

Welcome to Incubed’s documentation!

Reference

	Getting Started
	TypeScript/JavaScript

	As Docker Container

	C Implementation

	Java

	Command-line Tool

	Supported Chains

	Registering an Incubed Node

	Downloading in3
	in3-node

	in3-client (ts)

	in3-client(C)

	Running an in3 node on a VPS
	Side notes/ chat summary

	Recommendations

	IN3-Protocol
	Incubed Requests

	Incubed Responses

	ChainId

	Registry

	Binary Format

	Communication

	RPC Specification

	Roadmap
	V2.0 Stable: Q3 2019

	V2.1 Incentivization: Q4 2019

	V2.2 Bitcoin: Q1 2020

	V2.3 WASM: Q3 2020

	V2.4 Substrate: Q1 2021

	V2.5 Services: Q3 2021

	Benchmarks
	Setup and Tools

	Considerations

	Results/Baseline

	Embedded Devices
	Hardware Requirements

	Incubed with ESP-IDF

	Incubed with Zephyr

	API Reference C
	Overview

	Building

	Examples

	RPC

	Module api/eth1

	Module api/usn

	Module core

	Module transport/curl

	Module transport/http

	Module verifier/eth1/basic

	Module verifier/eth1/evm

	Module verifier/eth1/full

	Module verifier/eth1/nano

	API Reference TS
	Examples

	Main Module

	Package client

	Package index.ts

	Package modules/eth

	Package modules/ipfs

	Package util

	Common Module

	Package index.ts

	Package modules/eth

	Package types

	Package util

	API Reference WASM
	Main Module

	Package in3.d.ts

	API Reference Java
	Installing

	Examples

	Package in3

	Package in3.eth1

	API Reference CMD
	Usage

	Install

	Environment Variables

	Methods

	Running as Server

	Cache

	Signing

	Autocompletion

	Function Signatures

	Examples

	API Reference Node/Server
	Command-line Arguments

	in3-server-setup tool

	Registering Your Own Incubed Node

	API Reference Solidity
	NodeRegistryData functions

	NodeRegistryLogic functions

	BlockHashRegistry functions

Concept

	1. Concept
	1.1. Situation

	1.2. Low-Performance Hardware

	1.3. Scalability

	1.4. Use Cases

	1.5. Architecture

	1.6. Scaling

	2. Blockheader Verification
	2.1. Ethereum

	2.2. Bitcoin

	3. Technical Background
	3.1. Ethereum Verification

	4. Incentivization
	4.1. Decentralizing Access

	4.2. Incentivization for Nodes

	4.3. Connecting Clients and Server

	4.4. Ensuring Client Access

	4.5. Deposit

	4.6. LoadBalancing

	4.7. Free Access

	4.8. Convict

	4.9. Handling conflicts

	4.10. Payment

	4.11. Client Identification

	5. Decentralizing Central Services
	5.1. Incentivization

	5.2. Verification

	6. Threat Model for Incubed
	6.1. Registry Issues

	6.2. Network Attacks

	6.3. Privacy

	6.4. Risk Calculation

	Index

Getting Started

Incubed can be used in different ways:

	Stack

	Size

	Code Base

	Use Case

	TS/JS

	2.7 MB (browserified)

	TypeScript

	Web application (client in the browser) or mobile application

	TS/JS/WASM

	470 kB

	C - (WASM)

	Web application (client in the browser) or mobile application

	C/C++

	200 KB

	C

	IoT devices can be integrated nicely on many micro controllers
(like Zephyr-supported boards (https://docs.zephyrproject.org/latest/boards/index.html))
or any other C/C++ application

	Java

	705 KB

	C

	Java implementation of a native wrapper

	Docker

	2.6 MB

	C

	For replacing existing clients with this docker and connecting to Incubed via localhost:8545
without needing to change the architecture

	Bash

	400 KB

	C

	The command-line tool can be used directly as executable within Bash script or on the shell

Other languages will be supported soon (or simply use the shared library directly).

TypeScript/JavaScript

Installing Incubed is as easy as installing any other module:

npm install --save in3

As Provider in Web3

The Incubed client also implements the provider interface used in the Web3 library and can be used directly.

// import in3-Module
import In3Client from 'in3'
import * as web3 from 'web3'

// use the In3Client as Http-Provider
const web3 = new Web3(new In3Client({
 proof : 'standard',
 signatureCount: 1,
 requestCount : 2,
 chainId : 'mainnet'
}).createWeb3Provider())

// use the web3
const block = await web.eth.getBlockByNumber('latest')
...

Direct API

Incubed includes a light API, allowing the ability to not only use all RPC methods in a type-safe way but also sign transactions and call functions of a contract without the Web3 library.

For more details, see the API doc [https://github.com/slockit/in3/blob/master/docs/api.md#type-api].

// import in3-Module
import In3Client from 'in3'

// use the In3Client
const in3 = new In3Client({
 proof : 'standard',
 signatureCount: 1,
 requestCount : 2,
 chainId : 'mainnet'
})

// use the API to call a function..
const myBalance = await in3.eth.callFn(myTokenContract, 'balanceOf(address):uint', myAccount)

// ot to send a transaction..
const receipt = await in3.eth.sendTransaction({
 to : myTokenContract,
 method : 'transfer(address,uint256)',
 args : [target,amount],
 confirmations: 2,
 pk : myKey
})

...

As Docker Container

To start Incubed as a standalone client (allowing other non-JS applications to connect to it), you can start the container as the following:

docker run -d -p 8545:8545 slockit/in3:latest -port 8545

C Implementation

The C implementation will be released soon!

#include <in3/client.h> // the core client
#include <in3/eth_api.h> // wrapper for easier use
#include <in3/eth_basic.h> // use the basic module
#include <in3/in3_curl.h> // transport implementation

#include <inttypes.h>
#include <stdio.h>

int main(int argc, char* argv[]) {

 // register a chain-verifier for basic Ethereum-Support, which is enough to verify blocks
 // this needs to be called only once
 in3_register_eth_basic();

 // use curl as the default for sending out requests
 // this needs to be called only once.
 in3_register_curl();

 // create new incubed client
 in3_t* in3 = in3_new();

 // the b lock we want to get
 uint64_t block_number = 8432424;

 // get the latest block without the transaction details
 eth_block_t* block = eth_getBlockByNumber(in3, block_number, false);

 // if the result is null there was an error an we can get the latest error message from eth_lat_error()
 if (!block)
 printf("error getting the block : %s\n", eth_last_error());
 else {
 printf("Number of transactions in Block #%llu: %d\n", block->number, block->tx_count);
 free(block);
 }

 // cleanup client after usage
 in3_free(in3);
}

More details coming soon…

Java

The Java implementation uses a wrapper of the C implemenation. This is why you need to make sure the libin3.so, in3.dll, or libin3.dylib can be found in the java.library.path. For example:

java -cp in3.jar:. HelloIN3.class

import java.util.*;
import in3.*;
import in3.eth1.*;
import java.math.BigInteger;

public class HelloIN3 {
 //
 public static void main(String[] args) throws Exception {
 // create incubed
 IN3 in3 = new IN3();

 // configure
 in3.setChainId(0x1); // set it to mainnet (which is also dthe default)

 // read the latest Block including all Transactions.
 Block latestBlock = in3.getEth1API().getBlockByNumber(Block.LATEST, true);

 // Use the getters to retrieve all containing data
 System.out.println("current BlockNumber : " + latestBlock.getNumber());
 System.out.println("minded at : " + new Date(latestBlock.getTimeStamp()) + " by " + latestBlock.getAuthor());

 // get all Transaction of the Block
 Transaction[] transactions = latestBlock.getTransactions();

 BigInteger sum = BigInteger.valueOf(0);
 for (int i = 0; i < transactions.length; i++)
 sum = sum.add(transactions[i].getValue());

 System.out.println("total Value transfered in all Transactions : " + sum + " wei");
 }

}

Command-line Tool

Based on the C implementation, a command-line utility is built, which executes a JSON-RPC request and only delivers the result. This can be used within Bash scripts:

CURRENT_BLOCK = `in3 -c kovan eth_blockNumber`

#or to send a transaction

in3 -pk my_key_file.json send -to 0x27a37a1210df14f7e058393d026e2fb53b7cf8c1 -value 0.2eth

in3 -pk my_key_file.json send -to 0x27a37a1210df14f7e058393d026e2fb53b7cf8c1 -gas 1000000 "registerServer(string,uint256)" "https://in3.slock.it/kovan1" 0xFF

Supported Chains

Currently, Incubed is deployed on the following chains:

Mainnet

Registry-legacy: 0x2736D225f85740f42D17987100dc8d58e9e16252 [https://eth.slock.it/#/main/0x2736D225f85740f42D17987100dc8d58e9e16252]

Registry: 0x64abe24afbba64cae47e3dc3ced0fcab95e4edd5 [https://eth.slock.it/#/main/0x64abe24afbba64cae47e3dc3ced0fcab95e4edd5]

ChainId: 0x1 (alias mainnet)

Status: https://in3.slock.it?n=mainnet

NodeList: https://in3.slock.it/mainnet/nd-3 [https://in3.slock.it/mainnet/nd-3/api/in3_nodeList]

Kovan

Registry-legacy: 0x27a37a1210df14f7e058393d026e2fb53b7cf8c1 [https://eth.slock.it/#/kovan/0x27a37a1210df14f7e058393d026e2fb53b7cf8c1]

Registry: 0x33f55122c21cc87b539e7003f7ab16229bc3af69 [https://eth.slock.it/#/kovan/0x33f55122c21cc87b539e7003f7ab16229bc3af69]

ChainId: 0x2a (alias kovan)

Status: https://in3.slock.it?n=kovan

NodeList: https://in3.slock.it/kovan/nd-3 [https://in3.slock.it/kovan/nd-3/api/in3_nodeList]

Evan

Registry: 0x85613723dB1Bc29f332A37EeF10b61F8a4225c7e [https://eth.slock.it/#/evan/0x85613723dB1Bc29f332A37EeF10b61F8a4225c7e]

ChainId: 0x4b1 (alias evan)

Status: https://in3.slock.it?n=evan

NodeList: https://in3.slock.it/evan/nd-3 [https://in3.slock.it/evan/nd-3/api/in3_nodeList]

Görli

Registry-legacy: 0x85613723dB1Bc29f332A37EeF10b61F8a4225c7e [https://eth.slock.it/#/goerli/0x85613723dB1Bc29f332A37EeF10b61F8a4225c7e]

Registry: 0xfea298b288d232a256ae0ad5941e5c890b1db691 [https://eth.slock.it/#/goerli/0xfea298b288d232a256ae0ad5941e5c890b1db691]

ChainId: 0x5 (alias goerli)

Status: https://in3.slock.it?n=goerli

NodeList: https://in3.slock.it/goerli/nd-3 [https://in3.slock.it/goerli/nd-3/api/in3_nodeList]

IPFS

Registry: 0xf0fb87f4757c77ea3416afe87f36acaa0496c7e9 [https://eth.slock.it/#/kovan/0xf0fb87f4757c77ea3416afe87f36acaa0496c7e9]

ChainId: 0x7d0 (alias ipfs)

Status: https://in3.slock.it?n=ipfs

NodeList: https://in3.slock.it/ipfs/nd-3 [https://in3.slock.it/ipfs/nd-3/api/in3_nodeList]

Registering an Incubed Node

If you want to participate in this network and also register a node, you need to send a transaction to the registry contract, calling registerServer(string _url, uint _props).

ABI of the registry:

[{"constant":true,"inputs":[],"name":"totalServers","outputs":[{"name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"name":"_serverIndex","type":"uint256"},{"name":"_props","type":"uint256"}],"name":"updateServer","outputs":[],"payable":true,"stateMutability":"payable","type":"function"},{"constant":false,"inputs":[{"name":"_url","type":"string"},{"name":"_props","type":"uint256"}],"name":"registerServer","outputs":[],"payable":true,"stateMutability":"payable","type":"function"},{"constant":true,"inputs":[{"name":"","type":"uint256"}],"name":"servers","outputs":[{"name":"url","type":"string"},{"name":"owner","type":"address"},{"name":"deposit","type":"uint256"},{"name":"props","type":"uint256"},{"name":"unregisterTime","type":"uint128"},{"name":"unregisterDeposit","type":"uint128"},{"name":"unregisterCaller","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"name":"_serverIndex","type":"uint256"}],"name":"cancelUnregisteringServer","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"name":"_serverIndex","type":"uint256"},{"name":"_blockhash","type":"bytes32"},{"name":"_blocknumber","type":"uint256"},{"name":"_v","type":"uint8"},{"name":"_r","type":"bytes32"},{"name":"_s","type":"bytes32"}],"name":"convict","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[{"name":"_serverIndex","type":"uint256"}],"name":"calcUnregisterDeposit","outputs":[{"name":"","type":"uint128"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"name":"_serverIndex","type":"uint256"}],"name":"confirmUnregisteringServer","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"name":"_serverIndex","type":"uint256"}],"name":"requestUnregisteringServer","outputs":[],"payable":true,"stateMutability":"payable","type":"function"},{"anonymous":false,"inputs":[{"indexed":false,"name":"url","type":"string"},{"indexed":false,"name":"props","type":"uint256"},{"indexed":false,"name":"owner","type":"address"},{"indexed":false,"name":"deposit","type":"uint256"}],"name":"LogServerRegistered","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"name":"url","type":"string"},{"indexed":false,"name":"owner","type":"address"},{"indexed":false,"name":"caller","type":"address"}],"name":"LogServerUnregisterRequested","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"name":"url","type":"string"},{"indexed":false,"name":"owner","type":"address"}],"name":"LogServerUnregisterCanceled","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"name":"url","type":"string"},{"indexed":false,"name":"owner","type":"address"}],"name":"LogServerConvicted","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"name":"url","type":"string"},{"indexed":false,"name":"owner","type":"address"}],"name":"LogServerRemoved","type":"event"}]

To run an Incubed node, you simply use docker-compose:

version: '2'
services:
 incubed-server:
 image: slockit/in3-server:latest
 volumes:
 - $PWD/keys:/secure # directory where the private key is stored
 ports:
 - 8500:8500/tcp # open the port 8500 to be accessed by the public
 command:
 - --privateKey=/secure/myKey.json # internal path to the key
 - --privateKeyPassphrase=dummy # passphrase to unlock the key
 - --chain=0x1 # chain (Kovan)
 - --rpcUrl=http://incubed-parity:8545 # URL of the Kovan client
 - --registry=0xFdb0eA8AB08212A1fFfDB35aFacf37C3857083ca # URL of the Incubed registry
 - --autoRegistry-url=http://in3.server:8500 # check or register this node for this URL
 - --autoRegistry-deposit=2 # deposit to use when registering

 incubed-parity:
 image: slockit/parity-in3:v2.2 # parity-image with the getProof-function implemented
 command:
 - --auto-update=none # do not automatically update the client
 - --pruning=archive
 - --pruning-memory=30000 # limit storage

Downloading in3

in3 is divided into two distinct components, the in3-node and in3-client. The in3-node is currently written in typescript, whereas the in3-client has a version in typescript as well as a smaller and more feature packed version written in C.

In order to compile from scratch, please use the sources from our github page [https://github.com/slockit/in3] or the public gitlab page [https://public-git.slock.it]. Instructions for building from scratch can be found in our documentation.

The in3-server and in3-client has been published in multiple package managers and locations, they can be found here:

	
	Package manager

	Link

	Use case

	in3-node(ts)

	Docker Hub

	DockerHub [https://hub.docker.com/r/slockit/in3-node]

	To run the in3-server, which the in3-client can use to connect to the in3 network

	in3-client(ts)

	NPM

	NPM [https://www.npmjs.com/package/in3]

	To use with js applications

	in3-client(C)

	Ubuntu Launchpad

	Ubuntu [https://launchpad.net/~devops-slock-it/+archive/ubuntu/in3]

	It can be quickly integrated on linux systems, IoT devices or any micro controllers

	
	Docker Hub

	DockerHub [https://hub.docker.com/r/slockit/in3]

	Quick and easy way to get in3 client running

	
	Brew

	Homebrew [https://github.com/slockit/homebrew-in3]

	Easy to install on MacOS or linux/windows subsystems

	
	Release page

	Github [https://github.com/slockit/in3-c/releases]

	For directly playing with the binaries/deb/jar/wasm files

in3-node

Docker Hub

	Pull the image from docker using docker pull slockit/in3-node

	In order to run your own in3-node, you must first register the node. The information for registering a node can be found
here [https://in3.readthedocs.io/en/develop/getting_started.html#registering-an-incubed-node]

	Run the in3-node image using a direct docker command or a docker-compose file, the parameters for which are explained
here [https://in3.readthedocs.io/en/develop/api-node.html]

in3-client (ts)

npm

	Install the package by running npm install --save in3

	import In3Client from "in3"

	View our examples for information on how to use the module

in3-client(C)

Ubuntu Launchpad

There are 2 packages published to Ubuntu Launchpad: in3 and in3-dev. The package in3 only installs the
binary file and allows you to use in3 via command line. The package in3-dev would install the binary as well as
the library files, allowing you to use in3 not only via command line, but also inside your C programs by including the
statically linked files.

Installation instructions for in3:

This package will only install the in3 binary in your system.

	Add the slock.it ppa to your system with
sudo add-apt-repository ppa:devops-slock-it/in3

	Update the local sources sudo apt-get update

	Install in3 with sudo apt-get install in3

Installation instructions for in3-dev:

This package will install the statically linked library files and the include files in your system.

	Add the slock.it ppa to your system with
sudo add-apt-repository ppa:devops-slock-it/in3

	Update the local sources sudo apt-get update

	Install in3 with sudo apt-get install in3-dev

Docker Hub

Usage instructions:

	Pull the image from docker using docker pull slockit/in3

	Run the client using: docker run -d -p 8545:8545 slockit/in3:latest --chainId=goerli -port 8545

	More parameters and their descriptions can be found here [https://in3.readthedocs.io/en/develop/getting_started.html#as-docker-container].

Release page

Usage instructions:

	Navigate to the in3-client release page [https://github.com/slockit/in3-c/releases] on this github repo

	Download the binary that matches your target system, or read below for architecture specific information:

For WASM:

	Download the WASM binding with npm install --save in3-wasm

	More information on how to use the WASM binding can be found here [https://www.npmjs.com/package/in3-wasm]

	Examples on how to use the WASM binding can be found here [https://github.com/slockit/in3-c/tree/master/examples/js]

For C library:

	Download the C library from the release page or by installing the in3-dev package from ubuntu launchpad

	Include the C library in your code, as shown in our examples [https://github.com/slockit/in3-c/tree/master/examples/c]

	Build your code with gcc -std=c99 -o test test.c -lin3 -lcurl, more information can be found here [https://github.com/slockit/in3-c/blob/master/examples/c/build.sh]

For Java:

	Download the Java file from the release page

	Use the java binding as show in our example [https://github.com/slockit/in3-c/blob/master/examples/java/GetBlockRPC.java]

	Build your java project with javac -cp $IN3_JAR_LOCATION/in3.jar *.java

Brew

Usage instructions:

	Ensure that homebrew is installed on your system

	Add a brew tap with brew tap slockit/in3

	Install in3 with brew install in3

	You should now be able to use in3 in the terminal, can be verified with in3 eth_blockNumber

Running an in3 node on a VPS

[image: _images/cap-america-meme.jpg]img

Disclaimers: This guide is meant to give you a general idea of the steps needed to run an in3 node on a VPS, please do
not take it as a definitive source for all the information. An in3 node is a public facing service that comes with all
the associated security implications and complexity. This guide is meant for internal use at this time, once a target audience
and depth has been defined, a public version will be made.

That being said, setup of an in3 node requires the following steps:

1. Generate a private key and docker-compose file from in3-setup.slock.it
2. Setup a VPS
3. Start the Ethereum RPC node using the docker-compose
4. Assign a DNS domain, static IP (or Dynamic DNS) to the server
5. Run the in3 node docker image with the required flags
6. Register the in3 node with in3-setup.slock.it

	Generate a private key and docker-compose file using in3-setup.slock.it:
We will use the in3-setup tool to guide us through the process of starting an incubed node.
Begin by filling up the required details, add metadata if you improve our statistics. Choose the required chain and
logging level. Choose a secure private key passphrase, it is important to save it in your password manager or somewhere
secure, we cannot recover it for you. Click on generate private key, this process takes some time. Download the private
key and store it in the secure location.

Once the private key is downloaded, enter your Ethereum node URL in case you already have one. Generate the
docker-compose file and save it in the same folder as the private key.

	Setup a VPS:

A VPS is basically a computer away from home that offers various preselected (usually) Linux distros out of the box.
You can then set it up with any service you like - for example Hetzner,Contabo,etc. ServerHunter is a good comparison portal
to find a suitable VPS service.The minimum specs required for a server to host both an ethereum RPC node
as well as an in3 node would be:

4 CPU cores
8GB of Ram
300GB SSD disk space or more
Atleast 5MBit/s up/down
Linux OS, eg: Ubuntu

Once the server has been provisioned, look for the IP address,SSH port and username. This information would be used to login,transfer files
to the VPS.

Transfer the files to the server using a file browser or an scp command. The target directory for docker-compose.yml and exported-private.key.json file on the incubed server is the /int3 directory The scp command to transfer the files are:

scp docker-compose.yml user@ip-address:
scp exported-private-key.json user@ip-address:

If you are using windows you should use Winscp. Copy it to your home directory and thean move the files to /int3

Once the files have been transferred, we will SSH into the server with:

ssh username@ip-address

Now we will install the dependencies required to run in3. This is possible through a one step install script that can be
found (here)[https://github.com/slockit/in3-server-setup-tool/blob/master/incubed_dependency_install_script.sh] or
by installing each dependency individually.

If you wish to use our dependency install script, please run the following commands in your VPS, then skip to step 4 and setup your domain name:

curl -o incubed_dependency_install_script.sh https://raw.githubusercontent.com/slockit/in3-server-setup-tool/master/incubed_dependency_install_script.sh
chmod +x incubed_dependency_install_script.sh
sudo su
./incubed_dependency_install_script.sh

If you wish to install each dependency individually, please follow the proceeding steps.
Begin by removing older installations of docker:

remove existing docker installations
sudo apt remove docker docker-engine docker.io

Make sure you have the necessary packages to allow the use of Docker’s repository:

install dependencies
sudo apt install apt-transport-https ca-certificates curl software-properties-common

To verify the hashes of the docker images from dockerhub you must add Docker’s GPG key:

add the docker gpg key
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -

Verify the fingerprint of the GPG key, the UID should say “Docker Release”:

verify the gpg key
sudo apt-key fingerprint 0EBFCD88

Add the stable Docker repository:

add the stable Docker repository
sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"

Update and install docker-ce:

update the sources
sudo apt update
install docker-ce
sudo apt install docker-ce

Add your limited Linux user account to the docker group:

add your limited Linux user account to the docker group
sudo usermod -aG docker $USER

Verify your installation with a hello-world image:

docker run hello-world

Now we will continue to install docker-compose by downloading it and moving it to the right location:

install docker-compose
sudo curl -L https://github.com/docker/compose/releases/download/1.18.0/docker-compose-`uname -s`-`uname -m` -o /usr/local/bin/docker-compose

Set the right permissions:

set the right permissions
sudo chmod +x /usr/local/bin/docker-compose

Verify the installation with:

docker-compose --version

	Start the Ethereum RPC node using the docker-compose:
We will use the downloaded docker-compose file to start the Ethereum RPC node.

Change directory to the created in3 folder, verify that the files exist there and then start parity with:

screen
docker-compose up incubed-parity
control+A and control+D to exit from screen

The time for the whole sync with parity is nearly 4h. The sync process starts with Block snapshots. After This is ready the block syncing starts.
In order to verify the status of the syncing, run:

echo $((`curl --data '{"method":"eth_blockNumber","params":[],"id":1,"jsonrpc":"2.0"}' -H "Content-Type: application/json" -X POST 172.15.0.3:8545 | grep -oh "\w*0x\w*"`))

That command will return the latest block number, verify that the block number is the latest one by
checking on etherscan. We recommend to go forward with Step 4. if sync is completly finished.

	Run the in3 node docker image with the required flags
Once the Ethereum RPC node has been synced, we can proceed with starting the in3-node. This can also be done with the
docker-compose file that we used earlier.

docker-compose up incubed-server

Wait for the in3-server to finish starting, then run the below command to verify the functioning of the in3-server:

echo $((`curl --data '{"method":"eth_blockNumber","params":[],"id":1,"jsonrpc":"2.0"}' -H "Content-Type: application/json" -X POST 172.15.0.2:8500 | grep -oh "\w*0x\w*"`))

You can now type “exit” to end the SSH session, we should be done with the setup stages in the VPS.

