different nodes. This way it is not possible, or at least only very difficult, for a possibly misbehaving node
to send specific incorrect answers to a certain client, since it cannot be foreseen at any time that the same client will

12.5. Architecture 261

Incubed Documentation, Release 1.2

also send a follow-up query to the same node, for example, and thus the danger is high that the misbehavior will be
uncovered.

In the case of a misbehavior, the client can blacklist this node or at least reduce the internal rating of this node.
However, inconsistent responses can also be provided unintentionally by a node, i.e. without the intention of spreading
false information. This can happen, for example, if the node has not yet synchronized the current block or is running
on a micro fork. These possibilities must therefore always be taken into consideration when the client “reacts” to such
a response.

An unvalidated answer will be returned unsigned. Thus, it is not possible to punish the sender in case of an incorrect
response, except that the client can blacklist or downgrade the sender in the above-mentioned form.

Validated Requests

The second form of queries are validated requests. The nodes must be able to provide various verification options
and proofs in addition to the result of the request. With validated requests, it is possible to achieve a similar level
of security with an INCUBED client as with a light or even full client, without having to blindly trust a centralized
middleman (as is the case with a remote client). Depending on the security requirements and the available resources
(e.g. computing power), different validations and proofs are possible.

As with an invalidated query, the node to be queried should be selected randomly. However, there are various criteria,
such as the deposited security deposit, reliability and performance from previous requests, etc., which can or must also
be included in the selection.

Call Parameter

A validated request consists of the parts:

• Actual request

• List of validators

• Proof request

• List of already known validations and proofs (optional).

Return values

The return depends on the request:

• The requested information (signed by the node)

• The signed answers of the validators (block hash) - 1 or more

262 Chapter 12. Concept

Incubed Documentation, Release 1.2

• The Merkle Proof

• Request for a payment.

Validation

Validation refers to the checking of a block hash by one or more additional nodes. A client cannot perform this check
on its own. To check the credibility of a node (information provider), the block hash it returns is checked by one or
more independent nodes (validators). If a validator node can detect the malfunction of the originally requested node
(delivery of an incorrect block), it can receive its security deposit and the compromised node is removed from the
registry. The same applies to a validator node.

Since the network connection and bandwidth of a node is often better than that of a client, and the number of client
requests should be as small as possible, the validation requests are sent from the requested node (information provider)
to the validators. These return the signed answer, so that there is no possibility for the information provider to manipu-
late the answer. Since the selection of nodes to act as validators is made only by the client, a potentially malfunctioning
node cannot influence it or select a validator to participate in a conspiracy with it.

If the selected validator is not available or does not respond, the client can specify several validators in the request,
which are then contacted instead of the failed node. For example, if multiple nodes are involved in a conspiracy, the
requested misbehaving node could only send the validation requests to the nodes that support the wrong response.

Proof

The validators only confirm that the block hash of the block from which the requested information originates is correct.
The consistency of the returned response cannot be checked in this way.

Optionally, this information can be checked directly by the client. However, this is obligatory, but considerably
increases safety. On the other hand, more information has to be transferred and a computationally complex check has
to be performed by the client.

When a proof is requested, the node provides the Merkle Tree of the response so that the client can calculate and check
the Merkle Root for the result itself.

Payment and Incentives

As an incentive system for the return of verified responses, the node can request a payment. For this, however, the
node must guarantee with its security deposit that the answer is correct.

There are two strong incentives for the node to provide the correct response with high performance since it loses its
deposit when a validator (wrong block hash) detects misbehavior and is eliminated from the registry, and receives a
reward for this if it provides a correct response.

If a client refuses payment after receiving the correctly validated information which it requested, it can be blacklisted
or downgraded by the node so that it will no longer receive responses to its requests.

If a node refuses to provide the information for no reason, it is blacklisted by the client in return or is at least down-
graded in rating, which means that it may no longer receive any requests and therefore no remuneration in the future.

If the client detects that the Merkle Proof is not correct (although the validated block hash is correct), it cannot attack
the node’s deposit but has the option to blacklist or downgrade the node to no longer ask it. A node caught this way of
misbehavior does not receive any more requests and therefore cannot make any profits.

The security deposit of the node has a decisive influence on how much trust is placed in it. When selecting the node,
a client chooses those nodes that have a corresponding deposit (stake), depending on the security requirements (e.g.
high value of a transaction). Conversely, nodes with a high deposit will also charge higher fees, so that a market with
supply and demand for different security requirements will develop.

12.5. Architecture 263

Incubed Documentation, Release 1.2

12.5.2 IN3-Registry Smart Contract

Each client is able to fetch the complete list including the deposit and other information from the contract, which is
required in order to operate. The client must update the list of nodes logged into the registry during initialization
and regularly during operation to notice changes (e.g. if a node is removed from the registry intentionally or due to
misbehavior detected).