	Assign a DNS domain, static IP (or Dynamic DNS) to the server
You need to register a DNS domain name using cloudflare or some other DNS provider. This Domain name needs to point to your
server. A simple way to test it once it is up is with the following command run from your computer:

echo $((`curl --data '{"method":"eth_blockNumber","params":[],"id":1,"jsonrpc":"2.0"}' -H "Content-Type: application/json" -X POST Domain-name:80 | grep -oh "\w*0x\w*"`))

	Setup https for your domain

a) Install nginx and certbot and generate certificates.

sudo apt-get install certbot nginx
sudo certbot certonly --standalone
check if automatic renewal of the certificates works as expected
sudo certbot renew --dry-run

b) Configure nginx as a reverse proxy using SSL.
Replace /etc/nginx/sites/available/default with the following content.
(Comment everything else out, also the certbot generated stuff.)

server {
 listen 443 default_server;
 server_name Domain-name;
 ssl on;
 ssl_certificate /etc/letsencrypt/live/Domain-name/fullchain.pem;
 ssl_certificate_key /etc/letsencrypt/live/Domain-name/privkey.pem;
 ssl_session_cache shared:SSL:10m;

 location / {
 proxy_pass http://localhost:80;
 proxy_set_header Host $host;

 proxy_redirect http:// https://;
 }
}

c) Restart nginx.

sudo service nginx restart

HTTPS should be working now. Check with:

echo $((`curl --data '{"method":"eth_blockNumber","params":[],"id":1,"jsonrpc":"2.0"}' -H "Content-Type: application/json" -X POST Domain-name:443 | grep -oh "\w*0x\w*"`))

	Register the in3 node with in3-setup.slock.it
Lastly, we need to head back to in3-setup.slock.it and register our new node. Enter the URL address from which the in3
node can be reached. Add the deposit amount in Ether and click on “Register in3 server” to send the transaction.

Side notes/ chat summary

	Redirect HTTP to HTTPS

Using the above config file nginx doesn’t listen on port 80, that port is already being listened to by the incubed-server image (see docker-compose file, mapping 80:8500).
That way the port is open for normal HTTP requests and when registering the node one can “check” the HTTP capability.
If that is unwanted one can append

server {
 listen 80;
 return 301 https://$host$request_uri;
}

to the nginx config file and change the port mapping for the incubed-server image. One also needs then to adjust the port that nginx redirects to on localhost. For example

 ports:
 - 8080:8500/tcp

In the incubed-server section in the docker compose file and

 proxy_pass http://localhost:8080;

in the nginx config. (Port 8080 also has to be closed using the firewall, e.g. ufw deny 8080)

	OOM - Out of memory

If having memory issues while syncing adding some parity flags might help (need to be added in the docker-compose for incubed-parity)

 --pruning-history=[NUM]
 Set a minimum number of recent states to keep in memory when pruning is active. (default: 64)

 --pruning-memory=[MB]
 The ideal amount of memory in megabytes to use to store recent states. As many states as possible will be kept
 within this limit, and at least --pruning-history states will always be kept. (default: 32)

with appropiate values.
Note that inside the docker compose file pruning-memory is set to 30000, which might exceed your RAM!

	Saving the chaindb on disk using docker volume

To prevent the chaindb data being lost add

 volumes:
 - /wherever-you-want-to-store-data/:/home/parity/.local/share/io.parity.ethereum/

to the parity section in the docker compose file.

	Added stability/ speed while syncing

Exposing the port 30303 to the public will prevent parity having to rely on UPnP for node discovery. For this add

 ports:
 - 30303:30303
 - 30303:30303/udp

to the parity section in the docker compose file.

Increasing the database, state and queuing cache can improve the syncing speed (default is around 200MB). The needed flag for it is:

 --cache-size=[MB]
 Set total amount of discretionary memory to use for the entire system, overrides other cache and queue options.

	If you like a UI to manage and check your docker containers, please have a look at Portainer.io

Installation instructions can be found here: https://www.portainer.io/installation/.

It can be run with docker, using:

sudo docker run -d --restart always -p 8000:8000 -p 9000:9000 -v /var/run/docker.sock:/var/run/docker.sock -v portainer_data:/data portainer/portainer

After the setup, it will be availabe on port 9000. The enabled WebGUI looks like the below picture:

[image: _images/portainer-docker-containers-screenshot.jpg]img

Recommendations

	Disable SSH PasswordAuthentication & RootLogin and install fail2ban to protect your VPS from unauthorized access and brute-force attacks. See How To Configure SSH Key-Based Authentication on a Linux Server [https://www.digitalocean.com/community/tutorials/how-to-configure-ssh-key-based-authentication-on-a-linux-server] and How To Protect SSH with Fail2Ban [https://www.digitalocean.com/community/tutorials/how-to-protect-ssh-with-fail2ban-on-ubuntu-14-04].

IN3-Protocol

This document describes the communication between a Incubed client and a Incubed node. This communication is based on requests that use extended JSON-RPC [https://www.jsonrpc.org/specification]-Format. Especially for ethereum-based requests, this means each node also accepts all standard requests as defined at Ethereum JSON-RPC [https://github.com/ethereum/wiki/wiki/JSON-RPC], which also includes handling Bulk-requests.

Each request may add an optional in3 property defining the verification behavior for Incubed.

Incubed Requests

Requests without an in3 property will also get a response without in3. This allows any Incubed node to also act as a raw ethereum JSON-RPC endpoint. The in3 property in the request is defined as the following:

	chainId string<hex> - The requested chainId. This property is optional, but should always be specified in case a node may support multiple chains. In this case, the default of the node would be used, which may end up in an undefined behavior since the client cannot know the default.

	includeCode boolean - Applies only for eth_call-requests. If true, the request should include the codes of all accounts. Otherwise only the the codeHash is returned. In this case, the client may ask by calling eth_getCode() afterwards.

	verifiedHashes string<bytes32>[] - If the client sends an array of blockhashes, the server will not deliver any signatures or blockheaders for these blocks, but only return a string with a number. This allows the client to skip requiring signed blockhashes for blocks already verified.

	latestBlock integer - If specified, the blocknumber latest will be replaced by a blockNumber-specified value. This allows the Incubed client to define finality for PoW-Chains, which is important, since the latest-block cannot be considered final and therefore it would be unlikely to find nodes willing to sign a blockhash for such a block.

	useRef boolean - If true, binary-data (starting with a 0x) will be referred if occurring again. This decreases the payload especially for recurring data such as merkle proofs. If supported, the server (and client) will keep track of each binary value storing them in a temporary array. If the previously used value is used again, the server replaces it with :<index>. The client then resolves such refs by lookups in the temporary array.

	useBinary boolean - If true, binary-data will be used. This format is optimzed for embedded devices and reduces the payload to about 30%. For details see the Binary-spec.

	useFullProof boolean - If true, all data in the response will be proven, which leads to a higher payload. The result depends on the method called and will be specified there.

	finality number - For PoA-Chains, it will deliver additional proof to reach finality. If given, the server will deliver the blockheaders of the following blocks until at least the number in percent of the validators is reached.

	verification string - Defines the kind of proof the client is asking for. Must be one of the these values:

	'never’ : No proof will be delivered (default). Also no in3-property will be added to the response, but only the raw JSON-RPC response will be returned.

	'proof’ : The proof will be created including a blockheader, but without any signed blockhashes.

	whiteList address - If specified, the incubed server will respond with lastWhiteList, which will indicate the last block number of whitelist contract event.

	signers string<address>[] - A list of addresses (as 20bytes in hex) requested to sign the blockhash.

A example of an Incubed request may look like this:

{
 "jsonrpc": "2.0",
 "id": 2,
 "method": "eth_getTransactionByHash",
 "params": ["0xf84cfb78971ebd940d7e4375b077244e93db2c3f88443bb93c561812cfed055c"],
 "in3": {
 "chainId": "0x1",
 "verification": "proof",
 "whiteList": "0x08e97ef0a92EB502a1D7574913E2a6636BeC557b",
 "signers":["0x784bfa9eb182C3a02DbeB5285e3dBa92d717E07a"]
 }
}

Incubed Responses

Each Incubed node response is based on JSON-RPC, but also adds the in3 property. If the request does not contain a in3 property or does not require proof, the response must also omit the in3 property.

If the proof is requested, the in3 property is defined with the following properties:

	proof Proof - The Proof-data, which depends on the requested method. For more details, see the Proofs section.

	lastNodeList number - The blocknumber for the last block updating the nodeList. This blocknumber should be used to indicate changes in the nodeList. If the client has a smaller blocknumber, it should update the nodeList.

	lastValidatorChange number - The blocknumber of the last change of the validatorList (only for PoA-chains). If the client has a smaller number, it needs to update the validatorlist first. For details, see PoA Validations

	lastWhiteList number - The blocknumber for the last block updating the whitelist nodes in whitelist contract. This blocknumber could be used to detect if there is any change in whitelist nodes. If the client has a smaller blocknumber, it should update the white list.

	currentBlock number - The current blocknumber. This number may be stored in the client in order to run sanity checks for latest blocks or eth_blockNumber, since they cannot be verified directly.

An example of such a response would look like this:

{
 "jsonrpc": "2.0",
 "result": {
 "blockHash": "0x2dbbac3abe47a1d0a7843d378fe3b8701ca7892f530fd1d2b13a46b202af4297",
 "blockNumber": "0x79fab6",
 "chainId": "0x1",
 "condition": null,
 "creates": null,
 "from": "0x2c5811cb45ba9387f2e7c227193ad10014960bfc",
 "gas": "0x186a0",
 "gasPrice": "0x4a817c800",
 "hash": "0xf84cfb78971ebd940d7e4375b077244e93db2c3f88443bb93c561812cfed055c",
 "input": "0xa9059cbb000000000000000000000000290648fc6f2cb27a2a81dc35a429090872991b920015af1d78b58c400000",
 "nonce": "0xa8",
 "publicKey": "0x6b30c392dda89d58866bf2c1bedf8229d12c6ae3589d82d0f52ae588838a475aacda64775b7a1b376935d732bb8022630a01c4926e71171eeda938b644d83365",
 "r": "0x4666976b528fc7802edd9330b935c7d48fce0144ce97ade8236da29878c1aa96",
 "raw": "0xf8ab81a88504a817c800830186a094d3ebdaea9aeac98de723f640bce4aa07e2e4419280b844a9059cbb000000000000000000000000290648fc6f2cb27a2a81dc35a429090872991b920015af1d78b58c40000025a04666976b528fc7802edd9330b935c7d48fce0144ce97ade8236da29878c1aa96a05089dca7ecf7b061bec3cca7726aab1fcb4c8beb51517886f91c9b0ca710b09d",
 "s": "0x5089dca7ecf7b061bec3cca7726aab1fcb4c8beb51517886f91c9b0ca710b09d",
 "standardV": "0x0",
 "to": "0xd3ebdaea9aeac98de723f640bce4aa07e2e44192",
 "transactionIndex": "0x3e",
 "v": "0x25",
 "value": "0x0"
 },
 "id": 2,
 "in3": {
 "proof": {
 "type": "transactionProof",
 "block": "0xf90219a03d050deecd980b16cad9752133333ccdface463cc69e784f32dd981e2e751e34a01dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d4934794829bd824b016326a401d083b33d092293333a830a012892951590f62f4b2802f88e8fddc09c951ad2cac23803e07c4f11e01991907a018a21c8413fc7fc29f09d12f75515993ab38858bfa9e5632670cbba3358f0cfaa02fc4436c96ae4d100921c20b5cb601252de68ddde159bc89f3353555eff0ccccb901009034d281f0400b0920d21f7795b09d8c2b9cd48a939ce476aa84f486c68855684c0804a304a444a17c0ca4420e32a3b29a8218802d9fab5112a82b8d60e12203400084c2a236149a4a44905e120540a1478261a55a399229fe046595236900025de213ea6a000612901d6008080a6f773755182105c9100048a40eb458808a0334a2c5927a9308f300962916898c861a888d8d780508061c2bc54c866078216042497a0cd05dfa65948b8dc4144ca64144883c2422a5280848021328d8a8e41602890d122b0110c27bc014193502a7690d40e00f03a879080b0073f1ae4ab0232b93630c068ecb7b4b923de0012566855524a000502c87906480151e81d2b032870709c2784add128379fab6837a3f58837a12f8845d0b4673987070796520e4b883e5bda9e7a59ee4bb99e9b1bc9329ad43a0e21b342112a946b58fa2f50739166c20aed4647d3ad8e37210d451fb8b243870888f95c17c0647e1f9",
 "merkleProof": [
 "0xf90131a00150ff50e29f3df34b89870f183c85a82a73f21722d7e6c787e663159f165010a0b8c56f207a223067c7ae5df7420221327c32f89f36cef8a14c33e5a4e67be9cfa0112091138bbf6bde2e20c88b08d10f8ea08ec298f2daac34d76fc8e248379dc5a0c737a71d34faa7c864930707ac7870b2c7cc28e7d489d21330acfa8deb72d805a075811c4bdef2cc74095e57cacce23debab8ea8e6d8937932678d2fd444367ea9a0e79e4e445e517b7b31ad626acabec77a6e0c846207b91f01ac33e804af096325a07065708e1a9e9b865dbd5e19e521224ae554a5d3064257e5401d7cad900f555aa01a71ef57896ce378fd51bf44a1d0b538d3587d9aecdbf3c6c7f6794bbb0f0fa8a0d720eecae23cd40af5c534b90b00f33b7ec0638b11cc7809058110bf984a02d48080808080808080",
 "0xf90211a0f4a5e4a1197190f910e4a026f50bd6a169716b52be42c99ddb043ad9b4da6117a09ad1def70dd1d991331d013719cca31d35111cf75d3046dffdc9d1897ecfce29a01ada8fa2d6a7f9b44394a0d7fafe8a59810e48596e1258adb57ca51a6a014024a0eeb2d6482d696d623ae7f868aa3463790041c4863f1d47f84d6629f2d5ee88c5a0f1c04c4bc88aa5f24c7e5ac401c5246cf17834e7e68d4b2c9b656a37f510aff1a040446d66c0039c4806ee13da02ebe408abab366332ec2355367ca0dec5aab273a0775b1f53ad22fdcb6fef814d34b910be6a2e6463febb174d4f2064626baf639fa0bb1668055775f8ba59bf071465ffe68db4f916a7eb0ea07126b71d3e30a8fd70a08ad25a05847cdeec5261154c5ae89f03f2a8a813e8804983c677dc0d39e26bfca0a0c6f9e3e55cabbe3a9c0c6713aeb4e70135b9abe21b50bb6e04e6f4a09888d5a011d5422e577e357d26390492378b9328518b263310574b1e0d9e322031485a22a0c2f4f15a1ba6585a87a0dcca7b45dc0bbcd72830df61888d7abf16fef6a4df72a02bf0d1675ebf1c1f2af6793edf748e3184c2ac5522a6640a1b04d3b7bad7e23ca0c80cf2596da4c35f6c5e5348791c64c10d80ccd7668d6ef73a2454f0f11a0f59a03e54112466dbd3791d6e1e281d25470b884c96406e39bd83e8a806cfc8e60219a00e2cc674fa10aefb4dea53ac114e28c6353d30b315d4ba280ab4741920a60ce280",
 "0xf8b020b8adf8ab81a88504a817c800830186a094d3ebdaea9aeac98de723f640bce4aa07e2e4419280b844a9059cbb000000000000000000000000290648fc6f2cb27a2a81dc35a429090872991b920015af1d78b58c40000025a04666976b528fc7802edd9330b935c7d48fce0144ce97ade8236da29878c1aa96a05089dca7ecf7b061bec3cca7726aab1fcb4c8beb51517886f91c9b0ca710b09d"
],
 "txIndex": 62,
 "signatures": [
 {
 "blockHash": "0x2dbbac3abe47a1d0a7843d378fe3b8701ca7892f530fd1d2b13a46b202af4297",
 "block": 7994038,
 "r": "0xef73a527ae8d38b595437e6436bd4fa037d50550bf3840ad0cd3c6ca641a951e",
 "s": "0x6a5815db16c12b890347d42c014d19b60e1605d2e8e64b729f89e662f9ce706b",
 "v": 27,
 "msgHash": "0xa8fc6e2564e496efc5fd7db8e70f03fd50af53e092f47c98329c84c96026fdff"
 }
]
 },
 "currentBlock": 7994124,
 "lastValidatorChange": 0,
 "lastNodeList": 6619795,
 "lastWhiteList": 1546354
 }
}

ChainId

Incubed supports multiple chains and a client may even run requests to different chains in parallel. While, in most cases, a chain refers to a specific running blockchain, chainIds may also refer to abstract networks such as ipfs. So, the definition of a chain in the context of Incubed is simply a distributed data domain offering verifiable api-functions implemented in an in3-node.

Each chain is identified by a uint64 identifier written as hex-value (without leading zeros). Since incubed started with ethereum, the chainIds for public ethereum-chains are based on the intrinsic chainId of the ethereum-chain. See https://chainid.network.

For each chain, Incubed manages a list of nodes as stored in the server registry and a chainspec describing the verification. These chainspecs are held in the client, as they specify the rules about how responses may be validated.

Registry

As Incubed aims for fully decentralized access to the blockchain, the registry is implemented as an ethereum smart contract.

This contract serves different purposes. Primarily, it manages all the Incubed nodes, both the onboarding and also unregistering process. In order to do so, it must also manage the deposits: reverting when the amount of provided ether is smaller than the current minimum deposit; but also locking and/or sending back deposits after a server leaves the in3-network.

In addition, the contract is also used to secure the in3-network by providing functions to “convict” servers that provided a wrongly signed block, and also having a function to vote out inactive servers.

Register and Unregister of nodes

Register

There are two ways of registering a new node in the registry: either calling registerNode() or by calling registerNodeFor(). Both functions share some common parameters that have to be provided:

	url the url of the to be registered node

	props the properties of the node

	weight the amount of requests per second the node is capable of handling

	deposit the deposit of the node in ERC20 tokens.

Those described parameters are sufficient when calling registerNode() and will register a new node in the registry with the sender of the transaction as the owner. However, if the designated signer and the owner should use different keys, registerNodeFor() has to be called. In addition to the already described parameters, this function also needs a certain signature (i.e. v, r, s). This signature has to be created by hashing the url, the properties, the weight and the designated owner (i.e. keccack256(url,properties,weight,owner)) and signing it with the privateKey of the signer. After this has been done, the owner then can call registerNodeFor() and register the node.

However, in order for the register to succeed, at least the correct amount of deposit has to be approved by the designated owner of the node. The supported token can be received by calling supportedToken() the registry contract. The same approach also applied to the minimal amount of tokens needed for registering by calling minDeposit().

In addition to that, during the first year after deployment there is also a maximum deposit for each node. This can be received by calling maxDepositFirstYear(). Providing a deposit greater then this will result in a failure when trying to register.

Unregister a node

In order to remove a node from the registry, the function unregisteringNode() can be used, but is only callable by the owner the node.

While after a successful call the node will be removed from the nodeList immediately, the deposit of the former node will still be locked for the next 40 days after this function had been called. After the timeout is over, the function returnDeposit() can be called in order to get the deposit back.
The reason for that decision is simple: this approach makes sure that there is enough time to convict a malicious node even after he unregistered his node.

Convicting a node

After a malicious node signed a wrong blockhash, he can be convicted resulting in him loosing the whole deposit while the caller receives 50% of the deposit. There are two steps needed for the process to succeed: calling convict() and revealConvict().

calling convict

The first step for convicting a malicious node is calling the convict()-function. This function will store a specific hash within the smart contract.

The hash needed for convicting requires some parameters:

	blockhash the wrongly blockhash that got signed the by malicious node

	sender the account that sends this transaction

	v v of the signature of the wrong block

	r r of the signature of the wrong block

	s s of the signature of the wrong block

All those values are getting hashed (keccack256(blockhash,sender,v,r,s) and are stored within the smart contract.

calling revealConvcit

This function requires that at least 2 blocks have passed since convict() was called. This mechanic reduces the risks of successful frontrunning attacks.

In addition, there are more requirements for successfully convicting a malicious node:

	the blocknumber of the wrongly signed block has to be either within the latest 256 blocks or be stored within the BlockhashRegistry.

	the malicious node provided a signature for the wong block and it was signed by the node

	the specific hash of the convict-call can be recreated (i.e. the caller provided the very same parameters again)

	the malicious node is either currently active or did not withdraw his deposit yet

If the revealConvict()-call passes, the malicious node will be removed immediately from the nodeList. As a reward for finding a malicious node the caller receives 50% of the deposit of the malicious node. The remaining 50% will stay within the nodeRegistry, but nobody will be able to access/transfer them anymore.

recreating blockheaders

When a malicious node returns a block that is not within the latest 256 blocks, the BlockhashRegistry has to be used.

There are different functions to store a blockhash and its number in the registry:

	snapshot stores the blockhash and its number of the previous block

	saveBlockNumber stores a blockhash and its number from the latest 256 blocks

	recreateBlockheaders starts from an already stored block and recreates a chain of blocks. Stores the last block at the end.

In order to reduce the costs of convicting, both snapshot and saveBlockNumber are the cheapest options, but are limited to the latest 256 blocks.

Recreating a chain of blocks is way more expensive, but is provides the possibility to recreate way older blocks. It requires the blocknumber of an already stored hash in the smart contract as first parameter. As a second parameter an array of serialized blockheaders have to be provided. This array has to start with the blockheader of the stored block and then the previous blockheaders in reverse order (e.g. 100,99,98). The smart contract will try to recreate the chain by comparing both the provided (hashed) headers with the calculated parent and also by comparing the extracted blocknumber with the calculated one. After the smart contracts successfully recreates the provided chain, the blockhash of the last element gets stored within the smart contract.

Updating the NodeRegistry

In ethereum the deployed code of an already existing smart contract cannot be changed. This means, that as soon as the Registry smart contract gets updated, the address would change which would result in changing the address of the smart contract containing the nodeList in each client and device.

[image: digraph G { node [color=lightblue, fontname="Helvetica"]; logic [label="NodeRegistryLogic" ,style=filled]; db [label="NodeRegistryData" ,style=filled]; blockHash [label="BlockHashRegistry"]; logic -> db [label="owns", fontname="Helvetica"]; logic -> blockHash[label="uses", fontname="Helvetica"]; }]
In order to solve this issue, the registry is divided between two different deployed smart contracts:

	NodeRegistryData: a smart contract to store the nodeList

	NodeRegistryLogic: a smart contract that has the logic needed to run the registry

There is a special relationship between those two smart contracts: The NodeRegistryLogic “owns” the NodeRegistryData. This means, that only he is allowed to call certain functions of the NodeRegistryData. In our case this means all writing operations, i.e. he is the only entity that is allowed to actually be allowed to store data within the smart contract. We are using this approach to make sure that only the NodeRegistryLogic can call the register, update and remove functions of the NodeRegistryData. In addition, he is the only one allowed to change the ownership to a new contract. Doing so results in the old NodeRegistryLogic to lose write access.

In the NodeRegistryLogic there are 2 special parameters for the update process:

	updateTimeout: a timestamp that defines when it’s possible to update the registry to the new contract

	pendingNewLogic: the address of the already deployed new NodeRegistryLogic contract for the updated registry

When an update of the Registry is needed, the function adminUpdateLogic gets called by the owner of the NodeRegistryLogic. This function will set the address of the new pending contract and also set a timeout of 47 days until the new logic can be applied to the NodeRegistryData contract. After 47 days everyone is allowed to call activateNewLogic resulting in an update of the registry.

The timeout of accessing the deposit of a node after removing it from the nodeList is only 40 days. In case a node owner dislikes the pending registry, he has 7 days to unregister in order to be able to get his deposit back before the new update can be applied.

Node structure

Each Incubed node must be registered in the NodeRegistry in order to be known to the network. A node or server is defined as:

	url string - The public url of the node, which must accept JSON-RPC requests.

	owner address - The owner of the node with the permission to edit or remove the node.

	signer address - The address used when signing blockhashes. This address must be unique within the nodeList.

	timeout uint64 - Timeout after which the owner is allowed to receive its stored deposit. This information is also important for the client, since an invalid blockhash-signature can only “convict” as long as the server is registered. A long timeout may provide higher security since the node can not lie and unregister right away.

	deposit uint256 - The deposit stored for the node, which the node will lose if it signs a wrong blockhash.

	props uint192 - A bitmask defining the capabilities of the node:

	proof (0x01) : The node is able to deliver proof. If not set, it may only serve pure ethereum JSON/RPC. Thus, simple remote nodes may also be registered as Incubed nodes.

	multichain (0x02) : The same RPC endpoint may also accept requests for different chains. if this is set the chainId-prop in the request in required.

	archive (0x04) : If set, the node is able to support archive requests returning older states. If not, only a pruned node is running.

	http (0x08) : If set, the node will also serve requests on standard http even if the url specifies https. This is relevant for small embedded devices trying to save resources by not having to run the TLS.

	binary (0x10) : If set, the node accepts request with binary:true. This reduces the payload to about 30% for embedded devices.

	onion (0x20) : If set, the node is reachable through onionrouting and url will be a onion url.

	signer (0x40) : If set, the node will sign blockhashes.

	data (0x80) : If set, the node will provide rpc responses (at least without proof).

	stats (0x100) : If set, the node will provide and endpoint for delivering metrics, which is usually the /metrics- endpoint, which can be used by prometheus to fetch statistics.

	minBlockHeight (0x0100000000 - 0xFF00000000): : The min number of blocks this node is willing to sign. if this number is low (like <6) the risk of signing unindentially a wrong blockhash because of reorgs is high. The default should be 10)

minBlockHeight = props >> 32 & 0xFF

More capabilities will be added in future versions.

	unregisterTime uint64 - The earliest timestamp when the node can unregister itself by calling confirmUnregisteringServer. This will only be set after the node requests an unregister. The client nodes with an unregisterTime set have less trust, since they will not be able to convict after this timestamp.

	registerTime uint64 - The timestamp, when the server was registered.

	weight uint64 - The number of parallel requests this node may accept. A higher number indicates a stronger node, which will be used within the incentivization layer to calculate the score.

Binary Format

Since Incubed is optimized for embedded devices, a server can not only support JSON, but a special binary-format.
You may wonder why we don’t want to use any existing binary serialization for JSON like CBOR or others. The reason is simply: because we do not need to support all the features JSON offers. The following features are not supported:

	no escape sequences (this allows use of the string without copying it)

	no float support (at least for now)

	no string literals starting with 0x since this is always considered as hexcoded bytes

	no propertyNames within the same object with the same key hash

Since we are able to accept these restrictions, we can keep the JSON-parser simple.
This binary-format is highly optimized for small devices and will reduce the payload to about 30%. This is achieved with the following optimizations:

	All strings starting with 0xare interpreted as binary data and stored as such, which reduces the size of the data to 50%.

	Recurring byte-values will use references to previous data, which reduces the payload, especially for merkle proofs.

	All propertyNames of JSON-objects are hashed to a 16bit-value, reducing the size of the data to a signifivant amount (depending on the propertyName).

The hash is calculated very easily like this:

static d_key_t key(const char* c) {
 uint16_t val = 0, l = strlen(c);
 for (; l; l--, c++) val ^= *c | val << 7;
 return val;
}

Note

A very important limitation is the fact that property names are stored as 16bit hashes, which decreases the payload, but does not allow for the restoration of the full json without knowing all property names!

The binary format is based on JSON-structure, but uses a RLP-encoding approach. Each node or value is represented by these four values:

	key uint16_t - The key hash of the property. This value will only pass before the property node if the structure is a property of a JSON-object.

	type d_type_t - 3 bit : defining the type of the element.

	len uint32_t - 5 bit : the length of the data (for bytes/string/array/object). For (boolean or integer) the length will specify the value.

	data bytes_t - The bytes or value of the node (only for strings or bytes).

[image: digraph g{ rankdir=LR; node[fontname="Helvetica", shape=record, color=lightblue] propHash[label="key|16 bit", style=dashed] type[label="type|{type (3bit) | len (5bit)}"] len2[label="len ext", style=dashed] data[label="data", style=dashed] propHash -> type -> len2 -> data }]
The serialization depends on the type, which is defined in the first 3 bits of the first byte of the element:

d_type_t type = *val >> 5; // first 3 bits define the type
uint8_t len = *val & 0x1F; // the other 5 bits (0-31) the length

The len depends on the size of the data. So, the last 5 bit of the first bytes are interpreted as follows:

	0x00 - 0x1c : The length is taken as is from the 5 bits.

	0x1d - 0x1f : The length is taken by reading the big-endian value of the next len - 0x1c bytes (len ext).

After the type-byte and optional length bytes, the 2 bytes representing the property hash is added, but only if the element is a property of a JSON-object.

Depending on these types, the length will be used to read the next bytes:

	0x0 : binary data - This would be a value or property with binary data. The len will be used to read the number of bytes as binary data.

	0x1 : string data - This would be a value or property with string data. The len will be used to read the number of bytes (+1) as string. The string will always be null-terminated, since it will allow small devices to use the data directly instead of copying memory in RAM.

	0x2 : array - Represents an array node, where the len represents the number of elements in the array. The array elements will be added right after the array-node.

	0x3 : object - A JSON-object with len properties coming next. In this case the properties following this element will have a leading key specified.

	0x4 : boolean - Boolean value where len must be either 0x1= true or 0x0 = false. If len > 1 this element is a copy of a previous node and may reference the same data. The index of the source node will then be len-2.

	0x5 : integer - An integer-value with max 29 bit (since the 3 bits are used for the type). If the value is higher than 0x20000000, it will be stored as binary data.

	0x6 : null - Represents a null-value. If this value has a len> 0 it will indicate the beginning of data, where len will be used to specify the number of elements to follow. This is optional, but helps small devices to allocate the right amount of memory.

Communication

Incubed requests follow a simple request/response schema allowing even devices with a small bandwith to retrieve all the required data with one request. But there are exceptions when additional data need to be fetched.

These are:

	Changes in the NodeRegistry

Changes in the NodeRegistry are based on one of the following events:

	LogNodeRegistered

	LogNodeRemoved

	LogNodeChanged

The server needs to watch for events from the NodeRegistry contract, and update the nodeList when needed.

Changes are detected by the client by comparing the blocknumber of the latest change with the last known blocknumber. Since each response will include the lastNodeList, a client may detect this change after receiving the data. The client is then expected to call in3_nodeList to update its nodeList before sending out the next request. In the event that the node is not able to proof the new nodeList, the client may blacklist such a node.

[image: _images/44b07fa217cc1384f773b13a9b318cc322cfc3b10d1064943738836d22b7c8f0.png]

	Changes in the ValidatorList

This only applies to PoA-chains where the client needs a defined and verified validatorList. Depending on the consensus, changes in the validatorList must be detected by the node and indicated with the lastValidatorChange on each response. This lastValidatorChange holds the last blocknumber of a change in the validatorList.

Changes are detected by the client by comparing the blocknumber of the latest change with the last known blocknumber. Since each response will include the lastValidatorChange a client may detect this change after receiving the data or in case of an unverifiable response. The client is then expected to call in3_validatorList to update its list before sending out the next request. In the event that the node is not able to proof the new nodeList, the client may blacklist such a node.

	Failover

It is also good to have a second request in the event that a valid response is not delivered. This could happen if a node does not respond at all or the response cannot be validated. In both cases, the client may blacklist the node for a while and send the same request to another node.

RPC Specification

This section describes the behavior for each RPC-method.

Incubed

There are also some Incubed specific rpc-methods, which will help the clients to bootstrap and update the nodeLists.

in3_nodeList

return the list of all registered nodes.

Parameters:

all parameters are optional, but if given a partial NodeList may be returned.

	limit: number - if the number is defined and >0 this method will return a partial nodeList limited to the given number.

	seed: hex - This 32byte hex integer is used to calculate the indexes of the partial nodeList. It is expected to be a random value choosen by the client in order to make the result deterministic.

	addresses: address[] - a optional array of addresses of signers the nodeList must include.

Returns:

an object with the following properties:

	nodes: Node[] - a array of node-values. Each Object has the following properties:

	url : string - the url of the node. Currently only http/https is supported, but in the future this may even support onion-routing or any other protocols.

	address : address - the address of the signer

	index: number - the index within the nodeList of the contract

	deposit: string - the stored deposit

	props: string - the bitset of capabilities as described in the Node Structure

	timeout: string - the time in seconds describing how long the deposit would be locked when trying to unregister a node.

	registerTime : string - unix timestamp in seconds when the node has registered.

	weight : string - the weight of a node (not used yet) describing the amount of request-points it can handle per second.

	proofHash: hex - a hash value containing the above values. This hash is explicitly stored in the contract, which enables the client to have only one merkle proof per node instead of verifying each property as its own storage value. The proof hash is build :

return keccak256(
 abi.encodePacked(
 _node.deposit,
 _node.timeout,
 _node.registerTime,
 _node.props,
 _node.signer,
 _node.url
)
);

	contract : address - the address of the Incubed-storage-contract. The client may use this information to verify that we are talking about the same contract or throw an exception otherwise.

	registryId: hex - the registryId (32 bytes) of the contract, which is there to verify the correct contract.

	lastBlockNumber : number - the blockNumber of the last change of the list (usually the last event).

	totalServer : number - the total numbers of nodes.

if proof is requested, the proof will have the type accountProof. In the proof-section only the storage-keys of the proofHash will be included.
The required storage keys are calcualted :

	0x00 - the length of the nodeList or total numbers of nodes.

	0x01 - the registryId

	per node : 0x290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e563 + index * 5 + 4

The blockNumber of the proof must be the latest final block (latest- minBlockHeight) and always greater or equal to the lastBlockNumber

This proof section contains the following properties:

	type : constant : accountProof

	block : the serialized blockheader of the latest final block

	signatures : a array of signatures from the signers (if requested) of the above block.

	accounts: a Object with the addresses of the db-contract as key and Proof as value. The Data Structure of the Proof is exactly the same as the result of - eth_getProof [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getproof], but it must containi the above described keys

	finalityBlocks: a array of blockHeaders which were mined after the requested block. The number of blocks depends on the request-property finality. If this is not specified, this property will not be defined.

Request:

{
 "method":"in3_nodeList",
 "params":[2,"0xe9c15c3b26342e3287bb069e433de48ac3fa4ddd32a31b48e426d19d761d7e9b",[]],
 "in3":{
 "verification":"proof"
 }
}

Response:

{
 "id": 1,
 "result": {
 "totalServers": 5,
 "contract": "0x64abe24afbba64cae47e3dc3ced0fcab95e4edd5",
 "lastBlockNumber": 8669495,
 "nodes": [
 {
 "url": "https://in3-v2.slock.it/mainnet/nd-3",
 "address": "0x945F75c0408C0026a3CD204d36f5e47745182fd4",
 "index": 2,
 "deposit": "10000000000000000",
 "props": "29",
 "chainIds": [
 "0x1"
],
 "timeout": "3600",
 "registerTime": "1570109570",
 "weight": "2000",
 "proofHash": "27ffb9b7dc2c5f800c13731e7c1e43fb438928dd5d69aaa8159c21fb13180a4c"
 },
 {
 "url": "https://in3-v2.slock.it/mainnet/nd-5",
 "address": "0xbcdF4E3e90cc7288b578329efd7bcC90655148d2",
 "index": 4,
 "deposit": "10000000000000000",
 "props": "29",
 "chainIds": [
 "0x1"
],
 "timeout": "3600",
 "registerTime": "1570109690",
 "weight": "2000",
 "proofHash": "d0dbb6f1e28a8b90761b973e678cf8ecd6b5b3a9d61fb9797d187be011ee9ec7"
 }
],
 "registryId": "0x423dd84f33a44f60e5d58090dcdcc1c047f57be895415822f211b8cd1fd692e3"
 },
 "in3": {
 "proof": {
 "type": "accountProof",
 "block": "0xf9021ca01...",
 "accounts": {
 "0x64abe24afbba64cae47e3dc3ced0fcab95e4edd5": {
 "accountProof": [
 "0xf90211a0e822...",
 "0xf90211a0f6d0...",
 "0xf90211a04d7b...",
 "0xf90211a0e749...",
 "0xf90211a059cb...",
 "0xf90211a0568f...",
 "0xf8d1a0ac2433...",
 "0xf86d9d33b981..."
],
 "address": "0x64abe24afbba64cae47e3dc3ced0fcab95e4edd5",
 "balance": "0xb1a2bc2ec50000",
 "codeHash": "0x18e64869905158477a607a68e9c0074d78f56a9dd5665a5254f456f89d5be398",
 "nonce": "0x1",
 "storageHash": "0x4386ec93bd665ea07d7ed488e8b495b362a31dc4100cf762b22f4346ee925d1f",
 "storageProof": [
 {
 "key": "0x0",
 "proof": [
 "0xf90211a0ccb6d2d5786...",
 "0xf871808080808080800...",
 "0xe2a0200decd9548b62a...05"
],
 "value": "0x5"
 },
 {
 "key": "0x1",
 "proof": [
 "0xf90211a0ccb6d2d5786...",
 "0xf89180a010806a37911...",
 "0xf843a0200e2d5276120...423dd84f33a44f60e5d58090dcdcc1c047f57be895415822f211b8cd1fd692e3"
],
 "value": "0x423dd84f33a44f60e5d58090dcdcc1c047f57be895415822f211b8cd1fd692e3"
 },
 {
 "key": "0x290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e571",
 "proof": [
 "0xf90211a0ccb6d2d...",
 "0xf871a08b9ff91d8...",
 "0xf843a0206695c25...27ffb9b7dc2c5f800c13731e7c1e43fb438928dd5d69aaa8159c21fb13180a4c"
],
 "value": "0x27ffb9b7dc2c5f800c13731e7c1e43fb438928dd5d69aaa8159c21fb13180a4c"
 },
 {
 "key": "0x290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e57b",
 "proof": [
 "0xf90211a0ccb6d2d1...",
 "0xf851a06807310abd...",
 "0xf843a0204d807394...0d0dbb6f1e28a8b90761b973e678cf8ecd6b5b3a9d61fb9797d187be011ee9ec7"
],
 "value": "0xd0dbb6f1e28a8b90761b973e678cf8ecd6b5b3a9d61fb9797d187be011ee9ec7"
 }
]
 }
 }
 }
 }
}

Partial NodeLists

if the client requests a partial nodeList and the given limit is smaller then the total amount of nodes, the server needs to pick nodes in a deterministic way. This is done by using the given seed.

	add all required addresses (if any) to the list.

	iterate over the indexes until the limit is reached:

function createIndexes(total: number, limit: number, seed: Buffer): number[] {
 const result: number[] = [] // the result as a list of indexes
 let step = seed.readUIntBE(0, 6) // first 6 bytes define the step size
 let pos = seed.readUIntBE(6, 6) % total // next 6 bytes define the offset
 while (result.length < limit) {
 if (result.indexOf(pos) >= 0) { // if the index is already part of the result
 seed = keccak256(seed) // we create a new seed by hashing the seed.
 step = seed.readUIntBE(0, 6) // and change the step-size
 }
 else
 result.push(pos)
 pos = (pos + step) % total // use the modulo operator to calculate the next position.
 }
 return result
}

in3_sign

requests a signed blockhash from the node. In most cases these requests will come from other nodes, because the client simply adds the addresses of the requested signers and the processising nodes will then aquire the signatures with this method from the other nodes.

Since each node has a risk of signing a wrong blockhash and getting convicted and losing its deposit, per default nodes will and should not sign blockHash of the last minBlockHeight (default: 6) blocks!

Parameters:

	blocks: Object[] - requested blocks. Each block-object has these 2 properties:

	blockNumber : number - the blockNumber to sign.

	hash : hex - (optional) the expected hash. This is optional and can be used to check if the expected hash is correct, but as a client you should not rely on it, but only on the hash in the signature.

Returns:

a Object[] with the following properties for each block:

	blockHash : hex - the blockhash signed.

	block : number - the blockNumber

	r : hex - r-value of the signature

	s : hex - s-value of the signature

	v : number- v-value of the signature

	msgHash : the msgHash signed. This Hash is created :

keccak256(
 abi.encodePacked(
 _blockhash,
 _blockNumber,
 registryId
)
)

Request:

{
 "method":"in3_sign",
 "params":[{"blockNumber":8770580}]
}

Response:

{
 "id": 1,
 "result": [
 {
 "blockHash": "0xd8189793f64567992eaadefc51834f3d787b03e9a6850b8b9b8003d8d84a76c8",
 "block": 8770580,
 "r": "0x954ed45416e97387a55b2231bff5dd72e822e4a5d60fa43bc9f9e49402019337",
 "s": "0x277163f586585092d146d0d6885095c35c02b360e4125730c52332cf6b99e596",
 "v": 28,
 "msgHash": "0x40c23a32947f40a2560fcb633ab7fa4f3a96e33653096b17ec613fbf41f946ef"
 }
],
 "in3": {
 "lastNodeList": 8669495,
 "currentBlock": 8770590
 }
}

in3_whitelist

Returns whitelisted in3-nodes addresses. The whitelist addressed are accquired from whitelist contract that user can specify in request params.

Parameters:

	address: address of whitelist contract

Returns:

	nodes: address[] - array of whitelisted nodes addresses.

	lastWhiteList: number - the blockNumber of the last change of the in3 white list event.

	contract: address - whitelist contract address.

	totalServer : number - the total numbers of whitelist nodes.

	lastBlockNumber : number - the blockNumber of the last change of the in3 nodes list (usually the last event).

If proof requested the proof section contains the following properties:

	type : constant : accountProof

	block : the serialized blockheader of the latest final block

	signatures : a array of signatures from the signers (if requested) of the above block.

	accounts: a Object with the addresses of the whitelist contract as key and Proof as value. The Data Structure of the Proof is exactly the same as the result of - eth_getProof [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getproof] and this proof is for proofHash of byte array at storage location 0 in whitelist contract. This byte array is of whitelisted nodes addresses.

	finalityBlocks: a array of blockHeaders which were mined after the requested block. The number of blocks depends on the request-property finality. If this is not specified, this property will not be defined.

Request:

{
 "jsonrpc": "2.0",
 "method": "in3_whiteList",
 "params": ["0x08e97ef0a92EB502a1D7574913E2a6636BeC557b"],
 "id": 2,
 "in3": {
 "chainId": "0x5",
 "verification": "proofWithSignature",
 "signatures": [
 "0x45d45e6Ff99E6c34A235d263965910298985fcFe"
]
 }
}

Response:

{
 "id": 2,
 "result": {
 "totalServers": 2,
 "contract": "0x08e97ef0a92EB502a1D7574913E2a6636BeC557b",
 "lastBlockNumber": 1546354,
 "nodes": [
 "0x1fe2e9bf29aa1938859af64c413361227d04059a",
 "0x45d45e6ff99e6c34a235d263965910298985fcfe"
]
 },
 "jsonrpc": "2.0",
 "in3": {
 "execTime": 285,
 "lastValidatorChange": 0,
 "proof": {
 "type": "accountProof",
 "block": "0xf9025ca0082a4e766b4af76b7be75818f25310cbc684ccfbd747a4ccb6cacfb4f870d06ba01dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d493479400a0e579ebecc50f46483d58934f2895e22306826e9510728b5a9458f765ad52f0c4a0fe2e2139daa2b8b8cda3d76ac0887987ec5237ec2049ba039f2f60d8201dc44aa0cf55fa4bae8be74e2326813aadac34c7f39d9fa67c4b37a0f1c1f08dfa0d4f43b901000200010010000000000400800800000000000000000001831b70c6837a120083323e62845defc6a1b861d883010908846765746888676f312e31332e34856c696e7578000000000000007bec8de63523990c3bb1575ab12876b7c0c58d547971aec5ad9f902ae9808ff148d052f6877598dbb5498ba5231b6a98d2a8e9d053ec681eecf800861676b0e300a000880000000000000000",
 "accounts": {
 "0x08e97ef0a92EB502a1D7574913E2a6636BeC557b": {
 "accountProof": [
 "0xf90211a00cb35d3a4253dde597f30682518f94cbac7690d54dc51bb091f67012e606ee1ea065e37ac9eb1773bceb22cc9ec75cf778f6fc9cf50182a0c77be90dc7668976d9a0f99487653c0d8bde493eba5d1a5a3ffdf18b586f3bcbf4effa4ccdf671138df6a0a3e734fdb4718f78635e4627fd4bd8c82f2ab1c4f149f84ac3f4f217e1736e28a0c630e3dfc6b2ce794e7dc656f2d1e4cf99500600ad05ca133d9743a6aefd3572a041d0d563d3442c465d76b59f34bac9f637ccc248eab2da0ff4b3ea2c3c223738a057998484cfe32dc4614bc50b9a7dc84f47a76872e9846bb50b9370c95691c2f1a04d8789dddc9b5e9664d07d09d1deb82299d26bd2f6ba77cc1d94432b9f8ecc89a0dc85869eb80b17566bc54de244cf3be93f52f6a29d8f85786db5518637ce0a69a0bfc183b28f6a678f2ce2b46bddf55b02460b3c64e90d195baaec355adb77345fa00279de24b7e54ec7b5e7a6b870df412a752a80560a40f554b1aa8d89630de07aa0cf288bc9e5ed31382adea2b7d9823636764b1a6b2c1c2acc8e393a658cc794dca024830301aa575af512baf65e2689da32230955180810a8c6f69d7e409a5d7faaa0754b0401fe36129a7eced26d858c5916e4fea71e14833738de2fee6902d055dba0bda3477e9f115402f5bffd6243b49b4587369e96bbe20c7ba02ce7732081f847a0ef91206626dfdf7d557ac7bb90a73902c900b26ff3e56a72980aef66f71f9c3a80",
 "0xf90211a0d6cce0c7317d26a22e192288b47a5a34ab7aed0b301c249f27a481f5518e4013a05cc0d414a10bdb4a9f1d6ffe6f1dd47cc2a6daca69d046662de6526cc279b440a05332d40bfe849c158f643a5772e73ddfcf088aec6f5c2ab81387b81b5d645819a0c4431b24d011c913bdba8fd743680e43c2f8062ca53ecc5871cb18728c38aedaa0743af64d8069cbb9eebbb59676ff994c6af2df872b368072898bb3da233ccdf1a0591155bc2be76a1c11f8d6d983d198e0c8f7b14c25c9e842d82c8f731f36f59ba0c855553cb0a3e807eb6a799bdb225dade93c05dda2c140c2745b42fa9aa02023a038a1ce0bc1fb703507391fc069320533c6fb5d148bcd6e5dbf520ebffccf3e70a0ca66205070eaf405b27631ab8456959b561016adf9e827d5f5ae8f5ee5cbc75ba0c441c3242e80977935242d37a7c467fcaa7f4827d047b4cfd6ded84128402881a0d321fca44911f9755f8c7d0889c0495581b17cbfbd2bee4c1bae8d201e3c80b6a0a8f1b2bd675fc38183df2d8ac4c34009a30ff6622b6e19cae828a8ef596309fea0c47655639b08cae9669911d07a3155abfdcb0520316621b44488f3b015a95749a01160d4873873a91a4adb8bdcc70164c108149c6cd532e88dd55bc595d4cb29b4a0b826c160282bc72ad28ec91960224119f692af7f4ab9a12e10cd25cb3f095c48a0b35a48e0175f0443a080031c97993e5c1d8e46e8310db14bfa612b8616e718ad80",
 "0xf90211a0432a3bf286f659650359ae590aa340ce2a2a0d1f60fae509ea9d6a8b90215bfea06b2ab1984e6e8d80eac8d394771a31388f9f33e1548f7d284adeb5af98537ccea0529861b2110d23074ad1a4d2e1b8cf9dd2671a5021fc42c24fd29bac1bd198b6a0f355735de5167100f755d9367e9885dbe3519ecdfea6b7e833cfff2366fbce3aa0652dcb78e9f4648f4aaad9584cf1c1defe6ea037822176763bc37aa72e668233a0b859c67a88f919fd44f9c89a8389790fb2b9ae8c724f97068d312ffa019615b7a01d61365effb1ae10bf5a8fa6339fd08ee2dfcf1c408e0ed5c976742949096c29a0411c3f5a2d1a28cc4a1f42db2c17b393c6f4f6eee5d71ffffbe7f20234b2e779a0848f9e1442280f0442980561db8da240a44e7901907e705fa2f80055dd0c9853a0b152eb66b44bfa0270440f993c7edfe84138c9ab464b69070597617ca3c6db6da0fb4dacb897ae63689ac752cda4141c445a7835109e96d2de8f543e233f40a19ea0338d8f77f033fc36a4a8f693e4f731214fe70aaca9f449cf8a8f4f5e3802edfda0b987f3946a5d0407439fad51cad937e7705c48a07e38bba35ef79472dd08fcc5a02486f4e11355119bcfa5a11bb6e80625b1f7b565e29ae88e0445fdc2ea2d9164a043d4fa67268fd6ef0f74403835673b31c725e4467572596ab637b4799da064a3a08e876ea69875d39b76414027c28d497944103599d92cbefaf9dc37c4b8a14c0780",
 "0xf8d1a06f998e7193562c27933250e1e72c5a2ff0bf2df556fe478b4436e8b8ac7a7900808080a0de5d6d0bab81e7a0dcc4cfec42503384d17fefff05ba8b6082de08417044aa2b808080a07044d7c1323585aa14ea75c4cfef82b6b3320fa341627b142a9edf7eba6ea42da0223ee97601935bd3d1610a6cbe653d6b7870c1dff46e0b5db3bfdc1d9a53644580a0f7824a944cb1a64517347f54bc73cd5fc9ebd90eecca95e0a68f79d81cc4318a80a061a70db828977db72f5c1ef4808a784a8c51629d6888e5d86ffe583a5fe5f268808080",
 "0xf85180808080808080a03dd3d6e0c95682f178213fd20364be0395c9e94086eb373fd4aa13ebe4ab3ee280808080808080a0ec5d4cd2b11aaba34c5569cdae245baccd49b7f503a4e4223130d453c00b2e0080",
 "0xf8679e39ce2fd3705a1089a91865fc977c0a778d01f4f3ba9a0fd6378abecef87ab846f8440180a0f5e650b7122ddd254ecc84d87c04ea99117f12badec917985f5f3335b355cb5ea0640aaa823fe1752d44d83bcfd0081ec6a1dc72bb82223940a621b0ea251b52c4"
],
 "address": "0x08e97ef0a92eb502a1d7574913e2a6636bec557b",
 "balance": "0x0",
 "codeHash": "0x640aaa823fe1752d44d83bcfd0081ec6a1dc72bb82223940a621b0ea251b52c4",
 "nonce": "0x1",
 "storageHash": "0xf5e650b7122ddd254ecc84d87c04ea99117f12badec917985f5f3335b355cb5e",
 "storageProof": [
 {
 "key": "0x0",
 "proof": [
 "0xf90111a05541df1966b288bce9c5b6f93d564e736f3f984cb3aa4b067ba88e4398bdc86da06483c09a5b5f8f4206d30706bc9d537e01077fcc583bafea8b0f1987a6e78084a04a245b8b7c143b14a7cb72e436df03e1d029f619a2e986108c4ffdb23565b2cb80a0f2800672a0b38a211231189e7ff7c5d466359c3f7195be1601e0ec2dc1cd5f9e8080a0e38ca3fed40d881e90e889d18e237320604485c7260840b108b03b2309088befa0a3167f2a5984b53340a550067602e9d0fc103f83b1b39108cc0c090d879e2c498080a0435071d8aee5a2d7b7fd0de53bfefc129eef08150882fd4f212b4e664920950980a0c7c0421f87cacaa5c81c39cbd7be150c52780feb2c92a62dc62b25dd6dddcdc4808080",
 "0xf851808080808080808080a02b2bb6a045f22c77b07ecf8b1f7655f7ed4ccb826b16681ccf1965d4b72ad6df8080808080a076424cf5a443e7be91436a36c4d1593c5fe7736fe29acb66bbe8be0ccc7ae78280",
 "0xf843a0200decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e563a1a06aa7bbfbb1778efa33da1ba032cc3a79b9ef57b428441b4de4f1c38c3f258874"
],
 "value": "0x6aa7bbfbb1778efa33da1ba032cc3a79b9ef57b428441b4de4f1c38c3f258874"
 }
]
 }
 },
 "signatures": [
 {
 "blockHash": "0x2d775ab9b1290f487065e612942a84fc2275572e467040eea154fbbae2005c41",
 "block": 1798342,
 "r": "0xf6036400705455c1dfb431e1c90b91f3e50815516577f1ebca9a494164b12d17",
 "s": "0x30e77bc851e02fc79deab63812203b2dfcacd7a83af14a86c8c9d26d95763cc5",
 "v": 28,
 "msgHash": "0x7953b8a420bfe9d1c902e2090f533c9b3f73f0f825b7cec247d7d94e548bc5d9"
 }
]
 },
 "lastWhiteList": 1546354
 }
}

Ethereum 1.x

Standard JSON-RPC calls as described in https://github.com/ethereum/wiki/wiki/JSON-RPC.