In order to maintain a list of network nodes offering INCUBED-services a smart contract IN3Registry in the Ethereum
Main-Net is deployed. This contract is used to manage ownership and deposit for each node.

contract ServerRegistry {

/// server has been registered or updated its registry props or deposit
event LogServerRegistered(string url, uint props, address owner, uint deposit);

/// a caller requested to unregister a server.
event LogServerUnregisterRequested(string url, address owner, address caller);

/// the owner canceled the unregister-proccess
event LogServerUnregisterCanceled(string url, address owner);

/// a Server was convicted
event LogServerConvicted(string url, address owner);

/// a Server is removed
event LogServerRemoved(string url, address owner);

struct In3Server {
string url; // the url of the server
address owner; // the owner, which is also the key to sign blockhashes
uint deposit; // stored deposit
uint props; // a list of properties-flags representing the capabilities of

→˓the server

// unregister state
uint128 unregisterTime; // earliest timestamp in to to call unregister
uint128 unregisterDeposit; // Deposit for unregistering

(continues on next page)

264 Chapter 12. Concept

Incubed Documentation, Release 1.2

(continued from previous page)

address unregisterCaller; // address of the caller requesting the unregister
}

/// server list of incubed nodes
In3Server[] public servers;

/// length of the serverlist
function totalServers() public view returns (uint) ;

/// register a new Server with the sender as owner
function registerServer(string _url, uint _props) public payable;

/// updates a Server by adding the msg.value to the deposit and setting the props
→˓

function updateServer(uint _serverIndex, uint _props) public payable;

/// this should be called before unregistering a server.
/// there are 2 use cases:
/// a) the owner wants to stop offering the service and remove the server.
/// in this case he has to wait for one hour before actually removing the

→˓server.
/// This is needed in order to give others a chance to convict it in case this

→˓server signs wrong hashes
/// b) anybody can request to remove a server because it has been inactive.
/// in this case he needs to pay a small deposit, which he will lose
// if the owner become active again
// or the caller will receive 20% of the deposit in case the owner does not

→˓react.
function requestUnregisteringServer(uint _serverIndex) payable public;

/// this function must be called by the caller of the requestUnregisteringServer-
→˓function after 28 days

/// if the owner did not cancel, the caller will receive 20% of the server
→˓deposit + his own deposit.

/// the owner will receive 80% of the server deposit before the server will be
→˓removed.

function confirmUnregisteringServer(uint _serverIndex) public ;

/// this function must be called by the owner to cancel the unregister-process.
/// if the caller is not the owner, then he will also get the deposit paid by the

→˓caller.
function cancelUnregisteringServer(uint _serverIndex) public;

/// convicts a server that signed a wrong blockhash
function convict(uint _serverIndex, bytes32 _blockhash, uint _blocknumber, uint8 _

→˓v, bytes32 _r, bytes32 _s) public ;

}

To register, the owner of the node needs to provide the following data:

• props : a bitmask holding properties like.

• url : the public url of the server.

• msg.value : the value sent during this transaction is stored as deposit in the contract.

• msg.sender : the sender of the transaction is set as owner of the node and therefore able to manage it at any

12.5. Architecture 265

Incubed Documentation, Release 1.2

given time.

Deposit

The deposit is an important incentive for the secure operation of the INCUBED network. The risk of losing the deposit
if misconduct is detected motivates the nodes to provide correct and verifiable answers.

The amount of the deposit can be part of the decision criterion for the clients when selecting the node for a request.
The “value” of the request can therefore influence the selection of the node (as information provider). For example, a
request that is associated with a high value may not be sent to a node that has a very low deposit. On the other hand,
for a request for a dashboard, which only provides an overview of some information, the size of the deposit may play
a subordinate role.

12.5.3 Netservice-Node

The net service node (short: node) is the communication interface for the client to the blockchain client. It can be
implemented as a separate application or as an integrated module of a blockchain client (such as Geth or Parity).

Nodes must provide two different services:

• Information Provider

• Validator.

Information Provider

A client directly addresses a node (information provider) to retrieve the desired information. Similar to a remote client,
the node interacts with the blockchain via its blockchain client and returns the information to the requesting client.
Furthermore, the node (information provider) provides the information the client needs to verify the result of the query
(validation and proof). For the service, it can request payment when it returns a validated response.

266 Chapter 12. Concept

Incubed Documentation, Release 1.2

If an information provider is found to return incorrect information as a validated response, it loses its deposit and is
removed from the registry. It can be transferred by a validator or watchdog.

Validator

The second service that a node has to provide is validation. When a client submits a validated request to the information
provider, it also specifies the node(s) that are designated as validators. Each node that is logged on to the registry must
also accept the task as validator.

If a validator is found to return false information as validation, it loses its deposit and is removed from the registry. It
can be transferred by another validator or a watchdog.

Watchdog

Watchdogs are independent bots whose random validators logged in to the registry are checked by specific queries
to detect misbehavior. In order to provide an incentive for validator activity, watchdogs can also deliberately pretend
misbehavior and thus give the validator the opportunity to claim the security deposit.

12.5. Architecture 267

Incubed Documentation, Release 1.2

12.5.4 Netservice-Client

The netservice client (short client) is the instance running on the device that needs the connection to the blockchain. It
communicates with the nodes of the INCUBED network via a REST API.

The client can decide autonomously whether it wants to request an unvalidated or a validated answer (see section. . .).
In addition to communicating with the nodes, the client has the ability to verify the responses by evaluating the majority
(unvalidated request) or validations and proofs (validated requests).

The client receives the list of available nodes of the INCUBED network from the registry and ensures that this list
is always kept up-to-date. Based on the list, the client also manages a local reputation system of nodes to take into
account performance, reliability, trustworthiness and security when selecting a node.

A client can communicate with different blockchains at the same time. In the registry, nodes of different blockchains
(identified by their ID) are registered so that the client can and must filter the list to identify the nodes that can process
(and validate, if necessary) its request.

Local Reputation System

The local reputations system aims to support the selection of a node.

The reputation system is also the only way for a client to blacklist nodes that are unreliable or classified as fraudulent.
This can happen, for example, in the case of an unvalidated query if the results of a node do not match those of the
majority, or in the case of validated queries, if the validation is correct but the proof is incorrect.

Performance-Weighting

In order to balance the network, each client may weight each node by:

𝑤𝑒𝑖𝑔ℎ𝑡 = max(lg(𝑑𝑒𝑝𝑜𝑠𝑖𝑡),1)
max(𝑎𝑣𝑔𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑇 𝑖𝑚𝑒,100)

Based on the weight of each node a random node is chosen for each request. While the deposit is read by the contract,
the avgResponseTime is managed by the client himself. The does so by measuring the time between request and
response and calculate the average (in ms) within the last 24 hours. This way the load is balanced and faster servers
will get more traffic.

12.5.5 Payment / Incentives

To build an incentive-based network, it is necessary to have appropriate technologies to process payments. The pay-
ments to be made in INCUBED (e.g. as a fee for a validated answer) are, without exception micro payments (other
than the deposit of the deposit, which is part of the registration of a node and which is not mentioned here, however).
When designing a suitable payment solution, it must therefore be ensured that a reasonable balance is always found
between the actual fee, transaction costs and transaction times.

Direct Transaction Payment

Direct payment by transaction is of course possible, but this is not possible due to the high transaction costs. Exceptions
to this could be transactions with a high value, so that corresponding transaction costs would be acceptable.

However, such payments are not practical for general use.

268 Chapter 12. Concept

Incubed Documentation, Release 1.2

State Channels

State channels are well-suited for the processing of micropayments. A decisive point of the protocol is that the node
must always be selected randomly (albeit weighted according to further criteria). However, it is not practical for a
client to open a separate state channel (including deposit) with each potential node that it wants to use for a request. To
establish a suitable micropayment system based on state channels, a state channel network such as Raiden is required.
If enough partners are interconnected in such a network and a path can be found between two partners, payments can
also be exchanged between these participants.

Probabilistic Payment

Another way of making small payments is probabilistic micropayments. The idea is based on issuing probabilistic
lottery tickets instead of very small direct payments, which, with a certain probability, promise to pay out a higher
amount. The probability distribution is adjusted so that the expected value corresponds to the payment to be made.

For a probabilistic payment, an amount corresponding to the value of the lottery ticket is deposited. Instead of direct
payment, tickets are now issued that have a high likelihood of winning. If a ticket is not a winning ticket, it expires and
does not entitle the recipient to receive a payment. Winning tickets, on the other hand, entitle the recipient to receive
the full value of the ticket.

Since this value is so high that a transaction is worthwhile, the ticket can be redeemed in exchange for a payment.

Probabilistic payments are particularly suitable for combining a continuous, preferably evenly distributed flow of small
payments into individual larger payments (e.g. for streaming data).

Similar to state channels, a type of payment channel is created between two partners (with an appropriate deposit).

For the application in the INCUBED protocol, it is not practical to establish individual probabilistic payment channels
between each client and requested node, since on the one hand the prerequisite of a continuous and evenly distributed
payment stream is not given and, on the other hand, payments may be very irregularly required (e.g. if a client only
rarely sends queries).

The analog to a state channel network is pooled probabilistic payments. Payers can be pooled and recipients can also
be connected in a pool, or both.

12.6 Scaling

The interface between client and node is independent of the blockchain with which the node communicates. This
allows a client to communicate with multiple blockchains / networks simultaneously as long as suitable nodes are
registered in the registry.

For example, a payment transaction can take place on the Ethereum Mainnet and access authorization can be triggered
in a special application chain.

12.6.1 Multi Chain Support

Each node may support one or more network or chains. The supported list can be read by filtering the list of all servers
in the contract.

The ChainId refers to a list based on EIP-155. The ChainIds defined there will be extended by enabling even custom
chains to register a new chainId.