Whenever a request is made for a response with verification: proof, the node must provide the proof needed to validate the response result. The proof itself depends on the chain.

For ethereum, all proofs are based on the correct block hash. That’s why verification differentiates between Verifying the blockhash (which depends on the user consensus) the actual result data.

There is another reason why the BlockHash is so important. This is the only value you are able to access from within a SmartContract, because the evm supports a OpCode (BLOCKHASH), which allows you to read the last 256 blockhashes, which gives us the chance to verify even the blockhash onchain.

Depending on the method, different proofs are needed, which are described in this document.

Proofs will add a special in3-section to the response containing a proof- object. Each in3-section of the response containing proofs has a property with a proof-object with the following properties:

	type string (required) - The type of the proof.Must be one of the these values : 'transactionProof’, 'receiptProof’, 'blockProof’, 'accountProof’, 'callProof’, 'logProof’

	block string - The serialized blockheader as hex, required in most proofs.

	finalityBlocks array - The serialized following blockheaders as hex, required in case of finality asked (only relevant for PoA-chains). The server must deliver enough blockheaders to cover more then 50% of the validators. In order to verify them, they must be linkable (with the parentHash).

	transactions array - The list of raw transactions of the block if needed to create a merkle trie for the transactions.

	uncles array - The list of uncle-headers of the block. This will only be set if full verification is required in order to create a merkle tree for the uncles and so prove the uncle_hash.

	merkleProof string[] - The serialized merkle-nodes beginning with the root-node (depending on the content to prove).

	merkleProofPrev string[] - The serialized merkle-nodes beginning with the root-node of the previous entry (only for full proof of receipts).

	txProof string[] - The serialized merkle-nodes beginning with the root-node in order to proof the transactionIndex (only needed for transaction receipts).

	logProof LogProof - The Log Proof in case of a eth_getLogs-request.

	accounts object - A map of addresses and their AccountProof.

	txIndex integer - The transactionIndex within the block (for transaactions and receipts).

	signatures Signature[] - Requested signatures.

web3_clientVersion

Returns the underlying client version.

See web3_clientversion [https://github.com/ethereum/wiki/wiki/JSON-RPC#web3_clientversion] for spec.

No proof or verification possible.

web3_sha3

Returns Keccak-256 (not the standardized SHA3-256) of the given data.

See web3_sha3 [https://github.com/ethereum/wiki/wiki/JSON-RPC#web3_sha3] for spec.

No proof returned, but the client must verify the result by hashing the request data itself.

net_version

Returns the current network ID.

See net_version [https://github.com/ethereum/wiki/wiki/JSON-RPC#net_version] for spec.

No proof returned, but the client must verify the result by comparing it to the used chainId.

eth_blockNumber

Returns the number of the most recent block.

See eth_blockNumber [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_blockNumber] for spec.

No proof returned, since there is none, but the client should verify the result by comparing it to the current blocks returned from others. With the blockTime from the chainspec, including a tolerance, the current blocknumber may be checked if in the proposed range.

eth_getBlockByNumber

See block based proof

eth_getBlockByHash

Return the block data and proof.

See JSON-RPC-Spec

	eth_getBlockByNumber [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getBlockByNumber] - find block by number.

	eth_getBlockByHash [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getBlockByHash] - find block by hash.

The eth_getBlockBy... methods return the Block-Data. In this case, all we need is somebody verifying the blockhash, which is done by requiring somebody who stored a deposit and would otherwise lose it, to sign this blockhash.

The verification is then done by simply creating the blockhash and comparing this to the signed one.

The blockhash is calculated by serializing the blockdata [https://github.com/slockit/in3/blob/master/src/util/serialize.ts#L120] with rlp [https://github.com/ethereum/wiki/wiki/RLP] and hashing it:

blockHeader = rlp.encode([
 bytes32(parentHash),
 bytes32(sha3Uncles),
 address(miner || coinbase),
 bytes32(stateRoot),
 bytes32(transactionsRoot),
 bytes32(receiptsRoot || receiptRoot),
 bytes256(logsBloom),
 uint(difficulty),
 uint(number),
 uint(gasLimit),
 uint(gasUsed),
 uint(timestamp),
 bytes(extraData),

 ... sealFields
 ? sealFields.map(rlp.decode)
 : [
 bytes32(b.mixHash),
 bytes8(b.nonce)
]
])

For POA-chains, the blockheader will use the sealFields (instead of mixHash and nonce) which are already RLP-encoded and should be added as raw data when using rlp.encode.

if (keccak256(blockHeader) !== singedBlockHash)
 throw new Error('Invalid Block')

In case of the eth_getBlockTransactionCountBy..., the proof contains the full blockHeader already serilalized plus all transactionHashes. This is needed in order to verify them in a merkle tree and compare them with the transactionRoot.

Requests requiring proof for blocks will return a proof of type blockProof. Depending on the request, the proof will contain the following properties:

	type : constant : blockProof

	signatures : a array of signatures from the signers (if requested) of the requested block.

	transactions: a array of raw transactions of the block. This is only needed the last parameter of the request (includeTransactions) is false, In this case the result only contains the transactionHashes, but in order to verify we need to be able to build the complete merkle-trie, where the raw transactions are needed. If the complete transactions are included the raw transactions can be build from those values.

	finalityBlocks: a array of blockHeaders which were mined after the requested block. The number of blocks depends on the request-property finality. If this is not specified, this property will not be defined.

	uncles: only if fullProof is requested we add all blockheaders of the uncles to the proof in order to verify the uncleRoot.

Request:

{
 "method": "eth_getBlockByNumber",
 "params": [
 "0x967a46",
 false
],
 "in3": {
 "verification":"proof"
 }
}

Response:

{
 "jsonrpc": "2.0",
 "result": {
 "author": "0x00d6cc1ba9cf89bd2e58009741f4f7325badc0ed",
 "difficulty": "0xfffffffffffffffffffffffffffffffe",
 "extraData": "0xde830201088f5061726974792d457468657265756d86312e33302e30827769",
 "gasLimit": "0x7a1200",
 "gasUsed": "0x1ce0f",
 "hash": "0xfeb120ae45f1009e6c2289436d5957c58a15915288ec083658bd044101608f26",
 "logsBloom": "0x0008000...",
 "miner": "0x00d6cc1ba9cf89bd2e58009741f4f7325badc0ed",
 "number": "0x967a46",
 "parentHash": "0xc591335e0cdb6b21dc9af57567a6e075fc6315aff915bd79bf78a2c8815bc657",
 "receiptsRoot": "0xfa2a0b3c0715e798ae41fd4645b0261ae4bf6d2c56f29da6fcc5fbfb7c6f19f8",
 "sealFields": [
 "0x8417098353",
 "0xb841eb80c1a0be2eb7a1c14fc38759a0f9fe9c33121d72003025160a4b35119d495d34d39a9fd7475d28ba863e35f5103ed43e6f13ce31f026d3d29c0d2b1848fb4300"
],
 "sha3Uncles": "0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347",
 "size": "0x44e",
 "stateRoot": "0xd618159b6dbd0c6213d90abbf01e06513104f0670cd79503cb2563d7ff116864",
 "timestamp": "0x5c260d4c",
 "totalDifficulty": "0x94373700000000000000000000000484b6f390",
 "transactions": [
 "0x16cfadb6a0a823c623788713cb1eb7d399f89f78d599d416f7b91dca44eeb804",
 "0x91458145d2c47527eee34e891879ac2915b3f8ba6f31911c5234928ae32cb191"
],
 "transactionsRoot": "0x4f1249c6378282b1f032cc8c2562712f2450a0bed8ce20bdd2d01b6520feb75a",
 "uncles": []
 },
 "id": 77,
 "in3": {
 "proof": {
 "type": "blockProof",
 "signatures": [...],
 "transactions": [
 "0xf8ac8201158504a817c8....",
 "0xf9014c8301a3d4843b9ac....",
]
 },
 "currentBlock": 9866910,
 "lastNodeList": 8057063,
 }
}

eth_getBlockTransactionCountByHash

See transaction count proof

eth_getBlockTransactionCountByNumber

See transaction count proof

eth_getUncleCountByBlockHash

See count proof

eth_getUncleCountByBlockNumber

return the number of transactions or uncles.

See JSON-RPC-Spec

	eth_getBlockTransactionCountByHash [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getBlockTransactionCountByHash] - number of transaction by block hash.

	eth_getBlockTransactionCountByNumber [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getBlockTransactionCountByNumber] - number of transaction by block number.

	eth_getUncleCountByBlockHash [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getUncleCountByBlockHash] - number of uncles by block number.

	eth_getUncleCountByBlockNumber [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getUncleCountByBlockNumber] - number of uncles by block number.

Requests requiring proof for blocks will return a proof of type blockProof. Depending on the request, the proof will contain the following properties:

	type : constant : blockProof

	signatures : a array of signatures from the signers (if requested) of the requested block.

	block : the serialized blockheader

	transactions: a array of raw transactions of the block. This is only needed if the number of transactions are requested.

	finalityBlocks: a array of blockHeaders which were mined after the requested block. The number of blocks depends on the request-property finality. If this is not specified, this property will not be defined.

	uncles: a array of blockheaders of the uncles of the block. This is only needed if the number of uncles are requested.

eth_getTransactionByHash

return the transaction data.

See JSON-RPC-Spec

	eth_getTransactionByHash [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getTransactionByHash] - transaction data by hash.

	eth_getTransactionByBlockHashAndIndex [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getTransactionByBlockHashAndIndex] - transaction data based on blockhash and index

	eth_getTransactionByBlockNumberAndIndex [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getTransactionByBlockNumberAndIndex] - transaction data based on block number and index

[image: digraph minimal_nonplanar_graphs { fontname="Helvetica" subgraph all { node [fontsize = "12", style="", color=black fontname="Helvetica", shape=record] subgraph block_header { label="blockheader" style="" color=black bheader[label="parentHash|...|<tr>transactionRoot|receiptRoot|stateRoot"] troot:a -> bheader:tr } subgraph cluster_client_registry { label="Transaction Trie" color=lightblue style=filled troot[label="|<a>0x123456|||||"] ta[label="|0x123456||<a>0xabcdef|||"] tb[label="|0x98765||<a>0xfcab34|||"] tval[label="transaction data"] ta:a -> troot:a tb:a -> troot:a tval:a -> ta:a } } }]
In order to prove the transaction data, each transaction of the containing block must be serialized

transaction = rlp.encode([
 uint(tx.nonce),
 uint(tx.gasPrice),
 uint(tx.gas || tx.gasLimit),
 address(tx.to),
 uint(tx.value),
 bytes(tx.input || tx.data),
 uint(tx.v),
 uint(tx.r),
 uint(tx.s)
])

and stored in a merkle tree with rlp.encode(transactionIndex) as key or path, since the blockheader only contains the transactionRoot, which is the root-hash of the resulting merkle tree. A merkle-proof with the transactionIndex of the target transaction will then be created from this tree.

If the request requires proof (verification: proof) the node will provide an Transaction Proof as part of the in3-section of the response.
This proof section contains the following properties:

	type : constant : transactionProof

	block : the serialized blockheader of the requested transaction.

	signatures : a array of signatures from the signers (if requested) of the above block.

	txIndex : The TransactionIndex as used in the MerkleProof (not needed if the methode was eth_getTransactionByBlock..., since already given)

	merkleProof: the serialized nodes of the Transaction trie starting with the root node.

	finalityBlocks: a array of blockHeaders which were mined after the requested block. The number of blocks depends on the request-property finality. If this is not specified, this property will not be defined.

While there is no proof for a non existing transaction, if the request was a eth_getTransactionByBlock... the node must deliver a partial merkle-proof to verify that this node does not exist.

Request:

{
 "method":"eth_getTransactionByHash",
 "params":["0xe9c15c3b26342e3287bb069e433de48ac3fa4ddd32a31b48e426d19d761d7e9b"],
 "in3":{
 "verification":"proof"
 }
}

Response:

{
 "jsonrpc": "2.0",
 "id": 6,
 "result": {
 "blockHash": "0xf1a2fd6a36f27950c78ce559b1dc4e991d46590683cb8cb84804fa672bca395b",
 "blockNumber": "0xca",
 "from": "0x7e5f4552091a69125d5dfcb7b8c2659029395bdf",
 "gas": "0x55f0",
 "gasPrice": "0x0",
 "hash": "0xe9c15c3b26342e3287bb069e433de48ac3fa4ddd32a31b48e426d19d761d7e9b",
 "input": "0x00",
 "value": "0x3e8"
 ...
 },
 "in3": {
 "proof": {
 "type": "transactionProof",
 "block": "0xf901e6a040997a53895b48...", // serialized blockheader
 "merkleProof": [/* serialized nodes starting with the root-node */
 "0xf868822080b863f86136808255f0942b5ad5c4795c026514f8317c7a215e218dc..."
 "0xcd6cf8203e8001ca0dc967310342af5042bb64c34d3b92799345401b26713b43f..."
],
 "txIndex": 0,
 "signatures": [...]
 }
 }
}

eth_getTransactionReceipt

The Receipt of a Transaction.

See JSON-RPC-Spec

	eth_getTransactionReceipt [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_gettransactionreceipt] - returns the receipt.

[image: digraph minimal_nonplanar_graphs { fontname="Helvetica" subgraph all { node [fontsize = "12", style="", color=black fontname="Helvetica", shape=record] subgraph blockheader { label="blocheader" style="" color=black bheader[label="parentHash|...|transactionRoot|<tr>receiptRoot|stateRoot"] troot:a -> bheader:tr } subgraph cluster_client_registry { label="Receipt Trie" color=lightblue style=filled troot[label="|<a>0x123456|||||"] ta[label="|0x123456||<a>0xabcdef|||"] tb[label="|0x98765||<a>0xfcab34|||"] tval[label="transaction receipt"] ta:a -> troot:a tb:a -> troot:a tval:a -> ta:a } } }]
The proof works similiar to the transaction proof.

In order to create the proof we need to serialize all transaction receipts

transactionReceipt = rlp.encode([
 uint(r.status || r.root),
 uint(r.cumulativeGasUsed),
 bytes256(r.logsBloom),
 r.logs.map(l => [
 address(l.address),
 l.topics.map(bytes32),
 bytes(l.data)
])
].slice(r.status === null && r.root === null ? 1 : 0))

and store them in a merkle tree with rlp.encode(transactionIndex) as key or path, since the blockheader only contains the receiptRoot, which is the root-hash of the resulting merkle tree. A merkle proof with the transactionIndex of the target transaction receipt will then be created from this tree.

Since the merkle proof is only proving the value for the given transactionIndex, we also need to prove that the transactionIndex matches the transactionHash requested. This is done by adding another MerkleProof for the transaction itself as described in the Transaction Proof.

If the request requires proof (verification: proof) the node will provide an Transaction Proof as part of the in3-section of the response.
This proof section contains the following properties:

	type : constant : receiptProof

	block : the serialized blockheader of the requested transaction.

	signatures : a array of signatures from the signers (if requested) of the above block.

	txIndex : The TransactionIndex as used in the MerkleProof

	txProof : the serialized nodes of the Transaction trie starting with the root node. This is needed in order to proof that the required transactionHash matches the receipt.

	merkleProof: the serialized nodes of the Transaction Receipt trie starting with the root node.

	merkleProofPrev: the serialized nodes of the previous Transaction Receipt (if txInxdex>0) trie starting with the root node. This is only needed if full-verification is requested. With a verified previous Receipt we can proof the usedGas.

	finalityBlocks: a array of blockHeaders which were mined after the requested block. The number of blocks depends on the request-property finality. If this is not specified, this property will not be defined.

Request:

{
 "method": "eth_getTransactionReceipt",
 "params": [
 "0x5dc2a9ec73abfe0640f27975126bbaf14624967e2b0b7c2b3a0fb6111f0d3c5e"
]
 "in3":{
 "verification":"proof"
 }
}

Response:

{
 "result": {
 "blockHash": "0xea6ee1e20d3408ad7f6981cfcc2625d80b4f4735a75ca5b20baeb328e41f0304",
 "blockNumber": "0x8c1e39",
 "contractAddress": null,
 "cumulativeGasUsed": "0x2466d",
 "gasUsed": "0x2466d",
 "logs": [
 {
 "address": "0x85ec283a3ed4b66df4da23656d4bf8a507383bca",
 "blockHash": "0xea6ee1e20d3408ad7f6981cfcc2625d80b4f4735a75ca5b20baeb328e41f0304",
 "blockNumber": "0x8c1e39",
 "data": "0x00000000000...",
 "logIndex": "0x0",
 "removed": false,
 "topics": [
 "0x9123e6a7c5d144bd06140643c88de8e01adcbb24350190c02218a4435c7041f8",
 "0xa2f7689fc12ea917d9029117d32b9fdef2a53462c853462ca86b71b97dd84af6",
 "0x55a6ef49ec5dcf6cd006d21f151f390692eedd839c813a150000000000000000"
],
 "transactionHash": "0x5dc2a9ec73abfe0640f27975126bbaf14624967e2b0b7c2b3a0fb6111f0d3c5e",
 "transactionIndex": "0x0",
 "transactionLogIndex": "0x0",
 "type": "mined"
 }
],
 "logsBloom": "0x00000000000000000000200000...",
 "root": null,
 "status": "0x1",
 "transactionHash": "0x5dc2a9ec73abfe0640f27975126bbaf14624967e2b0b7c2b3a0fb6111f0d3c5e",
 "transactionIndex": "0x0"
 },
 "in3": {
 "proof": {
 "type": "receiptProof",
 "block": "0xf9023fa019e9d929ab...",
 "txProof": [
 "0xf851a083c8446ab932130..."
],
 "merkleProof": [
 "0xf851a0b0f5b7429a54b10..."
],
 "txIndex": 0,
 "signatures": [...],
 "merkleProofPrev": [
 "0xf851a0b0f5b7429a54b10..."
]
 },
 "currentBlock": 9182894,
 "lastNodeList": 6194869
 }
}

eth_getLogs

Proofs for logs or events.

See JSON-RPC-Spec

	eth_getLogs [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getLogs] - returns all event matching the filter.

Since logs or events are based on the TransactionReceipts, the only way to prove them is by proving the TransactionReceipt each event belongs to.

That’s why this proof needs to provide:

	all blockheaders where these events occured

	all TransactionReceipts plus their MerkleProof of the logs

	all MerkleProofs for the transactions in order to prove the transactionIndex

The proof data structure will look like this:

 Proof {
 type: 'logProof',
 logProof: {
 [blockNr: string]: { // the blockNumber in hex as key
 block : string // serialized blockheader
 receipts: {
 [txHash: string]: { // the transactionHash as key
 txIndex: number // transactionIndex within the block
 txProof: string[] // the merkle Proof-Array for the transaction
 proof: string[] // the merkle Proof-Array for the receipts
 }
 }
 }
 }
 }

In order to create the proof, we group all events into their blocks and transactions, so we only need to provide the blockheader once per block.
The merkle-proofs for receipts are created as described in the Receipt Proof.

If the request requires proof (verification: proof) the node will provide an Transaction Proof as part of the in3-section of the response.
This proof section contains the following properties:

	type : constant : logProof

	logProof : The proof for all the receipts. This structure contains an object with the blockNumbers as keys. Each block contains the blockheader and the receipt proofs.

	signatures : a array of signatures from the signers (if requested) of the above blocks.

	finalityBlocks: a array of blockHeaders which were mined after the requested block. The number of blocks depends on the request-property finality. If this is not specified, this property will not be defined.

Request:

{
 "method": "eth_getLogs",
 "params": [
 {
 "fromBlock": "0x7ae000",
 "toBlock": "0x7af0e4",
 "address": "0x27a37a1210df14f7e058393d026e2fb53b7cf8c1"
 }
],
 "in3":{
 "verification":"proof"
 }
}

Response:

{
 "jsonrpc": "2.0",
 "result": [
 {
 "address": "0x27a37a1210df14f7e058393d026e2fb53b7cf8c1",
 "blockHash": "0x12657acc9dbca74775efcc09bcd55da769e89fff27a0402e02708a6e69caa3bb",
 "blockNumber": "0x7ae16b",
 "data": "0x0000000000000...",
 "logIndex": "0x0",
 "removed": false,
 "topics": [
 "0x690cd1ace756531abc63987913dcfaf18055f3bd6bb27d3def1cc5319ebc1461"
],
 "transactionHash": "0xddc81454b0df60fb31dbefd0fd4c5e8fe4f3daa541c879964500d876056e2976",
 "transactionIndex": "0x0",
 "transactionLogIndex": "0x0",
 "type": "mined"
 },
 {
 "address": "0x27a37a1210df14f7e058393d026e2fb53b7cf8c1",
 "blockHash": "0x2410d512d12e18b2451efe195ece85723b7f39c3f5d706ea112bfcc57c0249d2",
 "blockNumber": "0x7af0e4",
 "data": "0x000000000000000...",
 "logIndex": "0x4",
 "removed": false,
 "topics": [
 "0x690cd1ace756531abc63987913dcfaf18055f3bd6bb27d3def1cc5319ebc1461"
],
 "transactionHash": "0x30fe995d61a5491a49e8f1283b36f4cb7fa5d370927bd8784c33e702546a9daa",
 "transactionIndex": "0x4",
 "transactionLogIndex": "0x0",
 "type": "mined"
 }
],
 "id": 144,
 "in3": {
 "proof": {
 "type": "logProof",
 "logProof": {
 "0x7ae16b": {
 "number": 8053099,
 "receipts": {
 "0xddc81454b0df60fb31dbefd0fd4c5e8fe4f3daa541c879964500d876056e2976": {
 "txHash": "0xddc81454b0df60fb31dbefd0fd4c5e8fe4f3daa541c879964500d876056e2976",
 "txIndex": 0,
 "proof": [
 "0xf9020e822080b90208f..."
],
 "txProof": [
 "0xf8f7822080b8f2f8f080..."
]
 }
 },
 "block": "0xf9023ea002343274..."
 },
 "0x7af0e4": {
 "number": 8057060,
 "receipts": {
 "0x30fe995d61a5491a49e8f1283b36f4cb7fa5d370927bd8784c33e702546a9daa": {
 "txHash": "0x30fe995d61a5491a49e8f1283b36f4cb7fa5d370927bd8784c33e702546a9daa",
 "txIndex": 4,
 "proof": [
 "0xf851a039faec6276...",
 "0xf8b180a0ee82c377...",
 "0xf9020c20b90208f9..."
],
 "txProof": [
 "0xf851a09250840f6b87...",
 "0xf8b180a04e5257328b...",
 "0xf8f620b8f3f8f18085..."
]
 }
 },
 "block": "0xf9023ea03837491e4b3b..."
 }
 }
 },
 "lastValidatorChange": 0,
 "lastNodeList": 8057063
 }
}

eth_getBalance

See account proof

eth_getCode

See account proof

eth_getTransactionCount

See account proof

eth_getStorageAt

Returns account based values and proof.

See JSON-RPC-Spec

	eth_getBalance [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getBalance] - returns the balance.

	eth_getCode [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getcode] - the byte code of the contract.

	eth_getTransactionCount [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_gettransactioncount] - the nonce of the account.

	eth_getStorageAt [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getstorageat] - the storage value for the given key of the given account.

Each of these account values are stored in the account-object:

account = rlp.encode([
 uint(nonce),
 uint(balance),
 bytes32(storageHash || ethUtil.KECCAK256_RLP),
 bytes32(codeHash || ethUtil.KECCAK256_NULL)
])

The proof of an account is created by taking the state merkle tree and creating a MerkleProof. Since all of the above RPC-methods only provide a single value, the proof must contain all four values in order to encode them and verify the value of the MerkleProof.

For verification, the stateRoot of the blockHeader is used and keccak(accountProof.address) as the path or key within the merkle tree.

verifyMerkleProof(
 block.stateRoot, // expected merkle root
 keccak(accountProof.address), // path, which is the hashed address
 accountProof.accountProof), // array of Buffer with the merkle-proof-data
 isNotExistend(accountProof) ? null : serializeAccount(accountProof), // the expected serialized account
)

In case the account does not exist yet (which is the case if none == startNonce and codeHash == '0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470'), the proof may end with one of these nodes:

	The last node is a branch, where the child of the next step does not exist.

	The last node is a leaf with a different relative key.

Both would prove that this key does not exist.

For eth_getStorageAt, an additional storage proof is required. This is created by using the storageHash of the account and creating a MerkleProof using the hash of the storage key (keccak(key)) as path.

verifyMerkleProof(
 bytes32(accountProof.storageHash), // the storageRoot of the account
 keccak(bytes32(s.key)), // the path, which is the hash of the key
 s.proof.map(bytes), // array of Buffer with the merkle-proof-data
 s.value === '0x0' ? null : util.rlp.encode(s.value) // the expected value or none to proof non-existence
))

[image: digraph minimal_nonplanar_graphs { fontname="Helvetica" subgraph all { node [fontsize = "12", style="", color=black fontname="Helvetica", shape=record] subgraph cluster_block_header { label="Blockheader" color=white style=filled bheader[label="parentHash|...|<tr>stateRoot|transactionRoot|receiptRoot|..."] } subgraph cluster_state_trie { label="State Trie" color=lightblue style=filled troot[label="|<a>0x123456|||||0xabcdef"] ta[label="|0x123456||<a>0xabcdef|||"] tb[label="|0x98765||<a>0xfcab34|||"] tval[label="nonce|balance|<sr>storageHash|codeHash"] ta:a -> troot:a tb:a -> troot:b tval:a -> ta:a } subgraph cluster_storage_trie { label="Storage Trie" color=lightblue style=filled sroot[label="|<a>0x123456|||||0xabcdef"] sa[label="|0x123456||<a>0xabcdef|||"] sb[label="|0x98765||<a>0xfcab34|||"] sval[label="storage value"] sa:a -> sroot:a sb:a -> sroot:b sval:a -> sa:a } sroot:a -> tval:sr troot:a -> bheader:tr } }]
If the request requires proof (verification: proof) the node will provide an Account Proof as part of the in3-section of the response.
This proof section contains the following properties:

	type : constant : accountProof

	block : the serialized blockheader of the requested block (the last parameter of the request)

	signatures : a array of signatures from the signers (if requested) of the above block.

	accounts: a Object with the addresses of all required accounts (in this case it is only one account) as key and Proof as value. The DataStructure of the Proof for each account is exactly the same as the result of - eth_getProof [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getproof].

	finalityBlocks: a array of blockHeaders which were mined after the requested block. The number of blocks depends on the request-property finality. If this is not specified, this property will not be defined.

Example

Request:

{
 "method": "eth_getStorageAt",
 "params": [
 "0x27a37a1210Df14f7E058393d026e2fB53B7cf8c1",
 "0x0",
 "latest"
],
 "in3": {
 "verification":"proof"
 }
}

Response:

{
 "id": 77,
 "jsonrpc": "2.0",
 "result": "0x5",
 "in3": {
 "proof": {
 "type": "accountProof",
 "block": "0xf90246...",
 "signatures": [...],
 "accounts": {
 "0x27a37a1210Df14f7E058393d026e2fB53B7cf8c1": {
 "accountProof": [
 "0xf90211a0bf....",
 "0xf90211a092....",
 "0xf90211a0d4....",
 "0xf90211a084....",
 "0xf9019180a0...."
],
 "address": "0x27a37a1210df14f7e058393d026e2fb53b7cf8c1",
 "balance": "0x11c37937e08000",
 "codeHash": "0x3b4e727399e02beb6c92e8570b4ccdd24b6a3ef447c89579de5975edd861264e",
 "nonce": "0x1",
 "storageHash": "0x595b6b8bfaad7a24d0e5725ba86887c81a9d99ece3afcce1faf508184fcbe681",
 "storageProof": [
 {
 "key": "0x0",
 "proof": [
 "0xf90191a08e....",
 "0xf871808080....",
 "0xe2a0200decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e56305"
],
 "value": "0x5"
 }
]
 }
 }
 },
 "currentBlock": 9912897,
 "lastNodeList": 8057063
 }
}

eth_estimateGas

See call proof

eth_call

calls a function of a contract (or simply executes the evm opcodes).

See JSON-RPC-Spec

	eth_call [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_call] - executes a function and returns the result.

	eth_estimateGas [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_estimateGas] - executes a function and returns the gas used.

Verifying the result of an eth_call is a little bit more complex because the response is a result of executing opcodes in the vm. The only way to do so is to reproduce it and execute the same code. That’s why a call proof needs to provide all data used within the call. This means:

	All referred accounts including the code (if it is a contract), storageHash, nonce and balance.

	All storage keys that are used (this can be found by tracing the transaction and collecting data based on the SLOAD-opcode).

	All blockdata, which are referred at (besides the current one, also the BLOCKHASH-opcodes are referring to former blocks).

For verifying, you need to follow these steps:

	Serialize all used blockheaders and compare the blockhash with the signed hashes. (See BlockProof)

	Verify all used accounts and their storage as showed in Account Proof.

	Create a new VM [https://github.com/ethereumjs/ethereumjs-vm] with a MerkleTree as state and fill in all used value in the state:

 // create new state for a vm
 const state = new Trie()
 const vm = new VM({ state })

 // fill in values
 for (const adr of Object.keys(accounts)) {
 const ac = accounts[adr]

 // create an account-object
 const account = new Account([ac.nonce, ac.balance, ac.stateRoot, ac.codeHash])

 // if we have a code, we will set the code
 if (ac.code) account.setCode(state, bytes(ac.code))

 // set all storage-values
 for (const s of ac.storageProof)
 account.setStorage(state, bytes32(s.key), rlp.encode(bytes32(s.value)))

 // set the account data
 state.put(address(adr), account.serialize())
 }

 // add listener on each step to make sure it uses only values found in the proof
 vm.on('step', ev => {
 if (ev.opcode.name === 'SLOAD') {
 const contract = toHex(ev.address) // address of the current code
 const storageKey = bytes32(ev.stack[ev.stack.length - 1]) // last element on the stack is the key
 if (!getStorageValue(contract, storageKey))
 throw new Error(`incomplete data: missing key ${storageKey}`)
 }
 /// ... check other opcodes as well
 })

 // create a transaction
 const tx = new Transaction(txData)

 // run it
 const result = await vm.runTx({ tx, block: new Block([block, [], []]) })

 // use the return value
 return result.vm.return

In the future, we will be using the same approach to verify calls with ewasm.

If the request requires proof (verification: proof) the node will provide an Call Proof as part of the in3-section of the response. Details on how create the proof can be found in the CallProof-Chapter.
This proof section contains the following properties:

	type : constant : callProof

	block : the serialized blockheader of the requested block (the last parameter of the request)

	signatures : a array of signatures from the signers (if requested) of the above block.

	accounts: a Object with the addresses of all accounts required to run the call as keys. This includes also all storage values (SLOAD) including proof used. The DataStructure of the Proof for each account is exactly the same as the result of - eth_getProof [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getproof].

	finalityBlocks: a array of blockHeaders which were mined after the requested block. The number of blocks depends on the request-property finality. If this is not specified, this property will not be defined.

Request:

{
 "method": "eth_call",
 "params": [
 {
 "to": "0x2736D225f85740f42D17987100dc8d58e9e16252",
 "data": "0x5cf0f3570001"
 },
 "latest"
],
 "in3": {
 "verification":"proof"
 }
}

Response:

{
 "result": "0x0000000000000000000000000...",
 "in3": {
 "proof": {
 "type": "callProof",
 "block": "0xf90215a0c...",
 "signatures": [...],
 "accounts": {
 "0x2736D225f85740f42D17987100dc8d58e9e16252": {
 "accountProof": [
 "0xf90211a095...",
 "0xf90211a010...",
 "0xf90211a062...",
 "0xf90211a091...",
 "0xf90211a03a...",
 "0xf901f1a0d1...",
 "0xf8b18080808..."
],
 "address": "0x2736d225f85740f42d17987100dc8d58e9e16252",
 "balance": "0x4fffb",
 "codeHash": "0x2b8bdc59ce78fd8c248da7b5f82709e04f2149c39e899c4cdf4587063da8dc69",
 "nonce": "0x1",
 "storageHash": "0xbf904e79d4ebf851b2380d81aab081334d79e231295ae1b87f2dd600558f126e",
 "storageProof": [
 {
 "key": "0x0",
 "proof": [
 "0xf901f1a0db74...",
 "0xf87180808080...",
 "0xe2a0200decd9....05"
],
 "value": "0x5"
 },
 {
 "key": "0x290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e569",
 "proof": [
 "0xf901f1a0db74...",
 "0xf891a0795a99...",
 "0xe2a020ab8540...43"
],
 "value": "0x43"
 },
 {
 "key": "0xaaab8540682e3a537d17674663ea013e92c83fdd69958f314b4521edb3b76f1a",
 "proof": [
 "0xf901f1a0db747...",
 "0xf891808080808...",
 "0xf843a0207bd5ee..."
],
 "value": "0x68747470733a2f2f696e332e736c6f636b2e69742f6d61696e6e65742f6e642d"
 }
]
 }
 }
 },
 "currentBlock": 8040612,
 "lastNodeList": 6619795
 }
}

eth_accounts

eth_sign

eth_sendTransaction

See JSON-RPC-Spec

	eth_accounts [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_accounts] - returns the unlocked accounts.

	eth_sign [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sign] - signs data with an unlocked account.

	eth_sendTransaction [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sendTransaction] - signs and sends a transaction.

Signing is not supported since the nodes are serving a public rpc-enpoint. These methods will return a error. The client may still support those methods, but handle those requests internally.

eth_sendRawTransaction

See JSON-RPC-Spec

	eth_sendRawTransaction [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sendRawTransaction] - sends a prviously signed transaction.

This Method does not require any proof. (even if requested). Clients must at least verify the returned transactionHash by hashing the rawTransaction data. To know whether the transaction was actually broadcasted and mined, the client needs to run a second request eth_getTransactionByHash which should contain the blocknumber as soon as this is mined.

Roadmap

Incubed implements two versions:

	TypeScript / JavaScript: optimized for dApps, web apps, or mobile apps.

	C: optimized for microcontrollers and all other use cases.

In the future we will focus on one codebase, which is C. This will be ported to many platforms (like WASM).

V2.0 Stable: Q3 2019

This was the first stable release, which was published after Devcon. It contains full verification of all relevant Ethereum RPC calls (except eth_call for eWasm contracts), but there is no payment or incentivization included yet.

	Fail-safe Connection: The Incubed client will connect to any Ethereum blockchain (providing Incubed servers) by randomly selecting nodes within the Incubed network and, if the node cannot be reached or does not deliver verifiable responses, automatically retrying with different nodes.

	Reputation Management: Nodes that are not available will be temporarily blacklisted and lose reputation. The selection of a node is based on the weight (or performance) of the node and its availability.

	Automatic NodeList Updates: All Incubed nodes are registered in smart contracts on chain and will trigger events if the NodeList changes. Each request will always return the blockNumber of the last event so that the client knows when to update its NodeList.

	Partial NodeList: To support small devices, the NodeList can be limited and still be fully verified by basing the selection of nodes deterministically on a client-generated seed.

	Multichain Support: Incubed is currently supporting any Ethereum-based chain. The client can even run parallel requests to different networks without the need to synchronize first.

	Preconfigured Boot Nodes: While you can configure any registry contract, the standard version contains configuration with boot nodes for mainnet, kovan, evan, tobalaba, and ipfs.

	Full Verification of JSON-RPC Methods: Incubed is able to fully verify all important JSON-RPC methods. This even includes calling functions in smart contract and verifying their return value (eth_call), which means executing each opcode locally in the client to confirm the result.

	IPFS Support: Incubed is able to write and read IPFS content and verify the data by hashing and creating the multihash.

	Caching Support: An optional cache enables storage of the results of RPC requests that can automatically be used again within a configurable time span or if the client is offline. This also includes RPC requests, blocks, code, and NodeLists.

	Custom Configuration: The client is highly customizable. For each request, a configuration can be explicitly passed or adjusted through events (client.on('beforeRequest',...)). This allows the proof level or number of requests to be sent to be optimized depending on the context.

	Proof Levels: Incubed supports different proof levels: none for no verification, standard for verifying only relevant properties, and full for complete verification, including uncle blocks or previous transactions (higher payload).

	Security Levels: Configurable number of signatures (for PoW) and minimal deposit stored.

	PoW Support: For PoW, blocks are verified based on blockhashes signed by Incubed nodes storing a deposit, which they lose if this blockhash is not correct.

	PoA Support: (experimental) For PoA chains (using Aura and clique), blockhashes are verified by extracting the signature from the sealed fields of the blockheader and by using the Aura algorithm to determine the signer from the validatorlist (with static validatorlist or contract-based validators).

	Finality Support: For PoA chains, the client can require a configurable number of signatures (in percent) to accept them as final.

	Flexible Transport Layer: The communication layer between clients and nodes can be overridden, but the layer already supports different transport formats (JSON/CBOR/Incubed).

	Replace Latest Blocks: Since most applications per default always ask for the latest block, which cannot be considered final in a PoW chain, a configuration allows applications to automatically use a certain block height to run the request (like six blocks).

	Light Ethereum API: Incubed comes with a simple type-safe API, which covers all standard JSON-RPC requests (in3.eth.getBalance('0x52bc44d5378309EE2abF1539BF71dE1b7d7bE3b5')). This API also includes support for signing and sending transactions, as well as calling methods in smart contracts without a complete ABI by simply passing the signature of the method as an argument.

	TypeScript Support: Because Incubed is written 100% in TypeScript, you get all the advantages of a type-safe toolchain.

	java: java version of the Incubed client based on the C sources (using JNI)

V2.1 Incentivization: Q4 2019

This release will introduce the incentivization layer, which should help provide more nodes to create the decentralized network.

	PoA Clique: Supports Clique PoA to verify blockheaders.

	Signed Requests: Incubed supports the incentivization layer, which requires signed requests to assign client requests to certain nodes.

	Network Balancing: Nodes will balance the network based on load and reputation.

	python-bindings: integration in python

	go-bindings: bindings for go

V2.2 Bitcoin: Q1 2020

Multichain Support for BTC

	Bitcoin: Supports Verfification for Bitcoin blocks and Transactions

	WASM: Typescript client based on a the C-Sources compiled to wasm.

V2.3 WASM: Q3 2020

For eth_call verification, the client and server must be able to execute the code. This release adds the ability to support eWasm contracts.

	eth 2.0: Basic Support for Eth 2.0

	eWasm: Supports eWasm contracts in eth_call.

V2.4 Substrate: Q1 2021

Supports Polkadot or any substrate-based chains.

	Substrate: Framework support.

	Runtime Optimization: Using precompiled runtimes.

V2.5 Services: Q3 2021

Generic interface enables any deterministic service (such as docker-container) to be decentralized and verified.

Benchmarks

These benchmarks aim to test the Incubed version for stability and performance on the server. As a result, we can gauge the resources needed to serve many clients.

Setup and Tools

	JMeter is used to send requests parallel to the server

	Custom Python scripts is used to generate lists of transactions as well as randomize them (used to create test plan)

	Link for making JMeter tests online without setting up the server: https://www.blazemeter.com/

JMeter can be downloaded from: https://jmeter.apache.org/download_jmeter.cgi

Install JMeter on Mac OS With HomeBrew

	Open a Mac Terminal where we will be running all the commands

	First, check to see if HomeBrew is installed on your Mac by executing this command. You can either run brew help or brew -v

	If HomeBrew is not installed, run the following command to install HomeBrew on Mac:

ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"
Once HomeBrew is installed, we can continue to install JMeter.

	To install JMeter without the extra plugins, run the following command:

brew install jmeter

	To install JMeter with all the extra plugins, run the following command:

brew install jmeter --with-plugins

	Finally, verify the installation by executing jmeter -v

	Run JMeter using ‘jmeter’ which should load the JMeter GUI

JMeter on EC2 instance CLI only (testing pending):

	Login to AWS and navigate to the EC2 instance page

	Create a new instance, choose an Ubuntu AMI]

	Provision the AWS instance with the needed information, enable CloudWatch monitoring

	Configure the instance to allow all outgoing traffic, and fine tune Security group rules to suit your need

	Save the SSH key, use the SSH key to login to the EC2 instance

	Install Java:

sudo add-apt-repository ppa:linuxuprising/java
sudo apt-get update
sudo apt-get install oracle-java11-installer

	Install JMeter using:

sudo apt-get install jmeter

	Get the JMeter Plugins:

wget http://jmeter-plugins.org/downloads/file/JMeterPlugins-Standard-1.2.0.zip
wget http://jmeter-plugins.org/downloads/file/JMeterPlugins-Extras-1.2.0.zip
wget http://jmeter-plugins.org/downloads/file/JMeterPlugins-ExtrasLibs-1.2.0.zip

	Move the unzipped jar files to the install location:

sudo unzip JMeterPlugins-Standard-1.2.0.zip -d /usr/share/jmeter/
sudo unzip JMeterPlugins-Extras-1.2.0.zip -d /usr/share/jmeter/
sudo unzip JMeterPlugins-ExtrasLibs-1.2.0.zip -d /usr/share/jmeter/

	Copy the JML file to the EC2 instance using:

(On host computer)

scp -i <path_to_key> <path_to_local_file> <user>@<server_url>:<path_on_server>

	Run JMeter without the GUI:

jmeter -n -t <path_to_jmx> -l <path_to_output_jtl>

	Copy the JTL file back to the host computer and view the file using JMeter with GUI

Python script to create test plan:

	Navigate to the txGenerator folder in the in3-tests repo.

	Run the main.py file while referencing the start block (-s), end block (-e) and number of blocks to choose in this range (-n). The script will randomly choose three transactions per block.

	The transactions chosen are sent through a tumble function, resulting in a randomized list of transactions from random blocks. This should be a realistic scenario to test with, and prevents too many concurrent cache hits.

	Import the generated CSV file into the loaded test plan on JMeter.

	Refer to existing test plans for information on how to read transactions from CSV files and to see how it can be integrated into the requests.

Considerations

	When the Incubed benchmark is run on a new server, create a baseline before applying any changes.

	Run the same benchmark test with the new codebase, test for performance gains.

	The tests can be modified to include the number of users and duration of the test. For a stress test, choose 200 users and a test duration of 500 seconds or more.

	When running in an EC2 instance, up to 500 users can be simulated without issues. Running in GUI mode reduces this number.

	A beneficial method for running the test is to slowly ramp up the user count. Start with a test of 10 users for 120 seconds in order to test basic stability. Work your way up to 200 users and longer durations.

	Parity might often be the bottleneck; you can confirm this by using the get_avg_stddev_in3_response.sh script in the scripts directory of the in3-test repo. This would help show what optimizations are needed.

Results/Baseline

	The baseline test was done with our existing server running multiple docker containers. It is not indicative of a perfect server setup, but it can be used to benchmark upgrades to our codebase.

	The baseline for our current system is given below. This system has multithreading enabled and has been tested with ethCalls included in the test plan.

	Users/duration

	Number of requests

	tps

	getBlockByHash (ms)

	getBlockByNumber (ms)

	getTransactionHash (ms)

	getTransactionReceipt (ms)

	EthCall(ms)

	eth_getStorage (ms)

	Notes

	10/120s

	
	
	
	
	
	
	
	
	

	20/120s

	4800

	40

	580

	419

	521

	923

	449

	206

	

	40/120s

	5705

	47

	1020

	708

	902

	1508

	816

	442

	

	80/120s

	7970

	66

	1105

	790

	2451

	3197

	984

	452

	

	100/120s

	6911

	57

	1505

	1379

	2501

	4310

	1486

	866

	

	110/120s

	6000

	50

	1789

	1646

	4204

	5662

	1811

	1007

	

	120/500s

	32000

	65

	1331

	1184

	4600

	5314

	1815

	1607

	

	140/500s

	31000

	62

	1666

	1425

	5207

	6722

	1760

	941

	

	160/500s

	33000

	65

	1949

	1615

	6269

	7604

	1900

	930

	In3 -> 400ms, rpc -> 2081ms

	200/500s

	34000

	70

	1270

	1031

	12500

	14349

	1251

	716

	At higher loads, the RPC delay adds up. It is the bottlenecking factor. Able to handle 200 users on sustained loads.

	More benchmarks and their results can be found in the in3-tests repo

Embedded Devices

Hardware Requirements

Memory

For the memory this example requires:

	Dynamic memory(DRAM) : 30 - 50kB

	Flash Memory : 150 - 200kB

Networking

In3 client needs to have a reliable internet connection to work properly, so your hardware must support any network interface or module that could give you access to it. i.e Bluetooth, Wifi, ethernet, etc.

Incubed with ESP-IDF

Use case example: Airbnb Property access

A smart door lock that grants access to a rented flat is installed on the property. It is able to connect to the Internet to check if renting is allowed and that the current user is authorized to open the lock.

The computational power of the control unit is restricted to the control of the lock. And it is also needed to maintain a permanent Internet connection.

You want to enable this in your application as an example of how in3 can help you, we will guide through the steps of doing it, from the very basics and the resources you will need

Hardware requirements

[image: _images/embedded_esp.png]from https://docs.espressif.com/projects/esp-idf/en/stable/get-started/

	ESP32-DevKitC V4 [https://docs.espressif.com/projects/esp-idf/en/latest/hw-reference/get-started-devkitc.html] or similar dev board

	Android phone

	Laptop MAC, Linux, Windows

	USB Cable

Software requirements

	In3 [https://github.com/slockit/in3-c] C client

	Esp-idf toolchain and sdk, (please follow this guide [https://docs.espressif.com/projects/esp-idf/en/stable/get-started/]) and be sure on the cloning step to use release/v4.0 branch

git clone -b release/v4.0 --recursive https://github.com/espressif/esp-idf.git

	Android Studio [https://developer.android.com/studio]

	Solidity smart contract: we will control access to properties using a public smart contract, for this example, we will use the following template

	Silab [https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers] USB drivers

pragma solidity ^0.5.1;

contract Access {
 uint8 access;
 constructor() public {
 access = 0;
 }

 function hasAccess() public view returns(uint8) {
 return access;
 }

 function setAccess(uint8 accessUpdate) public{
 access = accessUpdate;
 }
}

How it works

[image: _images/embedded_diagram.png]sequence diagram

In3 will support a wide range of microcontrollers, in this guide we will use well-known esp32 with freertos framework, and an example android app to interact with it via Wifi connection.

Instalation instructions

	Clone the repo

git clone --recursive https://github.com/slockit/in3-devices-esp

	Deploy the contract with your favorite tool (truffle, etc) or use our previusly deployed contract on goerli, with address 0x36643F8D17FE745a69A2Fd22188921Fade60a98B

	Config your SSID and password inside sdkconfig file sdkconfig.defaults

CONFIG_WIFI_SSID="YOUR SSID"
CONFIG_WIFI_PASSWORD="YOUR PWD"

	Build the code
idf.py build

	Connect the usb cable to flash and monitor the serial output from the application.

idf.py flash && idf.py monitor

after the build finishes and the serial monitor is running you will see the configuration and init logs.