12.6. Scaling 269

Incubed Documentation, Release 1.2

12.6.2 Conclusion

INCUBED establishes a decentralized network of validatable remote nodes, which enables IoT devices in particular
to gain secure and reliable access to the blockchain. The demands on the client’s computing and storage capacity can
be reduced to a minimum, as can the requirements on connectivity and network traffic.

INCUBED also provides a platform for scaling by allowing multiple blockchains to be accessed in parallel from the
same client. Although INCUBED is designed in the first instance for the Ethereum network (and other chains using
the Ethereum protocol), in principle other networks and blockchains can also be integrated, as long as it is possible to
realize a node that can work as information provider (incl. proof) and validator.

270 Chapter 12. Concept

CHAPTER 13

Blockheader Verification

13.1 Ethereum

Since all proofs always include the blockheader, it is crucial to verify the correctness of these data as well. But verifica-
tion depends on the consensus of the underlying blockchain. (For details, see Ethereum Verification and MerkleProof.)

271

Incubed Documentation, Release 1.2

Proof or Work Proof of Authority Proof of Stake

Client

Node B

Node A

 response
 + proof
 + signed
 header

 sign

Node C

Client

Node

 response
 + proof
 + header

Client

Node Node (Validator)

 header
 response
 + proof
 + header

13.1.1 Proof of Work

Currently, the public chain uses proof of work. This makes it very hard to verify the header since anybody can produce
such a header. So the only way to verify that the block in question is an accepted block is to let registered nodes sign
the blockhash. If they are wrong, they lose their previously stored deposit. For the client, this means that the required
security depends on the deposit stored by the nodes.

This is why a client may be configured to require multiple signatures and even a minimal deposit:

client.sendRPC('eth_getBalance', [account, 'latest'], chain, {
minDeposit: web3.utils.toWei(10,'ether'),
signatureCount: 3

})

The minDeposit lets the client preselect only nodes with at least that much deposit. The signatureCount asks
for multiple signatures and so increases the security.

Since most clients are small devices with limited bandwith, the client is not asking for the signatures directly from
the nodes but, rather, chooses one node and lets this node run a subrequest to get the signatures. This means not only
fewer requests for the clients but also that at least one node checks the signatures and “convicts” another if it lied.

13.1.2 Proof of Authority

The good thing about proof of authority is that there is already a signature included in the blockheader. So if we know
who is allowed to sign a block, we do not need an additional blockhash signed. The only critical information we rely
on is the list of validators.

272 Chapter 13. Blockheader Verification

Incubed Documentation, Release 1.2

Currently, there are two consensus algorithms:

Aura

Aura is only used by Parity, and there are two ways to configure it:

• static list of nodes (like the Kovan network): in this case, the validatorlist is included in the chain-spec and
cannot change, which makes it very easy for a client to verify blockheaders.

• validator contract: a contract that offers the function getValidators(). Depending on the chain, this
contract may contain rules that define how validators may change. But this flexibility comes with a price. It
makes it harder for a client to find a secure way to detect validator changes. This is why the proof for such a
contract depends on the rules laid out in the contract and is chain-specific.

Clique

Clique is a protocol developed by the Geth team and is now also supported by Parity (see Görli testnet).

Instead of relying on a contract, Clique defines a protocol of how validator nodes may change. All votes are done
directly in the blockheader. This makes it easier to prove since it does not rely on any contract.

The Incubed nodes will check all the blocks for votes and create a validatorlist that defines the validatorset
for any given blockNumber. This also includes the proof in form of all blockheaders that either voted the new node
in or out. This way, the client can ask for the list and automatically update the internal list after it has verified each
blockheader and vote. Even though malicious nodes cannot forge the signatures of a validator, they may skip votes in
the validatorlist. This is why a validatorlist update should always be done by running multiple requests and merging
them together.

13.2 Bitcoin

Bitcoin may be a complete different chain, but there are ways to verify a Bitcoin Blockheader within a Ethereum Smart
Contract. This requires a little bit more effort but you can use all the features of Incubed.

13.2.1 Block Proof

The data we want to verify are mainly Blocks and Transactions. Usually, if we want to get the BlockHeader or the
complete block we already know the blockhash. And if we know that this hash is correct, verifying the rest of the
block is easy.

1. We take the first 80 Bytes of the Blockdata, which is the blockHeader and hash it twice with sha256. Since
Bitcoin stores the hashes in little endian, we then have to reverse the byteorder.