	Configure the ip address of the example, to work with:
Take a look at the inital output of the serial output of the idf.py monitor command, you will the ip address, as follows

I (2647) tcpip_adapter: sta ip: 192.168.178.64, mask: 255.255.255.0, gw: 192.168.178.1
I (2647) IN3: got ip:192.168.178.64

take note if your ip address which will be used in the android application example.

	Clone the android repository, compile the android application and install the in3 demo application in your phone.

git clone https://github.com/slockit/in3-android-example

	Modify the android source changing ip address variable inside kotlin source file MainActivity.kt, with the IP address found on step 6.

(L:20) private const val ipaddress = "http://192.168.xx.xx"

	If you want to test directly without using android you can also do it with the following http curl requests:

	curl -X GET http://slock.local/api/access

	curl -X GET http://slock.local/api/retrieve

we need 2 requests as the verification process needs to be executed in asynchronous manner, first one will trigger the execution and the result could be retrieved with the second one

Incubed with Zephyr

….(Comming soon)

API Reference C

Overview

The C implementation of the Incubed client is prepared and optimized to run on small embedded devices. Because each device is different, we prepare different modules that should be combined. This allows us to only generate the code needed and reduce requirements for flash and memory.

Why C?

We have been asked a lot, why we implemented Incubed in C and not in Rust. When we started Incubed we began with a feasibility test and wrote the client in TypeScript. Once we confirmed it was working, we wanted to provide a minimal verifaction client for embedded devices. And yes, we actually wanted to do it in Rust, since Rust offers a lot of safety-features (like the memory-management at compiletime, thread-safety, …), but after considering a lot of different aspects we made a pragmatic desicion to use C.

These are the reasons why:

Support for embedded devices.

As of today almost all toolchain used in the embedded world are build for C. Even though Rust may be able to still use some, there are a lot of issues. Quote from rust-embedded.org [https://docs.rust-embedded.org/book/interoperability/#interoperability-with-rtoss]:

Integrating Rust with an RTOS such as FreeRTOS or ChibiOS is still a work in progress; especially calling RTOS functions from Rust can be tricky.

This may change in the future, but C is so dominant, that chances of Rust taking over the embedded development completly is low.

Portability

C is the most portable programming language. Rust actually has a pretty admirable selection of supported targets for a new language (thanks mostly to LLVM), but it pales in comparison to C, which runs on almost everything. A new CPU architecture or operating system can barely be considered to exist until it has a C compiler. And once it does, it unlocks access to a vast repository of software written in C. Many other programming languages, such as Ruby and Python, are implemented in C and you get those for free too.

Most programing language have very good support for calling c-function in a shared library (like ctypes in python or cgo in golang) or even support integration of C code directly like android studio [https://developer.android.com/studio/projects/add-native-code] does.

Integration in existing projects

Since especially embedded systems are usually written in C/C++, offering a pure C-Implementation makes it easy for these projects to use Incubed, since they do not have to change their toolchain.

Even though we may not be able to use a lot of great features Rust offers by going with C, it allows to reach the goal to easily integrate with a lot of projects. For the future we might port the incubed to Rust if we see a demand or chance for the same support as C has today.

Modules

Incubed consists of different modules. While the core module is always required, additional functions will be prepared by different modules.

[image: digraph "GG" { graph [rankdir = "RL"] node [fontsize = "12" fontname="Helvetica" shape="ellipse"]; subgraph cluster_transport { label="Transports" color=lightblue style=filled transport_http; transport_curl; } evm; tommath; subgraph cluster_verifier { label="Verifiers" color=lightblue style=filled eth_basic; eth_full; eth_nano; btc; } subgraph cluster_bindings { label="Bindings" color=lightblue style=filled wasm; java; python; } subgraph cluster_api { label="APIs" color=lightblue style=filled eth_api; usn_api; } core; segger_rtt; crypto; core -> segger_rtt; core -> crypto // core -> crypto eth_api -> eth_nano // eth_api -> eth_nano eth_nano -> core // eth_nano -> core btc -> core // eth_nano -> core eth_basic -> eth_nano // eth_basic -> eth_nano eth_full -> evm // eth_full -> evm evm -> eth_basic // evm -> eth_basic evm -> tommath // evm -> tommath transport_http -> core // transport_http -> core transport_curl -> core // transport_http -> core usn_api -> core // usn_api -> core java -> core // usn_api -> core python -> core // usn_api -> core wasm -> core // usn_api -> core }]

Verifier

Incubed is a minimal verification client, which means that each response needs to be verifiable. Depending on the expected requests and responses, you need to carefully choose which verifier you may need to register. For Ethereum, we have developed three modules:

	eth_nano: a minimal module only able to verify transaction receipts (eth_getTransactionReceipt).

	eth_basic: module able to verify almost all other standard RPC functions (except eth_call).

	eth_full: module able to verify standard RPC functions. It also implements a full EVM to handle eth_call.

	btc: module able to verify bitcoin or bitcoin based chains.

Depending on the module, you need to register the verifier before using it. This is done by calling the in3_register... function like in3_register_eth_full().

Transport

To verify responses, you need to be able to send requests. The way to handle them depends heavily on your hardware capabilities. For example, if your device only supports Bluetooth, you may use this connection to deliver the request to a device with an existing internet connection and get the response in the same way, but if your device is able to use a direct internet connection, you may use a curl-library to execute them. This is why the core client only defines function pointer in3_transport_send, which must handle the requests.

At the moment we offer these modules; other implementations are supported by different hardware modules.

	transport_curl: module with a dependency on curl, which executes these requests and supports HTTPS. This module runs a standard OS with curl installed.

	transport_http: module with no dependency, but a very basic http-implementation (no https-support)

API

While Incubed operates on JSON-RPC level, as a developer, you might want to use a better-structured API to prepare these requests for you. These APIs are optional but make life easier:

	eth: This module offers all standard RPC functions as described in the Ethereum JSON-RPC Specification [https://github.com/ethereum/wiki/wiki/JSON-RPC]. In addition, it allows you to sign and encode/decode calls and transactions.

	usn: This module offers basic USN functions like renting, event handling, and message verification.

Building

While we provide binaries, you can also build from source:

requirements

	cmake

	curl : curl is used as transport for command-line tools.

	optional: libsycrypt, which would be used for unlocking keystore files using scrypt as kdf method. if it does not exist you can still build, but not decrypt such keys.

for osx brew install libscrypt and for debian sudo apt-get install libscrypt-dev

Incubed uses cmake for configuring:

mkdir build && cd build
cmake -DCMAKE_BUILD_TYPE=Release .. && make
make install

CMake options

When configuring cmake, you can set a lot of different incubed specific like cmake -DEVM_GAS=false ...

ASMJS

compiles the code as asm.js.

Default-Value: -DASMJS=OFF

BUILD_DOC

generates the documenation with doxygen.

Default-Value: -DBUILD_DOC=OFF

CMD

build the comandline utils

Default-Value: -DCMD=ON

ERR_MSG

if set human readable error messages will be inculded in th executable, otherwise only the error code is used. (saves about 19kB)

Default-Value: -DERR_MSG=ON

ETH_BASIC

build basic eth verification.(all rpc-calls except eth_call)

Default-Value: -DETH_BASIC=ON

ETH_FULL

build full eth verification.(including eth_call)

Default-Value: -DETH_FULL=ON

ETH_NANO

build minimal eth verification.(eth_getTransactionReceipt)

Default-Value: -DETH_NANO=ON

EVM_GAS

if true the gas costs are verified when validating a eth_call. This is a optimization since most calls are only interessted in the result. EVM_GAS would be required if the contract uses gas-dependend op-codes.

Default-Value: -DEVM_GAS=ON

FAST_MATH

Math optimizations used in the EVM. This will also increase the filesize.

Default-Value: -DFAST_MATH=OFF

FILTER_NODES

if true the nodelist is filtered against config node properties

Default-Value: -DFILTER_NODES=OFF

IN3API

build the USN-API which offer better interfaces and additional functions on top of the pure verification

Default-Value: -DIN3API=ON

IN3_LIB

if true a shared anmd static library with all in3-modules will be build.

Default-Value: -DIN3_LIB=ON

IN3_SERVER

support for proxy server as part of the cmd-tool, which allows to start the cmd-tool with the -p option and listens to the given port for rpc-requests

Default-Value: -DIN3_SERVER=OFF

IN3_STAGING

if true, the client will use the staging-network instead of the live ones

Default-Value: -DIN3_STAGING=OFF

JAVA

build the java-binding (shared-lib and jar-file)

Default-Value: -DJAVA=OFF

PKG_CONFIG_EXECUTABLE

pkg-config executable

Default-Value: -DPKG_CONFIG_EXECUTABLE=/usr/local/bin/pkg-config

POA

support POA verification including validatorlist updates

Default-Value: -DPOA=OFF

SEGGER_RTT

Use the segger real time transfer terminal as the logging mechanism

Default-Value: -DSEGGER_RTT=OFF

TAG_VERSION

the tagged version, which should be used

Default-Value: -DTAG_VERSION=OFF

TEST

builds the tests and also adds special memory-management, which detects memory leaks, but will cause slower performance

Default-Value: -DTEST=OFF

TRANSPORTS

builds transports, which may require extra libraries.

Default-Value: -DTRANSPORTS=ON

USE_CURL

if true the curl transport will be build (with a dependency to libcurl)

Default-Value: -DUSE_CURL=ON

USE_PRECOMPUTED_EC

if true the secp256k1 curve uses precompiled tables to boost performance. turning this off makes ecrecover slower, but saves about 37kb.

Default-Value: -DUSE_PRECOMPUTED_EC=ON

USE_SCRYPT

if scrypt is installed, it will link dynamicly to the shared scrypt lib.

Default-Value: -DUSE_SCRYPT=OFF

WASM

Includes the WASM-Build. In order to build it you need emscripten as toolchain. Usually you also want to turn off other builds in this case.

Default-Value: -DWASM=OFF

WASM_EMBED

embedds the wasm as base64-encoded into the js-file

Default-Value: -DWASM_EMBED=ON

WASM_EMMALLOC

use ther smaller EMSCRIPTEN Malloc, which reduces the size about 10k, but may be a bit slower

Default-Value: -DWASM_EMMALLOC=ON

WASM_SYNC

intiaializes the WASM synchronisly, which allows to require and use it the same function, but this will not be supported by chrome (4k limit)

Default-Value: -DWASM_SYNC=OFF

Examples

call_a_function

source : in3-c/examples/c/call_a_function.c [https://github.com/slockit/in3-c/blob/master/examples/c/call_a_function.c]

This example shows how to call functions on a smart contract eiither directly or using the api to encode the arguments

#include <in3/client.h> // the core client
#include <in3/eth_api.h> // wrapper for easier use
#include <in3/eth_full.h> // the full ethereum verifier containing the EVM
#include <in3/in3_curl.h> // transport implementation
#include <in3/log.h>
#include <inttypes.h>
#include <stdio.h>

static in3_ret_t call_func_rpc(in3_t* c);
static in3_ret_t call_func_api(in3_t* c, address_t contract);

int main() {
 in3_ret_t ret = IN3_OK;

 // register a chain-verifier for full Ethereum-Support in order to verify eth_call
 // this needs to be called only once.
 in3_register_eth_full();

 // use curl as the default for sending out requests
 // this needs to be called only once.
 in3_register_curl();

 // Remove log prefix for readability
 in3_log_set_prefix("");

 // create new incubed client
 in3_t* c = in3_for_chain(ETH_CHAIN_ID_MAINNET);

 // define a address (20byte)
 address_t contract;

 // copy the hexcoded string into this address
 hex_to_bytes("0x2736D225f85740f42D17987100dc8d58e9e16252", -1, contract, 20);

 // call function using RPC
 ret = call_func_rpc(c);
 if (ret != IN3_OK) goto END;

 // call function using API
 ret = call_func_api(c, contract);
 if (ret != IN3_OK) goto END;

END:
 // clean up
 in3_free(c);
 return 0;
}

in3_ret_t call_func_rpc(in3_t* c) {
 // prepare 2 pointers for the result.
 char *result, *error;

 // send raw rpc-request, which is then verified
 in3_ret_t res = in3_client_rpc(
 c, // the configured client
 "eth_call", // the rpc-method you want to call.
 "[{\"to\":\"0x2736d225f85740f42d17987100dc8d58e9e16252\", \"data\":\"0x15625c5e\"}, \"latest\"]", // the signed raw txn, same as the one used in the API example
 &result, // the reference to a pointer which will hold the result
 &error); // the pointer which may hold a error message

 // check and print the result or error
 if (res == IN3_OK) {
 printf("Result: \n%s\n", result);
 free(result);
 return 0;
 } else {
 printf("Error sending tx: \n%s\n", error);
 free(error);
 return IN3_EUNKNOWN;
 }
}

in3_ret_t call_func_api(in3_t* c, address_t contract) {
 // ask for the number of servers registered
 json_ctx_t* response = eth_call_fn(c, contract, BLKNUM_LATEST(), "totalServers():uint256");
 if (!response) {
 printf("Could not get the response: %s", eth_last_error());
 return IN3_EUNKNOWN;
 }

 // convert the response to a uint32_t,
 uint32_t number_of_servers = d_int(response->result);

 // clean up resources
 json_free(response);

 // output
 printf("Found %u servers registered : \n", number_of_servers);

 // read all structs ...
 for (uint32_t i = 0; i < number_of_servers; i++) {
 response = eth_call_fn(c, contract, BLKNUM_LATEST(), "servers(uint256):(string,address,uint,uint,uint,address)", to_uint256(i));
 if (!response) {
 printf("Could not get the response: %s", eth_last_error());
 return IN3_EUNKNOWN;
 }

 char* url = d_get_string_at(response->result, 0); // get the first item of the result (the url)
 bytes_t* owner = d_get_bytes_at(response->result, 1); // get the second item of the result (the owner)
 uint64_t deposit = d_get_long_at(response->result, 2); // get the third item of the result (the deposit)

 printf("Server %i : %s owner = %02x%02x...", i, url, owner->data[0], owner->data[1]);
 printf(", deposit = %" PRIu64 "\n", deposit);

 // free memory
 json_free(response);
 }
 return 0;
}

get_balance

source : in3-c/examples/c/get_balance.c [https://github.com/slockit/in3-c/blob/master/examples/c/get_balance.c]

get the Balance with the API and also as direct RPC-call

#include <in3/client.h> // the core client
#include <in3/eth_api.h> // wrapper for easier use
#include <in3/eth_basic.h> // use the basic module
#include <in3/in3_curl.h> // transport implementation

#include <stdio.h>

static void get_balance_rpc(in3_t* in3);
static void get_balance_api(in3_t* in3);

int main() {

 // register a chain-verifier for basic Ethereum-Support, which is enough to verify accounts
 // this needs to be called only once
 in3_register_eth_basic();

 // use curl as the default for sending out requests
 // this needs to be called only once.
 in3_register_curl();

 // create new incubed client
 in3_t* in3 = in3_for_chain(ETH_CHAIN_ID_MAINNET);

 // get balance using raw RPC call
 get_balance_rpc(in3);

 // get balance using API
 get_balance_api(in3);

 // cleanup client after usage
 in3_free(in3);
}

void get_balance_rpc(in3_t* in3) {
 // prepare 2 pointers for the result.
 char *result, *error;

 // send raw rpc-request, which is then verified
 in3_ret_t res = in3_client_rpc(
 in3, // the configured client
 "eth_getBalance", // the rpc-method you want to call.
 "[\"0xc94770007dda54cF92009BFF0dE90c06F603a09f\", \"latest\"]", // the arguments as json-string
 &result, // the reference to a pointer whill hold the result
 &error); // the pointer which may hold a error message

 // check and print the result or error
 if (res == IN3_OK) {
 printf("Balance: \n%s\n", result);
 free(result);
 } else {
 printf("Error getting balance: \n%s\n", error);
 free(error);
 }
}

void get_balance_api(in3_t* in3) {
 // the address of account whose balance we want to get
 address_t account;
 hex_to_bytes("0xc94770007dda54cF92009BFF0dE90c06F603a09f", -1, account, 20);

 // get balance of account
 long double balance = as_double(eth_getBalance(in3, account, BLKNUM_EARLIEST()));

 // if the result is null there was an error an we can get the latest error message from eth_lat_error()
 balance ? printf("Balance: %Lf\n", balance) : printf("error getting the balance : %s\n", eth_last_error());
}

get_block

source : in3-c/examples/c/get_block.c [https://github.com/slockit/in3-c/blob/master/examples/c/get_block.c]

using the basic-module to get and verify a Block with the API and also as direct RPC-call

#include <in3/client.h> // the core client
#include <in3/eth_api.h> // wrapper for easier use
#include <in3/eth_basic.h> // use the basic module
#include <in3/in3_curl.h> // transport implementation

#include <inttypes.h>
#include <stdio.h>

static void get_block_rpc(in3_t* in3);
static void get_block_api(in3_t* in3);

int main() {

 // register a chain-verifier for basic Ethereum-Support, which is enough to verify blocks
 // this needs to be called only once
 in3_register_eth_basic();

 // use curl as the default for sending out requests
 // this needs to be called only once.
 in3_register_curl();

 // create new incubed client
 in3_t* in3 = in3_for_chain(ETH_CHAIN_ID_MAINNET);

 // get block using raw RPC call
 get_block_rpc(in3);

 // get block using API
 get_block_api(in3);

 // cleanup client after usage
 in3_free(in3);
}

void get_block_rpc(in3_t* in3) {
 // prepare 2 pointers for the result.
 char *result, *error;

 // send raw rpc-request, which is then verified
 in3_ret_t res = in3_client_rpc(
 in3, // the configured client
 "eth_getBlockByNumber", // the rpc-method you want to call.
 "[\"latest\",true]", // the arguments as json-string
 &result, // the reference to a pointer whill hold the result
 &error); // the pointer which may hold a error message

 // check and print the result or error
 if (res == IN3_OK) {
 printf("Latest block : \n%s\n", result);
 free(result);
 } else {
 printf("Error verifing the Latest block : \n%s\n", error);
 free(error);
 }
}

void get_block_api(in3_t* in3) {
 // get the block without the transaction details
 eth_block_t* block = eth_getBlockByNumber(in3, BLKNUM(8432424), false);

 // if the result is null there was an error an we can get the latest error message from eth_lat_error()
 if (!block)
 printf("error getting the block : %s\n", eth_last_error());
 else {
 printf("Number of transactions in Block #%llu: %d\n", block->number, block->tx_count);
 free(block);
 }
}

get_logs

source : in3-c/examples/c/get_logs.c [https://github.com/slockit/in3-c/blob/master/examples/c/get_logs.c]

fetching events and verify them with eth_getLogs

#include <in3/client.h> // the core client
#include <in3/eth_api.h> // wrapper for easier use
#include <in3/eth_basic.h> // use the basic module
#include <in3/in3_curl.h> // transport implementation

#include <inttypes.h>
#include <stdio.h>

static void get_logs_rpc(in3_t* in3);
static void get_logs_api(in3_t* in3);

int main() {

 // register a chain-verifier for basic Ethereum-Support, which is enough to verify logs
 // this needs to be called only once
 in3_register_eth_basic();

 // use curl as the default for sending out requests
 // this needs to be called only once.
 in3_register_curl();

 // create new incubed client
 in3_t* in3 = in3_for_chain(ETH_CHAIN_ID_MAINNET);
 in3->chain_id = ETH_CHAIN_ID_KOVAN;

 // get logs using raw RPC call
 get_logs_rpc(in3);

 // get logs using API
 get_logs_api(in3);

 // cleanup client after usage
 in3_free(in3);
}

void get_logs_rpc(in3_t* in3) {
 // prepare 2 pointers for the result.
 char *result, *error;

 // send raw rpc-request, which is then verified
 in3_ret_t res = in3_client_rpc(
 in3, // the configured client
 "eth_getLogs", // the rpc-method you want to call.
 "[{}]", // the arguments as json-string
 &result, // the reference to a pointer whill hold the result
 &error); // the pointer which may hold a error message

 // check and print the result or error
 if (res == IN3_OK) {
 printf("Logs : \n%s\n", result);
 free(result);
 } else {
 printf("Error getting logs : \n%s\n", error);
 free(error);
 }
}

void get_logs_api(in3_t* in3) {
 // Create filter options
 char b[30];
 sprintf(b, "{\"fromBlock\":\"0x%" PRIx64 "\"}", eth_blockNumber(in3) - 2);
 json_ctx_t* jopt = parse_json(b);

 // Create new filter with options
 size_t fid = eth_newFilter(in3, jopt);

 // Get logs
 eth_log_t* logs = NULL;
 in3_ret_t ret = eth_getFilterLogs(in3, fid, &logs);
 if (ret != IN3_OK) {
 printf("eth_getFilterLogs() failed [%d]\n", ret);
 return;
 }

 // print result
 while (logs) {
 eth_log_t* l = logs;
 printf("--\n");
 printf("\tremoved: %s\n", l->removed ? "true" : "false");
 printf("\tlogId: %lu\n", l->log_index);
 printf("\tTxId: %lu\n", l->transaction_index);
 printf("\thash: ");
 ba_print(l->block_hash, 32);
 printf("\n\tnum: %" PRIu64 "\n", l->block_number);
 printf("\taddress: ");
 ba_print(l->address, 20);
 printf("\n\tdata: ");
 b_print(&l->data);
 printf("\ttopics[%lu]: ", l->topic_count);
 for (size_t i = 0; i < l->topic_count; i++) {
 printf("\n\t");
 ba_print(l->topics[i], 32);
 }
 printf("\n");
 logs = logs->next;
 free(l->data.data);
 free(l->topics);
 free(l);
 }
 eth_uninstallFilter(in3, fid);
 json_free(jopt);
}

get_transaction

source : in3-c/examples/c/get_transaction.c [https://github.com/slockit/in3-c/blob/master/examples/c/get_transaction.c]

checking the transaction data

#include <in3/client.h> // the core client
#include <in3/eth_api.h> // wrapper for easier use
#include <in3/eth_basic.h> // use the basic module
#include <in3/in3_curl.h> // transport implementation

#include <stdio.h>

static void get_tx_rpc(in3_t* in3);
static void get_tx_api(in3_t* in3);

int main() {

 // register a chain-verifier for basic Ethereum-Support, which is enough to verify txs
 // this needs to be called only once
 in3_register_eth_basic();

 // use curl as the default for sending out requests
 // this needs to be called only once.
 in3_register_curl();

 // create new incubed client
 in3_t* in3 = in3_for_chain(ETH_CHAIN_ID_MAINNET);

 // get tx using raw RPC call
 get_tx_rpc(in3);

 // get tx using API
 get_tx_api(in3);

 // cleanup client after usage
 in3_free(in3);
}

void get_tx_rpc(in3_t* in3) {
 // prepare 2 pointers for the result.
 char *result, *error;

 // send raw rpc-request, which is then verified
 in3_ret_t res = in3_client_rpc(
 in3, // the configured client
 "eth_getTransactionByHash", // the rpc-method you want to call.
 "[\"0xdd80249a0631cf0f1593c7a9c9f9b8545e6c88ab5252287c34bc5d12457eab0e\"]", // the arguments as json-string
 &result, // the reference to a pointer which will hold the result
 &error); // the pointer which may hold a error message

 // check and print the result or error
 if (res == IN3_OK) {
 printf("Latest tx : \n%s\n", result);
 free(result);
 } else {
 printf("Error verifing the Latest tx : \n%s\n", error);
 free(error);
 }
}

void get_tx_api(in3_t* in3) {
 // the hash of transaction that we want to get
 bytes32_t tx_hash;
 hex_to_bytes("0xdd80249a0631cf0f1593c7a9c9f9b8545e6c88ab5252287c34bc5d12457eab0e", -1, tx_hash, 32);

 // get the tx by hash
 eth_tx_t* tx = eth_getTransactionByHash(in3, tx_hash);

 // if the result is null there was an error an we can get the latest error message from eth_last_error()
 if (!tx)
 printf("error getting the tx : %s\n", eth_last_error());
 else {
 printf("Transaction #%d of block #%llx", tx->transaction_index, tx->block_number);
 free(tx);
 }
}

get_transaction_receipt

source : in3-c/examples/c/get_transaction_receipt.c [https://github.com/slockit/in3-c/blob/master/examples/c/get_transaction_receipt.c]

validating the result or receipt of an transaction

#include <in3/client.h> // the core client
#include <in3/eth_api.h> // wrapper for easier use
#include <in3/eth_basic.h> // use the basic module
#include <in3/in3_curl.h> // transport implementation

#include <inttypes.h>
#include <stdio.h>

static void get_tx_receipt_rpc(in3_t* in3);
static void get_tx_receipt_api(in3_t* in3);

int main() {

 // register a chain-verifier for basic Ethereum-Support, which is enough to verify tx receipts
 // this needs to be called only once
 in3_register_eth_basic();

 // use curl as the default for sending out requests
 // this needs to be called only once.
 in3_register_curl();

 // create new incubed client
 in3_t* in3 = in3_for_chain(ETH_CHAIN_ID_MAINNET);

 // get tx receipt using raw RPC call
 get_tx_receipt_rpc(in3);

 // get tx receipt using API
 get_tx_receipt_api(in3);

 // cleanup client after usage
 in3_free(in3);
}

void get_tx_receipt_rpc(in3_t* in3) {
 // prepare 2 pointers for the result.
 char *result, *error;

 // send raw rpc-request, which is then verified
 in3_ret_t res = in3_client_rpc(
 in3, // the configured client
 "eth_getTransactionReceipt", // the rpc-method you want to call.
 "[\"0xdd80249a0631cf0f1593c7a9c9f9b8545e6c88ab5252287c34bc5d12457eab0e\"]", // the arguments as json-string
 &result, // the reference to a pointer which will hold the result
 &error); // the pointer which may hold a error message

 // check and print the result or error
 if (res == IN3_OK) {
 printf("Transaction receipt: \n%s\n", result);
 free(result);
 } else {
 printf("Error verifing the tx receipt: \n%s\n", error);
 free(error);
 }
}

void get_tx_receipt_api(in3_t* in3) {
 // the hash of transaction whose receipt we want to get
 bytes32_t tx_hash;
 hex_to_bytes("0xdd80249a0631cf0f1593c7a9c9f9b8545e6c88ab5252287c34bc5d12457eab0e", -1, tx_hash, 32);

 // get the tx receipt by hash
 eth_tx_receipt_t* txr = eth_getTransactionReceipt(in3, tx_hash);

 // if the result is null there was an error an we can get the latest error message from eth_last_error()
 if (!txr)
 printf("error getting the tx : %s\n", eth_last_error());
 else {
 printf("Transaction #%d of block #%llx, gas used = %" PRIu64 ", status = %s\n", txr->transaction_index, txr->block_number, txr->gas_used, txr->status ? "success" : "failed");
 eth_tx_receipt_free(txr);
 }
}

send_transaction

source : in3-c/examples/c/send_transaction.c [https://github.com/slockit/in3-c/blob/master/examples/c/send_transaction.c]

sending a transaction including signing it with a private key

#include <in3/client.h> // the core client
#include <in3/eth_api.h> // wrapper for easier use
#include <in3/eth_basic.h> // use the basic module
#include <in3/in3_curl.h> // transport implementation
#include <in3/signer.h> // default signer implementation

#include <stdio.h>

// fixme: This is only for the sake of demo. Do NOT store private keys as plaintext.
#define ETH_PRIVATE_KEY "0x8da4ef21b864d2cc526dbdb2a120bd2874c36c9d0a1fb7f8c63d7f7a8b41de8f"

static void send_tx_rpc(in3_t* in3);
static void send_tx_api(in3_t* in3);

int main() {

 // register a chain-verifier for basic Ethereum-Support, which is enough to verify txs
 // this needs to be called only once
 in3_register_eth_basic();

 // use curl as the default for sending out requests
 // this needs to be called only once.
 in3_register_curl();

 // create new incubed client
 in3_t* in3 = in3_for_chain(ETH_CHAIN_ID_MAINNET);

 // convert the hexstring to bytes
 bytes32_t pk;
 hex_to_bytes(ETH_PRIVATE_KEY, -1, pk, 32);

 // create a simple signer with this key
 eth_set_pk_signer(in3, pk);

 // send tx using raw RPC call
 send_tx_rpc(in3);

 // send tx using API
 send_tx_api(in3);

 // cleanup client after usage
 in3_free(in3);
}

void send_tx_rpc(in3_t* in3) {
 // prepare 2 pointers for the result.
 char *result, *error;

 // send raw rpc-request, which is then verified
 in3_ret_t res = in3_client_rpc(
 in3, // the configured client
 "eth_sendRawTransaction", // the rpc-method you want to call.
 "[\"0xf892808609184e72a0008296c094d46e8dd67c5d32be8058bb8eb970870f0724456"
 "7849184e72aa9d46e8dd67c5d32be8d46e8dd67c5d32be8058bb8eb970870f072445675058bb8eb9"
 "70870f07244567526a06f0103fccdcae0d6b265f8c38ee42f4a722c1cb36230fe8da40315acc3051"
 "9a8a06252a68b26a5575f76a65ac08a7f684bc37b0c98d9e715d73ddce696b58f2c72\"]", // the signed raw txn, same as the one used in the API example
 &result, // the reference to a pointer which will hold the result
 &error); // the pointer which may hold a error message

 // check and print the result or error
 if (res == IN3_OK) {
 printf("Result: \n%s\n", result);
 free(result);
 } else {
 printf("Error sending tx: \n%s\n", error);
 free(error);
 }
}

void send_tx_api(in3_t* in3) {
 // prepare parameters
 address_t to, from;
 hex_to_bytes("0x63FaC9201494f0bd17B9892B9fae4d52fe3BD377", -1, from, 20);
 hex_to_bytes("0xd46e8dd67c5d32be8058bb8eb970870f07244567", -1, to, 20);

 bytes_t* data = hex_to_new_bytes("d46e8dd67c5d32be8d46e8dd67c5d32be8058bb8eb970870f072445675058bb8eb970870f072445675", 82);

 // send the tx
 bytes_t* tx_hash = eth_sendTransaction(in3, from, to, OPTIONAL_T_VALUE(uint64_t, 0x96c0), OPTIONAL_T_VALUE(uint64_t, 0x9184e72a000), OPTIONAL_T_VALUE(uint256_t, to_uint256(0x9184e72a)), OPTIONAL_T_VALUE(bytes_t, *data), OPTIONAL_T_UNDEFINED(uint64_t));

 // if the result is null there was an error and we can get the latest error message from eth_last_error()
 if (!tx_hash)
 printf("error sending the tx : %s\n", eth_last_error());
 else {
 printf("Transaction hash: ");
 b_print(tx_hash);
 b_free(tx_hash);
 }
 b_free(data);
}

usn_device

source : in3-c/examples/c/usn_device.c [https://github.com/slockit/in3-c/blob/master/examples/c/usn_device.c]

a example how to watch usn events and act upon it.

#include <in3/client.h> // the core client
#include <in3/eth_api.h> // wrapper for easier use
#include <in3/eth_full.h> // the full ethereum verifier containing the EVM
#include <in3/in3_curl.h> // transport implementation
#include <in3/signer.h> // signer-api
#include <in3/usn_api.h> // api for renting
#include <inttypes.h>
#include <stdio.h>
#include <time.h>
#if defined(_WIN32) || defined(WIN32)
#include <windows.h>
#else
#include <unistd.h>
#endif

static int handle_booking(usn_event_t* ev) {
 printf("\n%s Booking timestamp=%" PRIu64 "\n", ev->type == BOOKING_START ? "START" : "STOP", ev->ts);
 return 0;
}

int main(int argc, char* argv[]) {

 // register a chain-verifier for full Ethereum-Support in order to verify eth_call
 // this needs to be called only once.
 in3_register_eth_full();

 // use curl as the default for sending out requests
 // this needs to be called only once.
 in3_register_curl();

 // create new incubed client
 in3_t* c = in3_for_chain(ETH_CHAIN_ID_MAINNET);

 // switch to goerli
 c->chain_id = 0x5;

 // setting up a usn-device-config
 usn_device_conf_t usn;
 usn.booking_handler = handle_booking; // this is the handler, which is called for each rent/return or start/stop
 usn.c = c; // the incubed client
 usn.chain_id = c->chain_id; // the chain_id
 usn.devices = NULL; // this will contain the list of devices supported
 usn.len_devices = 0; // and length of this list
 usn.now = 0; // the current timestamp
 unsigned int wait_time = 5; // the time to wait between the internval
 hex_to_bytes("0x85Ec283a3Ed4b66dF4da23656d4BF8A507383bca", -1, usn.contract, 20); // address of the usn-contract, which we copy from hex

 // register a usn-device
 usn_register_device(&usn, "office@slockit");

 // now we run en endless loop which simply wait for events on the chain.
 printf("\n start watching...\n");
 while (true) {
 usn.now = time(NULL); // update the timestamp, since this is running on embedded devices, this may be depend on the hardware.
 unsigned int timeout = usn_update_state(&usn, wait_time) * 1000; // this will now check for new events and trigger the handle_booking if so.

 // sleep
#if defined(_WIN32) || defined(WIN32)
 Sleep(timeout);
#else
 nanosleep((const struct timespec[]){{0, timeout * 1000000L}}, NULL);
#endif
 }

 // clean up
 in3_free(c);
 return 0;
}

usn_rent

source : in3-c/examples/c/usn_rent.c [https://github.com/slockit/in3-c/blob/master/examples/c/usn_rent.c]

how to send a rent transaction to a usn contract usinig the usn-api.

#include <in3/client.h> // the core client
#include <in3/eth_api.h> // wrapper for easier use
#include <in3/eth_full.h> // the full ethereum verifier containing the EVM
#include <in3/in3_curl.h> // transport implementation
#include <in3/signer.h> // signer-api
#include <in3/usn_api.h> // api for renting
#include <inttypes.h>
#include <stdio.h>

void unlock_key(in3_t* c, char* json_data, char* passwd) {
 // parse the json
 json_ctx_t* key_data = parse_json(json_data);
 if (!key_data) {
 perror("key is not parseable!\n");
 exit(EXIT_FAILURE);
 }

 // decrypt the key
 uint8_t* pk = malloc(32);
 if (decrypt_key(key_data->result, passwd, pk) != IN3_OK) {
 perror("wrong password!\n");
 exit(EXIT_FAILURE);
 }

 // free json
 json_free(key_data);

 // create a signer with this key
 eth_set_pk_signer(c, pk);
}

int main(int argc, char* argv[]) {

 // register a chain-verifier for full Ethereum-Support in order to verify eth_call
 // this needs to be called only once.
 in3_register_eth_full();

 // use curl as the default for sending out requests
 // this needs to be called only once.
 in3_register_curl();

 // create new incubed client
 in3_t* c = in3_for_chain(ETH_CHAIN_ID_GOERLI);

 // address of the usn-contract, which we copy from hex
 address_t contract;
 hex_to_bytes("0x85Ec283a3Ed4b66dF4da23656d4BF8A507383bca", -1, contract, 20);

 // read the key from args - I know this is not safe, but this is just a example.
 if (argc < 3) {
 perror("you need to provide a json-key and password to rent it");
 exit(EXIT_FAILURE);
 }
 char* key_data = argv[1];
 char* passwd = argv[2];
 unlock_key(c, key_data, passwd);

 // rent it for one hour.
 uint32_t renting_seconds = 3600;

 // allocate 32 bytes for the resulting tx hash
 bytes32_t tx_hash;

 // start charging
 if (usn_rent(c, contract, NULL, "office@slockit", renting_seconds, tx_hash))
 printf("Could not start charging\n");
 else {
 printf("Charging tx successfully sent... tx_hash=0x");
 for (int i = 0; i < 32; i++) printf("%02x", tx_hash[i]);
 printf("\n");

 if (argc == 4) // just to include it : if you want to stop earlier, you can call
 usn_return(c, contract, "office@slockit", tx_hash);
 }

 // clean up
 in3_free(c);
 return 0;
}

Building

In order to run those examples, you only need a c-compiler (gcc or clang) and curl installed.

./build.sh

will build all examples in this directory. You can build them individually by executing:

gcc -o get_block_api get_block_api.c -lin3 -lcurl

RPC

The core of incubed is to execute rpc-requests which will be send to the incubed nodes and verified. This means the available RPC-Requests are defined by the clients itself.

	For Ethereum : https://github.com/ethereum/wiki/wiki/JSON-RPC

	For Bitcoin : https://bitcoincore.org/en/doc/0.18.0/

The Incbed nodes already add a few special RPC-methods, which are specified in the RPC-Specification [https://in3.readthedocs.io/en/develop/spec.html#incubed] Section of the Protocol.

In addition the incubed client itself offers special RPC-Methods, which are mostly handled directly inside the client:

in3_config

changes the configuration of a client. The configuration is passed as the first param and may contain only the values to change.

Parameters:

	config: config-object - a Object with config-params.

The config params support the following properties :

	autoUpdateList [https://github.com/slockit/in3/blob/master/src/types/types.ts#L255] :boolean (optional) - if true the nodelist will be automaticly updated if the lastBlock is newer example: true

	chainId [https://github.com/slockit/in3/blob/master/src/types/types.ts#L240] :string - servers to filter for the given chain. The chain-id based on EIP-155. example: 0x1

	finality [https://github.com/slockit/in3/blob/master/src/types/types.ts#L230] :number (optional) - the number in percent needed in order reach finality (% of signature of the validators) example: 50

	includeCode [https://github.com/slockit/in3/blob/master/src/types/types.ts#L187] :boolean (optional) - if true, the request should include the codes of all accounts. otherwise only the the codeHash is returned. In this case the client may ask by calling eth_getCode() afterwards example: true

	keepIn3 [https://github.com/slockit/in3/blob/master/src/types/types.ts#L187] :boolean (optional) - if true, requests sent to the input sream of the comandline util will be send theor responses in the same form as the server did. example: false

	key [https://github.com/slockit/in3/blob/master/src/types/types.ts#L169] :any (optional) - the client key to sign requests example: 0x387a8233c96e1fc0ad5e284353276177af2186e7afa85296f106336e376669f7

	maxAttempts [https://github.com/slockit/in3/blob/master/src/types/types.ts#L182] :number (optional) - max number of attempts in case a response is rejected example: 10

	maxBlockCache [https://github.com/slockit/in3/blob/master/src/types/types.ts#L197] :number (optional) - number of number of blocks cached in memory example: 100

	maxCodeCache [https://github.com/slockit/in3/blob/master/src/types/types.ts#L192] :number (optional) - number of max bytes used to cache the code in memory example: 100000

	minDeposit [https://github.com/slockit/in3/blob/master/src/types/types.ts#L215] :number - min stake of the server. Only nodes owning at least this amount will be chosen.

	nodeLimit [https://github.com/slockit/in3/blob/master/src/types/types.ts#L155] :number (optional) - the limit of nodes to store in the client. example: 150

	proof [https://github.com/slockit/in3/blob/master/src/types/types.ts#L206] :,’none,|’standard’|’full’` (optional) - if true the nodes should send a proof of the response example: true

	replaceLatestBlock [https://github.com/slockit/in3/blob/master/src/types/types.ts#L220] :number (optional) - if specified, the blocknumber latest will be replaced by blockNumber- specified value example: 6

	requestCount [https://github.com/slockit/in3/blob/master/src/types/types.ts#L225] :number - the number of request send when getting a first answer example: 3

	rpc [https://github.com/slockit/in3/blob/master/src/types/types.ts#L267] :string (optional) - url of one or more rpc-endpoints to use. (list can be comma seperated)

	servers [https://github.com/slockit/in3/blob/master/src/types/types.ts#L271] (optional) - the nodelist per chain

	signatureCount [https://github.com/slockit/in3/blob/master/src/types/types.ts#L211] :number (optional) - number of signatures requested example: 2

	verifiedHashes [https://github.com/slockit/in3/blob/master/src/types/types.ts#L201] :string[] (optional) - if the client sends a array of blockhashes the server will not deliver any signatures or blockheaders for these blocks, but only return a string with a number. This is automaticly updated by the cache, but can be overriden per request.

Returns:

an boolean confirming that the config has changed.

Example:

Request:

{
 "method":"in3_config",
 "params":[{
 "chainId":"0x5",
 "maxAttempts":4,
 "nodeLimit":10
 "servers":{
 "0x1": [
 "nodeList": [
 {
 "address":"0x1234567890123456789012345678901234567890",
 "url":"https://mybootnode-A.com",
 "props":"0xFFFF",
 },
 {
 "address":"0x1234567890123456789012345678901234567890",
 "url":"https://mybootnode-B.com",
 "props":"0xFFFF",
 }
]
]
 }

 }]
}

Response:

{
 "id": 1,
 "result": true,
}

in3_abiEncode

based on the ABI-encoding [https://solidity.readthedocs.io/en/v0.5.3/abi-spec.html] used by solidity, this function encodes the values and returns it as hex-string.

Parameters:

	signature: string - the signature of the function. e.g. getBalance(uint256). The format is the same as used by solidity to create the functionhash. optional you can also add the return type, which in this case is ignored.

	params: array - a array of arguments. the number of arguments must match the arguments in the signature.

Returns:

the ABI-encoded data as hex including the 4 byte function-signature. These data can be used for eth_call or to send a transaction.

Request:

{
 "method":"in3_abiEncode",
 "params":[
 "getBalance(address)",
 ["0x1234567890123456789012345678901234567890"]
]
}

Response:

{
 "id": 1,
 "result": "0xf8b2cb4f0000000000000000000000001234567890123456789012345678901234567890",
}

in3_abiDecode

based on the ABI-encoding [https://solidity.readthedocs.io/en/v0.5.3/abi-spec.html] used by solidity, this function decodes the bytes given and returns it as array of values.

Parameters:

	signature: string - the signature of the function. e.g. uint256, (address,string,uint256) or getBalance(address):uint256. If the complete functionhash is given, only the return-part will be used.

	data: hex - the data to decode (usually the result of a eth_call)

Returns:

a array (if more then one arguments in the result-type) or the the value after decodeing.

Request:

{
 "method":"in3_abiDecode",
 "params":[
 "(address,uint256)",
 "0x000000000000000000000000123456789012345678901234567890123456789005"
]
}

Response:

{
 "id": 1,
 "result": ["0x1234567890123456789012345678901234567890","0x05"],
}

in3_checksumAddress

Will convert an upper or lowercase Ethereum address to a checksum address. (See EIP55 [https://github.com/ethereum/EIPs/blob/master/EIPS/eip-55])

Parameters:

	address: address - the address to convert.

	useChainId: boolean - if true, the chainId is integrated as well (See EIP1191 [https://github.com/ethereum/EIPs/issues/1121])

Returns:

the address-string using the upper/lowercase hex characters.

Request:

{
 "method":"in3_checksumAddress",
 "params":[
 "0x1fe2e9bf29aa1938859af64c413361227d04059a",
 false
]
}

Response:

{
 "id": 1,
 "result": "0x1Fe2E9bf29aa1938859Af64C413361227d04059a"
}

in3_ens

resolves a ens-name. the domain names consist of a series of dot-separated labels. Each label must be a valid normalised label as described in UTS46 [https://unicode.org/reports/tr46/] with the options transitional=false and useSTD3AsciiRules=true. For Javascript implementations, a library [https://www.npmjs.com/package/idna-uts46] is available that normalises and checks names.

Parameters:

	name: string - the domain name UTS46 compliant string.

	field: string - the required data, which could be

	addr - the address (default)

	resolver - the address of the resolver

	hash - the namehash

	owner - the owner of the domain

Returns:

the address-string using the upper/lowercase hex characters.

Request:

{
 "method":"in3_ens",
 "params":[
 "cryptokitties.eth",
 "addr"
]
}

Response:

{
 "id": 1,
 "result": "0x06012c8cf97bead5deae237070f9587f8e7a266d"
}

Module api/eth1

eth_api.h

Ethereum API.

This header-file defines easy to use function, which are preparing the JSON-RPC-Request, which is then executed and verified by the incubed-client.

File: src/api/eth1/eth_api.h [https://github.com/slockit/in3-c/blob/master/src/api/eth1/eth_api.h]

BLKNUM (blk)

Initializer macros for eth_blknum_t.

#define BLKNUM (blk) ((eth_blknum_t){.u64 = blk, .is_u64 = true})

BLKNUM_LATEST ()

#define BLKNUM_LATEST () ((eth_blknum_t){.def = BLK_LATEST, .is_u64 = false})

BLKNUM_EARLIEST ()

#define BLKNUM_EARLIEST () ((eth_blknum_t){.def = BLK_EARLIEST, .is_u64 = false})

BLKNUM_PENDING ()

#define BLKNUM_PENDING () ((eth_blknum_t){.def = BLK_PENDING, .is_u64 = false})

eth_tx_t

A transaction.

The stuct contains following fields:

	bytes32_t

	hash

	the blockhash

	bytes32_t

	block_hash

	hash of ther containnig block

	uint64_t

	block_number

	number of the containing block

	address_t

	from

	sender of the tx

	uint64_t

	gas

	gas send along

	uint64_t

	gas_price

	gas price used

	bytes_t

	data

	data send along with the transaction

	uint64_t

	nonce

	nonce of the transaction

	address_t

	to

	receiver of the address 0x0000.

. -Address is used for contract creation.

	uint256_t

	value

	the value in wei send

	int

	transaction_index

	the transaction index

	uint8_t

	signature

	signature of the transaction

eth_block_t

An Ethereum Block.

The stuct contains following fields:

	uint64_t

	number

	the blockNumber

	bytes32_t

	hash

	the blockhash

	uint64_t

	gasUsed

	gas used by all the transactions

	uint64_t

	gasLimit

	gasLimit

	address_t

	author

	the author of the block.

	uint256_t

	difficulty

	the difficulty of the block.

	bytes_t

	extra_data

	the extra_data of the block.

	uint8_t

	logsBloom

	the logsBloom-data

	bytes32_t

	parent_hash

	the hash of the parent-block

	bytes32_t

	sha3_uncles

	root hash of the uncle-trie

	bytes32_t

	state_root

	root hash of the state-trie

	bytes32_t

	receipts_root

	root of the receipts trie

	bytes32_t

	transaction_root

	root of the transaction trie

	int

	tx_count

	number of transactions in the block

	eth_tx_t *

	tx_data

	array of transaction data or NULL if not requested

	bytes32_t *

	tx_hashes

	array of transaction hashes or NULL if not requested

	uint64_t

	timestamp

	the unix timestamp of the block

	bytes_t *

	seal_fields

	sealed fields

	int

	seal_fields_count

	number of seal fields

eth_log_t

A linked list of Ethereum Logs

The stuct contains following fields:

	bool

	removed

	true when the log was removed, due to a chain reorganization.

false if its a valid log

	size_t

	log_index

	log index position in the block

	size_t

	transaction_index

	transactions index position log was created from

	bytes32_t

	transaction_hash

	hash of the transactions this log was created from

	bytes32_t

	block_hash

	hash of the block where this log was in

	uint64_t

	block_number

	the block number where this log was in

	address_t

	address

	address from which this log originated

	bytes_t

	data

	non-indexed arguments of the log

	bytes32_t *

	topics

	array of 0 to 4 32 Bytes DATA of indexed log arguments

	size_t

	topic_count

	counter for topics

	eth_logstruct , *

	next

	pointer to next log in list or NULL

eth_tx_receipt_t

A transaction receipt.

The stuct contains following fields:

	bytes32_t

	transaction_hash

	the transaction hash

	int

	transaction_index

	the transaction index

	bytes32_t

	block_hash

	hash of ther containnig block

	uint64_t

	block_number

	number of the containing block

	uint64_t

	cumulative_gas_used

	total amount of gas used by block

	uint64_t

	gas_used

	amount of gas used by this specific transaction

	bytes_t *

	contract_address

	contract address created (if the transaction was a contract creation) or NULL

	bool

	status

	1 if transaction succeeded, 0 otherwise.

	eth_log_t *

	logs

	array of log objects, which this transaction generated

DEFINE_OPTIONAL_T

DEFINE_OPTIONAL_T(uint64_t);

Optional types.

arguments:

uint64_t

returns: ``

DEFINE_OPTIONAL_T

DEFINE_OPTIONAL_T(bytes_t);

arguments:

bytes_t

returns: ``

DEFINE_OPTIONAL_T

DEFINE_OPTIONAL_T(address_t);

arguments:

address_t

returns: ``

DEFINE_OPTIONAL_T

DEFINE_OPTIONAL_T(uint256_t);

arguments:

uint256_t

returns: ``

eth_getStorageAt

uint256_t eth_getStorageAt(in3_t *in3, address_t account, bytes32_t key, eth_blknum_t block);

Returns the storage value of a given address.

arguments:

	in3_t *

	in3

	address_t

	account

	bytes32_t

	key

	eth_blknum_t

	block

returns: uint256_t

eth_getCode

bytes_t eth_getCode(in3_t *in3, address_t account, eth_blknum_t block);

Returns the code of the account of given address.

(Make sure you free the data-point of the result after use.)

arguments:

	in3_t *

	in3

	address_t

	account

	eth_blknum_t

	block

returns: bytes_t

eth_getBalance

uint256_t eth_getBalance(in3_t *in3, address_t account, eth_blknum_t block);

Returns the balance of the account of given address.

arguments:

	in3_t *

	in3

	address_t

	account

	eth_blknum_t

	block

returns: uint256_t

eth_blockNumber

uint64_t eth_blockNumber(in3_t *in3);

Returns the current price per gas in wei.

arguments:

	in3_t *

	in3

returns: uint64_t

eth_gasPrice

uint64_t eth_gasPrice(in3_t *in3);

Returns the current blockNumber, if bn==0 an error occured and you should check eth_last_error()

arguments:

	in3_t *

	in3

returns: uint64_t

eth_getBlockByNumber

eth_block_t* eth_getBlockByNumber(in3_t *in3, eth_blknum_t number, bool include_tx);

Returns the block for the given number (if number==0, the latest will be returned).