// btc hash = sha256(sha256(data))
const hash(data: Buffer) => crypto.createHash('sha256').update(crypto.createHash(
→˓'sha256').update(data).digest()).digest()

const blockData:Buffer =
// take the first 80 bytes, hash them and reverse the order
const blockHash = hash(blockData.slice(0,80)).reverse()

2. In order to check the Proof of work in the BlockHeader, we compare the target with the hash:

13.2. Bitcoin 273

Incubed Documentation, Release 1.2

const target = Buffer.alloc(32)
// we take the first 3 bytes from the bits-field and use the 4th byte as exponent:
blockData.copy(target, blockData[75]-3,72,75);
// the hash must be lower than the target
if (target.reverse().compare(blockHash)<0)

throw new Error('blockHash must be smaller than the target')

Note : In order to verify that the target is correct, we can :

• take the target from a different blockheader in the same 2016 blocks epoch

• if we don’t have one, we should ask for multiple nodes to make sure we have a correct target.

3. If we want to know if this is final, the Node needs to provide us with additional BlockHeaders on top of the
current Block (FinalityHeaders).

These header need to be verified the same way. But additionaly we need to check the parentHash:

if (!parentHash.reverse().equals(blockData.slice(4,36)))
throw new Error('wrong parentHash!')

4. In order to verify the Transactions (only if we have the complete Block, not only the BlockHeader), we need
to read them, hash each one and put them in a merkle tree. If the root of the tree matches the merkleRoot, the
transactions are correct.

// we take each Transactiondata, hash them and put the transactionhashes into a
→˓merkle tree
const merkleRoot = createMerkleRoot (readTransactions(blockData).map(_=>hash(_).
→˓reverse()))

// compare the root with merkleRoot of the header starting at offset 36
if (!merkleRoot.equals(blockData.slice(36,68).reverse()))
throw new Error('Invalid MerkleRoot!')

13.2.2 Transaction Proof

In order to Verify a Transaction, we need a Merkle Proof. So the Incubed Server will have create a complete Merkle-
Tree and then pass the other part of the pair as Proof.

Verifying means we start by hashing the transaction and then keep on hashing this result with the next hash from the
proof. The last hash must match the merkleRoot.

13.2.3 Convicting For wrong Blockhashes in the NodeRegistry

Just as the Incubed Client can ask for signed blockhashes in Ethereum, he can do this in Bitcoin as well. The signed
payload from the node will have to contain these data:

bytes32 blockhash;
uint256 timestamp;
bytes32 registryId;

Client requires a Signed Blockhash

and the Data Provider Node will ask the chosen node to sign.

The Data Provider Node (or Watchdog) will then check the signature

274 Chapter 13. Blockheader Verification

Incubed Documentation, Release 1.2

If the signed blockhash is wrong it will start the conviting process:

Convict with BlockHeaders

In order to convict, the Node needs to provide proof, which is the correct blockheader.

But since the BlockHeader does not contain the BlockNumber, we have to use the timestamp. So the correct block
as proof must have either the same timestamp or a the last block before the timestamp. Additionally the Node may
provide FinalityBlockHeaders. As many as possible, but at least one in order to prove, that the timestamp of the correct
block is the closest one.

The Registry Contract will then verify

• the Signature of the convited Node.

• the BlockHeaders gives as Proof

The Verification of the BlockHeader can be done directly in Solitidy, because the EVM offers a precompiled Contract
at address 0x2 : sha256, which is needed to calculate the Blockhash. With this in mind we can follow the steps 1-3 as
described in Block Proof implemented in Solidity.

While doing so we need to add the difficulties of each block and store the last blockHash and the totalDifficulty
for later.

Challenge the longest chain

Now the convited Server has the chance to also deliver blockheaders to proof that he has signed the correct one.

The simple rule is:

If the other node (convited or convitor) is not able to add enough verified BlockHeaders with a higher
totalDifficulty within 1 hour, the other party can get the deposit and kick the malicious node out.

Even though this game could go for a while, if the convicted Node signed a hash, which is not part of the longest
chain, it will not be possible to create enough mining power to continue mining enough blocks to keep up with the
longest chain in the mainnet. Therefore he will most likely give up right after the first transaction.

13.2. Bitcoin 275

Incubed Documentation, Release 1.2

276 Chapter 13. Blockheader Verification

CHAPTER 14

Incentivization

Important: This concept is still in development and discussion and is not yet fully implemented.

The original idea of blockchain is a permissionless peer-to-peer network in which anybody can participate if they run
a node and sync with other peers. Since this is still true, we know that such a node won’t run on a small IoT-device.

14.1 Decentralizing Access

This is why a lot of users try remote-nodes to serve their devices. However, this introduces a new single point of failure
and the risk of man-in-the-middle attacks.

So the first step is to decentralize remote nodes by sharing rpc-nodes with other apps.

centralized centralized per Dapp Incubed

infura

a b c

C

c

B

b

A

a

A

a bc

B C

14.2 Incentivization for Nodes

In order to incentivize a node to serve requests to clients, there must be something to gain (payment) or to lose (access
to other nodes for its clients).

277

Incubed Documentation, Release 1.2

14.3 Connecting Clients and Server

As a simple rule, we can define this as:

The Incubed network will serve your client requests if you also run an honest node.

This requires a user to connect a client key (used to sign their requests) with a registered server. Clients are able to
share keys as long as the owner of the node is able to ensure their security. This makes it possible to use one key for
the same mobile app or device. The owner may also register as many keys as they want for their server or even change
them from time to time (as long as only one client key points to one server). The key is registered in a client-contract,
holding a mapping of the key to the server address.

cloud

ServerRegistryClientRegistry

Server A

Server B

Server C

Server A

cap:10

http://rpc.s1..

Server B

cap:100

http://rpc.s2..

Server C

cap:20

http://rpc.s3..

a

b

c

d

e

14.4 Ensuring Client Access

Connecting a client key to a server does not mean the key relies on that server. Instead, the requests are simply served
in the same quality as the connected node serves other clients. This creates a very strong incentive to deliver to all
clients, because if a server node were offline or refused to deliver, eventually other nodes would deliver less or even
stop responding to requests coming from the connected clients.

278 Chapter 14. Incentivization

Incubed Documentation, Release 1.2

To actually find out which node delivers to clients, each server node uses one of the client keys to send test requests
and measure the availability based on verified responses.

Verifying Nodes

A

B

C

D

E

The servers measure the 𝐴𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 by checking periodically (about every hour in order to make sure a malicious
server is not only responding to test requests). These requests may be sent through an anonymous network like tor.

Based on the long-term (>1 day) and short-term (<1 day) availibility, the score is calculated as:

𝐴 =
𝑅𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

𝑅𝑠𝑒𝑛𝑡

In order to balance long-term and short-term availability, each node measures both and calculates a factor for the score.
This factor should ensure that short-term avilability will not drop the score immediately, but keep it up for a while
before dropping. Long-term availibility will be rewarded by dropping the score slowly.

𝐴 = 1− (1− 𝐴𝑙𝑜𝑛𝑔 + 5 ·𝐴𝑠ℎ𝑜𝑟𝑡

6
)10

• 𝐴𝑙𝑜𝑛𝑔 - The ratio between valid requests received and sent within the last month.

• 𝐴𝑠ℎ𝑜𝑟𝑡 - The ratio between valid requests received and sent within the last 24 hours.

14.4. Ensuring Client Access 279

Incubed Documentation, Release 1.2

Depending on the long-term availibility the disconnected node will lose its score over time.

The final score is then calulated:

𝑠𝑐𝑜𝑟𝑒 =
𝐴 ·𝐷𝑤𝑒𝑖𝑔ℎ𝑡 · 𝐶𝑚𝑎𝑥

𝑤𝑒𝑖𝑔ℎ𝑡

• 𝐴 - The availibility of the node.

• 𝑤𝑒𝑖𝑔ℎ𝑡 - The weight of the incoming request from that server’s clients (see LoadBalancing).

• 𝐶𝑚𝑎𝑥 - The maximal number of open or parallel requests the server can handle (will be taken from the registry).

• 𝐷𝑤𝑒𝑖𝑔ℎ𝑡 - The weight of the deposit of the node.

This score is then used as the priority for incoming requests. This is done by keeping track of the number of currently
open or serving requests. Whenever a new request comes in, the node does the following:

1. Checks the signature.

2. Calculates the score based on the score of the node it is connected to.

3. Accepts or rejects the request.

if (score < openRequests) reject()

280 Chapter 14. Incentivization

Incubed Documentation, Release 1.2

This way, nodes reject requests with a lower score when the load increases. For a client, this means if you have a low
score and the load in the network is high, your clients may get rejected often and will have to wait longer for responses.
If the node has a score of 0, they are blacklisted.

14.5 Deposit

Storing a high deposit brings more security to the network. This is important for proof-of-work chains. In order to
reflect the benefit in the score, the client multiplies it with the 𝐷𝑤𝑒𝑖𝑔ℎ𝑡 (the deposit weight).

𝐷𝑤𝑒𝑖𝑔ℎ𝑡 =
1

1 + 𝑒
1− 3𝐷

𝐷𝑎𝑣𝑔

• 𝐷 - The stored deposit of the node.

• 𝐷𝑎𝑣𝑔 - The average deposit of all nodes.

A node without any deposit will only receive 26.8% of the max cap, while any node with an average deposit gets 88%
and above and quickly reaches 99%.

14.5. Deposit 281

Incubed Documentation, Release 1.2

14.6 LoadBalancing

In an optimal network, each server would handle an equal amount and all clients would have an equal share. In order
to prevent situations where 80% of the requests come from clients belonging to the same node, we need to decrease
the score for clients sending more requests than their shares. Thus, for each node the weight can be calculated by:

𝑤𝑒𝑖𝑔ℎ𝑡𝑛 =

𝑛∑︁
𝑖=0

𝐶𝑖 ·𝑅𝑛

𝑛∑︁
𝑖=0

𝑅𝑖 · 𝐶𝑛

• 𝑅𝑛 - The number of requests served to one of the clients connected to the node.

•
𝑛∑︁

𝑖=0

𝑅𝑖 - The total number of requests served.

•
𝑛∑︁

𝑖=0

𝐶𝑖 - The total number of capacities of the registered servers.

• 𝐶𝑛 - The capacity of the registered node.

Each node will update the 𝑠𝑐𝑜𝑟𝑒 and the 𝑤𝑒𝑖𝑔ℎ𝑡 for the other nodes after each check in order to prioritize incoming
requests.

The capacity of a node is the maximal number of parallel requests it can handle and is stored in the ServerRegistry.
This way, all clients know the cap and will weigh the nodes accordingly, which leads to stronger servers. A node
declaring a high capacity will gain a higher score, and its clients will receive more reliable responses. On the other
hand, if a node cannot deliver the load, it may lose its availability as well as its score.

14.7 Free Access

Each node may allow free access for clients without any signature. A special option --freeScore=2 is used when
starting the server. For any client requests without a signature, this 𝑠𝑐𝑜𝑟𝑒 is used. Setting this value to 0 would not
allow any free clients.

if (!signature) score = conf.freeScore

A low value for freeScore would serve requests only if the current load or the open requests are less than this number,
which would mean that getting a response from the network without signing may take longer as the client would have
to send a lot of requests until they are lucky enough to get a response if the load is high. Chances are higher if the load
is very low.

14.8 Convict

Even though servers are allowed to register without a deposit, convicting is still a hard punishment. In this case, the
server is not part of the registry anymore and all its connected clients are treated as not having a signature. The device
or app will likely stop working or be extremely slow (depending on the freeScore configured in all the nodes).

282 Chapter 14. Incentivization

Incubed Documentation, Release 1.2

14.9 Handling conflicts

In case of a conflict, each client now has at least one server it knows it can trust since it is run by the same owner. This
makes it impossible for attackers to use blacklist-attacks or other threats which can be solved by requiring a response
from the “home”-node.

14.10 Payment

Each registered node creates its own ecosystem with its own score. All the clients belonging to this ecosystem will be
served only as well as the score of the ecosystem allows. However, a good score can not only be achieved with a good
performance, but also by paying for it.

For all the payments, a special contract is created. Here, anybody can create their own ecosystem even without running
a node. Instead, they can pay for it. The payment will work as follows:

The user will choose a price and time range (these values can always be increased later). Depending on the price, they
also achieve voting power, thus creating a reputation for the registered nodes.

Each node is entitled to its portion of the balance in the payment contract, and can, at any given time, send a transaction
to extract its share. The share depends on the current reputation of the node.

𝑝𝑎𝑦𝑚𝑒𝑛𝑡𝑛 =
𝑤𝑒𝑖𝑔ℎ𝑡𝑛 · 𝑟𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑛 · 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑡𝑜𝑡𝑎𝑙

𝑤𝑒𝑖𝑔ℎ𝑡𝑡𝑜𝑡𝑎𝑙

Why should a node treat a paying client better than others?

Because the higher the price a user paid, the higher the voting power, which they may use to upgrade or downgrade
the reputation of the node. This reputation will directly influence the payment to the node.

That’s why, for a node, the score of a client depends on what follows:

𝑠𝑐𝑜𝑟𝑒𝑐 =
𝑝𝑎𝑖𝑑𝑐 · 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑡𝑜𝑡𝑎𝑙

𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑐 · 𝑝𝑎𝑖𝑑𝑡𝑜𝑡𝑎𝑙 + 1

The score would be 1 if the payment a node receives has the same percentage of requests from an ecosystem as
the payment of the ecosystem represented relative to the total payment per month. So, paying a higher price would
increase its score.

14.11 Client Identification

As a requirement for identification, each client needs to generate a unique private key, which must never leave the
device.

In order to securely identify a client as belonging to an ecosystem, each request needs two signatures:

1. The Ecosystem-ProofThis proof consists of the following information:

proof = rlp.encode(
bytes32(registry_id), // The unique ID of the registry.
address(client_address), // The public address of a client.
uint(ttl), // Unix timestamp when this proof expires.
bytes(signature) // The signature with the signer-key of the

→˓ecosystem. The message hash is created by rlp.encode, the client_address, and
→˓the ttl.
)

14.9. Handling conflicts 283

Incubed Documentation, Release 1.2

For the client, this means they should always store such a proof on the device. If the ttl expires, they need to
renew it. If the ecosystem is a server, it may send a request to the server. If the ecosystem is a payer, this needs
to happen in a custom way.

2. The Client-ProofThis must be created for each request. Here the client will create a hash of the request (simply
by adding the method, params and a timestamp-field) and sign this with its private key.

message_hash = keccack(
request.method
+ JSON.stringify(request.params)
+ request.timestamp

)

With each request, the client needs to send both proofs.

The server may cache the ecosystem-proof, but it needs to verify the client signature with each request, thus ensuring
the identity of the sending client.

284 Chapter 14. Incentivization

CHAPTER 15

Decentralizing Central Services

Important: This concept is still in early development, meaning it has not been implemented yet.

Many dApps still require some off-chain services, such as search services running on a server, which, of course, can be
seen as a single point of failure. To decentralize these dApp-specific services, they must fulfill the following criteria:

1. Stateless: Since requests may be sent to different servers, they cannot hold a user’s state, which would only be
available on one node.

2. Deterministic: All servers need to produce the exact same result.

If these requirements are met, the service can be registered, defining the server behavior in a docker image.

285

Incubed Documentation, Release 1.2

ServiceRegistry
ServerRegistry

cloud

Matrix

matrix/matrix:latest

wasm

Server A

offer

rewards

http://rpc.s1..

Server B

offer

rewards

http://rpc.s2..

Search

slockit/search:latest

wasm

Whisper

whisper:latest

wasm

Server C

offer

rewards

http://rpc.s3..

Server A

Matrix

Search

Server B

WhisperServer C

286 Chapter 15. Decentralizing Central Services

Incubed Documentation, Release 1.2

15.1 Incentivization

Each server can define (1) a list of services to offer or (2) a list of services to reward.

The main idea is simply the following:

If you run my service, I will run yours.

Each server can specifiy which services we would like to see used. If another server offers them, we will also run at
least as many rewarded services as the other node.

15.2 Verification

Each service specifies a verifier, which is a Wasm module (specified through an IPFS hash). This Wasm offers two
functions:

function minRequests():number

function verify(request:RPCRequest[], responses:RPCResponse[])

A minimal version could simply ensure that two requests were running and then compare them. If different, the Wasm
could check with the home server and “convict” the nodes.

15.2.1 Convicting

Convicting on chain cannot be done, but each server is able to verify the result and, if false, downgrade the score.

• genindex

15.1. Incentivization 287

Incubed Documentation, Release 1.2

288 Chapter 15. Decentralizing Central Services

Index

Symbols
<JSON-RPC>-method, 248

A
abi_decode <signature> data, 248
abi_encode <signature> ...args, 248

C
call <signature> ...args, 248
Code, 249
createkey, 249

E
ecrecover <msg> <signature>, 249

I
IN3_CHAIN, 248
in3_nodeList, 248
IN3_PK, 248
in3_sign <blocknumber>, 248
in3_stats, 248

K
key <keyfile>, 249

N
NodeLists, 249

P
pk2address <privatekey>, 248
pk2public <privatekey>, 248

R
Reputations, 249

S
send <signature> ...args, 248
sign <data>, 248

V
Validators, 249

289

	Getting Started
	TypeScript/JavaScript
	As Docker Container
	C Implementation
	Java
	Command-line Tool
	Supported Chains
	Registering an Incubed Node

	Downloading in3
	in3-node
	in3-client (ts)
	in3-client(C)

	Roadmap
	V2.0 Stable: Q3 2019
	V2.1 Incentivization: Q4 2019
	V2.2 Bitcoin: Q1 2020
	V2.3 WASM: Q3 2020
	V2.4 Substrate: Q1 2021
	V2.5 Services: Q3 2021

	Threat Model for Incubed
	Registry Issues
	Network Attacks
	Privacy
	Risk Calculation

	Benchmarks
	Setup and Tools
	Considerations
	Results/Baseline

	IN3-Protocol
	Incubed Requests
	Incubed Responses
	ChainId
	Registry
	Binary Format
	Communication
	Proofs
	RPC-Methods Ethereum
	PoA Validations

	API Reference TS
	Examples
	Main Module
	Package client
	Package modules/eth
	Package modules/ipfs
	Package types
	Common Module
	Package modules/eth
	Package types
	Package util

	API Reference C
	Overview
	Building
	Examples
	Module api/eth1
	Module api/usn
	Module cmd/in3
	Module core
	Module transport/curl
	Module transport/http
	Module verifier/eth1/basic
	Module verifier/eth1/evm
	Module verifier/eth1/full
	Module verifier/eth1/nano

	API Reference Java
	Installing
	Examples
	Package in3
	Package in3.eth1

	API Reference CMD
	Usage
	Install
	Ubuntu Launchpad (Linux)
	Brew (MacOS)
	Environment Variables
	Methods
	Running as Server
	Cache
	Signing
	Autocompletion
	Function Signatures
	Examples

	API Reference Node/Server
	Command-line Arguments
	in3-server-setup tool
	Registering Your Own Incubed Node

	Concept
	Situation
	Low-Performance Hardware
	Scalability
	Use Cases
	Architecture
	Scaling

	Blockheader Verification
	Ethereum
	Bitcoin

	Incentivization
	Decentralizing Access
	Incentivization for Nodes
	Connecting Clients and Server
	Ensuring Client Access
	Deposit
	LoadBalancing
	Free Access
	Convict
	Handling conflicts
	Payment
	Client Identification

	Decentralizing Central Services
	Incentivization
	Verification

	Index