If result is null, check eth_last_error()! otherwise make sure to free the result after using it!

arguments:

	in3_t *

	in3

	eth_blknum_t

	number

	bool

	include_tx

returns: eth_block_t *

eth_getBlockByHash

eth_block_t* eth_getBlockByHash(in3_t *in3, bytes32_t hash, bool include_tx);

Returns the block for the given hash.

If result is null, check eth_last_error()! otherwise make sure to free the result after using it!

arguments:

	in3_t *

	in3

	bytes32_t

	hash

	bool

	include_tx

returns: eth_block_t *

eth_getLogs

eth_log_t* eth_getLogs(in3_t *in3, char *fopt);

Returns a linked list of logs.

If result is null, check eth_last_error()! otherwise make sure to free the log, its topics and data after using it!

arguments:

	in3_t *

	in3

	char *

	fopt

returns: eth_log_t *

eth_newFilter

in3_ret_t eth_newFilter(in3_t *in3, json_ctx_t *options);

Creates a new event filter with specified options and returns its id (>0) on success or 0 on failure.

arguments:

	in3_t *

	in3

	json_ctx_t *

	options

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_newBlockFilter

in3_ret_t eth_newBlockFilter(in3_t *in3);

Creates a new block filter with specified options and returns its id (>0) on success or 0 on failure.

arguments:

	in3_t *

	in3

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_newPendingTransactionFilter

in3_ret_t eth_newPendingTransactionFilter(in3_t *in3);

Creates a new pending txn filter with specified options and returns its id on success or 0 on failure.

arguments:

	in3_t *

	in3

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_uninstallFilter

bool eth_uninstallFilter(in3_t *in3, size_t id);

Uninstalls a filter and returns true on success or false on failure.

arguments:

	in3_t *

	in3

	size_t

	id

returns: bool

eth_getFilterChanges

in3_ret_t eth_getFilterChanges(in3_t *in3, size_t id, bytes32_t **block_hashes, eth_log_t **logs);

Sets the logs (for event filter) or blockhashes (for block filter) that match a filter; returns <0 on error, otherwise no.

of block hashes matched (for block filter) or 0 (for log filter)

arguments:

	in3_t *

	in3

	size_t

	id

	bytes32_t **

	block_hashes

	eth_log_t **

	logs

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_getFilterLogs

in3_ret_t eth_getFilterLogs(in3_t *in3, size_t id, eth_log_t **logs);

Sets the logs (for event filter) or blockhashes (for block filter) that match a filter; returns <0 on error, otherwise no.

of block hashes matched (for block filter) or 0 (for log filter)

arguments:

	in3_t *

	in3

	size_t

	id

	eth_log_t **

	logs

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_chainId

uint64_t eth_chainId(in3_t *in3);

Returns the currently configured chain id.

arguments:

	in3_t *

	in3

returns: uint64_t

eth_getBlockTransactionCountByHash

uint64_t eth_getBlockTransactionCountByHash(in3_t *in3, bytes32_t hash);

Returns the number of transactions in a block from a block matching the given block hash.

arguments:

	in3_t *

	in3

	bytes32_t

	hash

returns: uint64_t

eth_getBlockTransactionCountByNumber

uint64_t eth_getBlockTransactionCountByNumber(in3_t *in3, eth_blknum_t block);

Returns the number of transactions in a block from a block matching the given block number.

arguments:

	in3_t *

	in3

	eth_blknum_t

	block

returns: uint64_t

eth_call_fn

json_ctx_t* eth_call_fn(in3_t *in3, address_t contract, eth_blknum_t block, char *fn_sig,...);

Returns the result of a function_call.

If result is null, check eth_last_error()! otherwise make sure to free the result after using it with json_free()!

arguments:

	in3_t *

	in3

	address_t

	contract

	eth_blknum_t

	block

	char *

	fn_sig

	...

	

returns: json_ctx_t *

eth_estimate_fn

uint64_t eth_estimate_fn(in3_t *in3, address_t contract, eth_blknum_t block, char *fn_sig,...);

Returns the result of a function_call.

If result is null, check eth_last_error()! otherwise make sure to free the result after using it with json_free()!

arguments:

	in3_t *

	in3

	address_t

	contract

	eth_blknum_t

	block

	char *

	fn_sig

	...

	

returns: uint64_t

eth_getTransactionByHash

eth_tx_t* eth_getTransactionByHash(in3_t *in3, bytes32_t tx_hash);

Returns the information about a transaction requested by transaction hash.

If result is null, check eth_last_error()! otherwise make sure to free the result after using it!

arguments:

	in3_t *

	in3

	bytes32_t

	tx_hash

returns: eth_tx_t *

eth_getTransactionByBlockHashAndIndex

eth_tx_t* eth_getTransactionByBlockHashAndIndex(in3_t *in3, bytes32_t block_hash, size_t index);

Returns the information about a transaction by block hash and transaction index position.

If result is null, check eth_last_error()! otherwise make sure to free the result after using it!

arguments:

	in3_t *

	in3

	bytes32_t

	block_hash

	size_t

	index

returns: eth_tx_t *

eth_getTransactionByBlockNumberAndIndex

eth_tx_t* eth_getTransactionByBlockNumberAndIndex(in3_t *in3, eth_blknum_t block, size_t index);

Returns the information about a transaction by block number and transaction index position.

If result is null, check eth_last_error()! otherwise make sure to free the result after using it!

arguments:

	in3_t *

	in3

	eth_blknum_t

	block

	size_t

	index

returns: eth_tx_t *

eth_getTransactionCount

uint64_t eth_getTransactionCount(in3_t *in3, address_t address, eth_blknum_t block);

Returns the number of transactions sent from an address.

arguments:

	in3_t *

	in3

	address_t

	address

	eth_blknum_t

	block

returns: uint64_t

eth_getUncleByBlockNumberAndIndex

eth_block_t* eth_getUncleByBlockNumberAndIndex(in3_t *in3, eth_blknum_t block, size_t index);

Returns information about a uncle of a block by number and uncle index position.

If result is null, check eth_last_error()! otherwise make sure to free the result after using it!

arguments:

	in3_t *

	in3

	eth_blknum_t

	block

	size_t

	index

returns: eth_block_t *

eth_getUncleCountByBlockHash

uint64_t eth_getUncleCountByBlockHash(in3_t *in3, bytes32_t hash);

Returns the number of uncles in a block from a block matching the given block hash.

arguments:

	in3_t *

	in3

	bytes32_t

	hash

returns: uint64_t

eth_getUncleCountByBlockNumber

uint64_t eth_getUncleCountByBlockNumber(in3_t *in3, eth_blknum_t block);

Returns the number of uncles in a block from a block matching the given block number.

arguments:

	in3_t *

	in3

	eth_blknum_t

	block

returns: uint64_t

eth_sendTransaction

bytes_t* eth_sendTransaction(in3_t *in3, address_t from, address_t to, OPTIONAL_T(uint64_t) gas, OPTIONAL_T(uint64_t) gas_price, OPTIONAL_T(uint256_t) value, OPTIONAL_T(bytes_t) data, OPTIONAL_T(uint64_t) nonce);

Creates new message call transaction or a contract creation.

Returns (32 Bytes) - the transaction hash, or the zero hash if the transaction is not yet available. Free result after use with b_free().

arguments:

	in3_t *

	in3

	address_t

	from

	address_t

	to

	OPTIONAL_T(uint64_t)

	gas

	OPTIONAL_T(uint64_t)

	gas_price

	(,)

	value

	(,)

	data

	OPTIONAL_T(uint64_t)

	nonce

returns: bytes_t *

eth_sendRawTransaction

bytes_t* eth_sendRawTransaction(in3_t *in3, bytes_t data);

Creates new message call transaction or a contract creation for signed transactions.

Returns (32 Bytes) - the transaction hash, or the zero hash if the transaction is not yet available. Free after use with b_free().

arguments:

	in3_t *

	in3

	bytes_t

	data

returns: bytes_t *

eth_getTransactionReceipt

eth_tx_receipt_t* eth_getTransactionReceipt(in3_t *in3, bytes32_t tx_hash);

Returns the receipt of a transaction by transaction hash.

Free result after use with eth_tx_receipt_free()

arguments:

	in3_t *

	in3

	bytes32_t

	tx_hash

returns: eth_tx_receipt_t *

eth_wait_for_receipt

char* eth_wait_for_receipt(in3_t *in3, bytes32_t tx_hash);

Waits for receipt of a transaction requested by transaction hash.

arguments:

	in3_t *

	in3

	bytes32_t

	tx_hash

returns: char *

eth_last_error

char* eth_last_error();

The current error or null if all is ok.

returns: char *

as_double

long double as_double(uint256_t d);

Converts a uint256_t in a long double.

Important: since a long double stores max 16 byte, there is no guarantee to have the full precision.

Converts a uint256_t in a long double.

arguments:

	uint256_t

	d

returns: long double

as_long

uint64_t as_long(uint256_t d);

Converts a uint256_t in a long .

Important: since a long double stores 8 byte, this will only use the last 8 byte of the value.

Converts a uint256_t in a long .

arguments:

	uint256_t

	d

returns: uint64_t

to_uint256

uint256_t to_uint256(uint64_t value);

Converts a uint64_t into its uint256_t representation.

arguments:

	uint64_t

	value

returns: uint256_t

decrypt_key

in3_ret_t decrypt_key(d_token_t *key_data, char *password, bytes32_t dst);

Decrypts the private key from a json keystore file using PBKDF2 or SCRYPT (if enabled)

arguments:

	d_token_t *

	key_data

	char *

	password

	bytes32_t

	dst

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

log_free

void log_free(eth_log_t *log);

Frees a eth_log_t object.

arguments:

	eth_log_t *

	log

eth_tx_receipt_free

void eth_tx_receipt_free(eth_tx_receipt_t *txr);

Frees a eth_tx_receipt_t object.

arguments:

	eth_tx_receipt_t *

	txr

to_checksum

in3_ret_t to_checksum(address_t adr, chain_id_t chain_id, char out[43]);

converts the given address to a checksum address.

If chain_id is passed, it will use the EIP1191 to include it as well.

arguments:

	address_t

	adr

	chain_id_t

	chain_id

	char

	out

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_register_eth_api

void in3_register_eth_api();

Module api/usn

usn_api.h

USN API.

This header-file defines easy to use function, which are verifying USN-Messages.

File: src/api/usn/usn_api.h [https://github.com/slockit/in3-c/blob/master/src/api/usn/usn_api.h]

usn_booking_handler

typedef int(* usn_booking_handler) (usn_event_t *)

returns: int(*

usn_verify_message

usn_msg_result_t usn_verify_message(usn_device_conf_t *conf, char *message);

arguments:

	usn_device_conf_t *

	conf

	char *

	message

returns: usn_msg_result_t

usn_register_device

in3_ret_t usn_register_device(usn_device_conf_t *conf, char *url);

arguments:

	usn_device_conf_t *

	conf

	char *

	url

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

usn_parse_url

usn_url_t usn_parse_url(char *url);

arguments:

	char *

	url

returns: usn_url_t

usn_update_state

unsigned int usn_update_state(usn_device_conf_t *conf, unsigned int wait_time);

arguments:

	usn_device_conf_t *

	conf

	unsigned int

	wait_time

returns: unsigned int

usn_update_bookings

in3_ret_t usn_update_bookings(usn_device_conf_t *conf);

arguments:

	usn_device_conf_t *

	conf

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

usn_remove_old_bookings

void usn_remove_old_bookings(usn_device_conf_t *conf);

arguments:

	usn_device_conf_t *

	conf

usn_get_next_event

usn_event_t usn_get_next_event(usn_device_conf_t *conf);

arguments:

	usn_device_conf_t *

	conf

returns: usn_event_t

usn_rent

in3_ret_t usn_rent(in3_t *c, address_t contract, address_t token, char *url, uint32_t seconds, bytes32_t tx_hash);

arguments:

	in3_t *

	c

	address_t

	contract

	address_t

	token

	char *

	url

	uint32_t

	seconds

	bytes32_t

	tx_hash

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

usn_return

in3_ret_t usn_return(in3_t *c, address_t contract, char *url, bytes32_t tx_hash);

arguments:

	in3_t *

	c

	address_t

	contract

	char *

	url

	bytes32_t

	tx_hash

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

usn_price

in3_ret_t usn_price(in3_t *c, address_t contract, address_t token, char *url, uint32_t seconds, address_t controller, bytes32_t price);

arguments:

	in3_t *

	c

	address_t

	contract

	address_t

	token

	char *

	url

	uint32_t

	seconds

	address_t

	controller

	bytes32_t

	price

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

Module core

client.h

this file defines the incubed configuration struct and it registration.

File: src/core/client/client.h [https://github.com/slockit/in3-c/blob/master/src/core/client/client.h]

IN3_PROTO_VER

the protocol version used when sending requests from the this client

#define IN3_PROTO_VER "2.1.0"

ETH_CHAIN_ID_MULTICHAIN

chain_id working with all known chains

#define ETH_CHAIN_ID_MULTICHAIN 0x0

ETH_CHAIN_ID_MAINNET

chain_id for mainnet

#define ETH_CHAIN_ID_MAINNET 0x01

ETH_CHAIN_ID_KOVAN

chain_id for kovan

#define ETH_CHAIN_ID_KOVAN 0x2a

ETH_CHAIN_ID_TOBALABA

chain_id for tobalaba

#define ETH_CHAIN_ID_TOBALABA 0x44d

ETH_CHAIN_ID_GOERLI

chain_id for goerlii

#define ETH_CHAIN_ID_GOERLI 0x5

ETH_CHAIN_ID_EVAN

chain_id for evan

#define ETH_CHAIN_ID_EVAN 0x4b1

ETH_CHAIN_ID_IPFS

chain_id for ipfs

#define ETH_CHAIN_ID_IPFS 0x7d0

ETH_CHAIN_ID_VOLTA

chain_id for volta

#define ETH_CHAIN_ID_VOLTA 0x12046

ETH_CHAIN_ID_LOCAL

chain_id for local chain

#define ETH_CHAIN_ID_LOCAL 0xFFFF

in3_node_props_init (np)

Initializer for in3_node_props_t.

#define in3_node_props_init (np) *(np) = 0

IN3_SIGN_ERR_REJECTED

return value used by the signer if the the signature-request was rejected.

#define IN3_SIGN_ERR_REJECTED -1

IN3_SIGN_ERR_ACCOUNT_NOT_FOUND

return value used by the signer if the requested account was not found.

#define IN3_SIGN_ERR_ACCOUNT_NOT_FOUND -2

IN3_SIGN_ERR_INVALID_MESSAGE

return value used by the signer if the message was invalid.

#define IN3_SIGN_ERR_INVALID_MESSAGE -3

IN3_SIGN_ERR_GENERAL_ERROR

return value used by the signer for unspecified errors.

#define IN3_SIGN_ERR_GENERAL_ERROR -4

chain_id_t

type for a chain_id.

typedef uint32_t chain_id_t

in3_request_config_t

the configuration as part of each incubed request.

This will be generated for each request based on the client-configuration. the verifier may access this during verification in order to check against the request.

The stuct contains following fields:

	chain_id_t

	chain_id

	the chain to be used.

this is holding the integer-value of the hexstring.

	uint8_t

	include_code

	if true the code needed will always be devlivered.

	uint8_t

	use_full_proof

	this flaqg is set, if the proof is set to “PROOF_FULL”

	uint8_t

	use_binary

	this flaqg is set, the client should use binary-format

	bytes_t *

	verified_hashes

	a list of blockhashes already verified.

The Server will not send any proof for them again .

	uint16_t

	verified_hashes_length

	number of verified blockhashes

	uint16_t

	latest_block

	the last blocknumber the nodelistz changed

	uint16_t

	finality

	number of signatures(in percent) needed in order to reach finality.

	in3_verification_t

	verification

	Verification-type.

	bytes_t *

	client_signature

	the signature of the client with the client key

	bytes_t *

	signers

	the addresses of servers requested to sign the blockhash

	uint8_t

	signers_length

	number or addresses

	uint32_t

	time

	meassured time in ms for the request

in3_node_props_t

Node capabilities.

typedef uint64_t in3_node_props_t

in3_node_t

incubed node-configuration.

These information are read from the Registry contract and stored in this struct representing a server or node.

The stuct contains following fields:

	bytes_t *

	address

	address of the server

	uint64_t

	deposit

	the deposit stored in the registry contract, which this would lose if it sends a wrong blockhash

	uint32_t

	index

	index within the nodelist, also used in the contract as key

	uint32_t

	capacity

	the maximal capacity able to handle

	in3_node_props_t

	props

	used to identify the capabilities of the node.

See in3_node_props_type_t in nodelist.h

	char *

	url

	the url of the node

	bool

	whitelisted

	boolean indicating if node exists in whiteList

in3_node_weight_t

Weight or reputation of a node.

Based on the past performance of the node a weight is calculated given faster nodes a higher weight and chance when selecting the next node from the nodelist. These weights will also be stored in the cache (if available)

The stuct contains following fields:

	uint32_t

	response_count

	counter for responses

	uint32_t

	total_response_time

	total of all response times

	uint64_t

	blacklisted_until

	if >0 this node is blacklisted until k.

k is a unix timestamp

in3_whitelist_t

defines a whitelist structure used for the nodelist.

The stuct contains following fields:

	address_t

	contract

	address of whiteList contract.

If specified, whiteList is always auto-updated and manual whiteList is overridden

	bytes_t

	addresses

	serialized list of node addresses that constitute the whiteList

	uint64_t

	last_block

	last blocknumber the whiteList was updated, which is used to detect changed in the whitelist

	bool

	needs_update

	if true the nodelist should be updated and will trigger a in3_nodeList-request before the next request is send.

in3_verified_hash_t

represents a blockhash which was previously verified

The stuct contains following fields:

	uint64_t

	block_number

	the number of the block

	bytes32_t

	hash

	the blockhash

in3_chain_t

Chain definition inside incubed.

for incubed a chain can be any distributed network or database with incubed support.

The stuct contains following fields:

	chain_id_t

	chain_id

	chain_id, which could be a free or based on the public ethereum networkId

	in3_chain_type_t

	type

	chaintype

	uint64_t

	last_block

	last blocknumber the nodeList was updated, which is used to detect changed in the nodelist

	int

	nodelist_length

	number of nodes in the nodeList

	in3_node_t *

	nodelist

	array of nodes

	in3_node_weight_t *

	weights

	stats and weights recorded for each node

	bytes_t **

	init_addresses

	array of addresses of nodes that should always part of the nodeList

	bytes_t *

	contract

	the address of the registry contract

	bytes32_t

	registry_id

	the identifier of the registry

	uint8_t

	version

	version of the chain

	in3_verified_hash_t *

	verified_hashes

	contains the list of already verified blockhashes

	in3_whitelist_t *

	whitelist

	if set the whitelist of the addresses.

	address_t

	node

	node that reported the last_block which necessitated a nodeList update

	uint64_t

	exp_last_block

	the last_block when the nodelist last changed reported by this node

	struct in3_chain::@2 *

	nodelist_upd8_params

	

in3_storage_get_item

storage handler function for reading from cache.

typedef bytes_t*(* in3_storage_get_item) (void *cptr, char *key)

returns: bytes_t *(* : the found result. if the key is found this function should return the values as bytes otherwise NULL.

in3_storage_set_item

storage handler function for writing to the cache.

typedef void(* in3_storage_set_item) (void *cptr, char *key, bytes_t *value)

in3_storage_clear

storage handler function for clearing the cache.

typedef void(* in3_storage_clear) (void *cptr)

in3_storage_handler_t

storage handler to handle cache.

The stuct contains following fields:

	in3_storage_get_item

	get_item

	function pointer returning a stored value for the given key.

	in3_storage_set_item

	set_item

	function pointer setting a stored value for the given key.

	in3_storage_clear

	clear

	function pointer clearing all contents of cache.

	void *

	cptr

	custom pointer which will be passed to functions

in3_sign

signing function.

signs the given data and write the signature to dst. the return value must be the number of bytes written to dst. In case of an error a negativ value must be returned. It should be one of the IN3_SIGN_ERR… values.

typedef in3_ret_t(* in3_sign) (void *ctx, d_signature_type_t type, bytes_t message, bytes_t account, uint8_t *dst)

returns: in3_ret_t(* the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_prepare_tx

transform transaction function.

for multisigs, we need to change the transaction to gro through the ms. if the new_tx is not set within the function, it will use the old_tx.

typedef in3_ret_t(* in3_prepare_tx) (void *ctx, d_token_t *old_tx, json_ctx_t **new_tx)

returns: in3_ret_t(* the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_signer_t

The stuct contains following fields:

	in3_sign

	sign

	in3_prepare_tx

	prepare_tx

	void *

	wallet

in3_response_t

response-object.

if the error has a length>0 the response will be rejected

The stuct contains following fields:

	sb_t

	error

	a stringbuilder to add any errors!

	sb_t

	result

	a stringbuilder to add the result

in3_request_t

request-object.

represents a RPC-request

The stuct contains following fields:

	char *

	payload

	the payload to send

	char **

	urls

	array of urls

	int

	urls_len

	number of urls

	in3_response_t *

	results

	the responses

	uint32_t

	timeout

	the timeout 0= no timeout

	uint32_t *

	times

	measured times (in ms) which will be used for ajusting the weights

in3_transport_send

the transport function to be implemented by the transport provider.

typedef in3_ret_t(* in3_transport_send) (in3_request_t *request)

returns: in3_ret_t(* the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_filter_t

The stuct contains following fields:

	in3_filter_type_t

	type

	filter type: (event, block or pending)

	char *

	options

	associated filter options

	uint64_t

	last_block

	block no.

when filter was created OR eth_getFilterChanges was called

	bool

	is_first_usage

	if true the filter was not used previously

	void(*

	release

	method to release owned resources

in3_filter_handler_t

Handler which is added to client config in order to handle filter.

The stuct contains following fields:

	in3_filter_t **

	array

	

	size_t

	count

	array of filters

in3_t

Incubed Configuration.

This struct holds the configuration and also point to internal resources such as filters or chain configs.

The stuct contains following fields:

	uint32_t

	cache_timeout

	number of seconds requests can be cached.

	uint16_t

	node_limit

	the limit of nodes to store in the client.

	bytes_t *

	key

	the client key to sign requests

	uint32_t

	max_code_cache

	number of max bytes used to cache the code in memory

	uint32_t

	max_block_cache

	number of number of blocks cached in memory

	in3_proof_t

	proof

	the type of proof used

	uint8_t

	request_count

	the number of request send when getting a first answer

	uint8_t

	signature_count

	the number of signatures used to proof the blockhash.

	uint64_t

	min_deposit

	min stake of the server.

Only nodes owning at least this amount will be chosen.

	uint16_t

	replace_latest_block

	if specified, the blocknumber latest will be replaced by blockNumber- specified value

	uint16_t

	finality

	the number of signatures in percent required for the request

	uint_fast16_t

	max_attempts

	the max number of attempts before giving up

	uint_fast16_t

	max_verified_hashes

	max number of verified hashes to cache

	uint32_t

	timeout

	specifies the number of milliseconds before the request times out.

increasing may be helpful if the device uses a slow connection.

	chain_id_t

	chain_id

	servers to filter for the given chain.

The chain-id based on EIP-155.

	uint8_t

	auto_update_list

	if true the nodelist will be automaticly updated if the last_block is newer

	in3_storage_handler_t *

	cache

	a cache handler offering 2 functions (setItem(string,string), getItem(string))

	in3_signer_t *

	signer

	signer-struct managing a wallet

	in3_transport_send

	transport

	the transporthandler sending requests

	uint8_t

	include_code

	includes the code when sending eth_call-requests

	uint8_t

	use_binary

	if true the client will use binary format

	uint8_t

	use_http

	if true the client will try to use http instead of https

	uint8_t

	keep_in3

	if true the in3-section with the proof will also returned

	in3_chain_t *

	chains

	chain spec and nodeList definitions

	uint16_t

	chains_length

	number of configured chains

	in3_filter_handler_t *

	filters

	filter handler

	in3_node_props_t

	node_props

	used to identify the capabilities of the node.

in3_node_props_set

void in3_node_props_set(in3_node_props_t *node_props, in3_node_props_type_t type, uint8_t value);

setter method for interacting with in3_node_props_t.

arguments:

	in3_node_props_t *

	node_props

	in3_node_props_type_t

	type

	uint8_t

	value

in3_node_props_get

static uint32_t in3_node_props_get(in3_node_props_t np, in3_node_props_type_t t);

returns the value of the specified propertytype.

arguments:

	in3_node_props_t

	np

	in3_node_props_type_t

	t

returns: uint32_t : value as a number

in3_node_props_matches

static bool in3_node_props_matches(in3_node_props_t np, in3_node_props_type_t t);

checkes if the given type is set in the properties

arguments:

	in3_node_props_t

	np

	in3_node_props_type_t

	t

returns: bool : true if set

in3_new

in3_t* in3_new() __attribute__((deprecated("use in3_for_chain(ETH_CHAIN_ID_MULTICHAIN)")));

creates a new Incubes configuration and returns the pointer.

This Method is depricated. you should use in3_for_chain(ETH_CHAIN_ID_MULTICHAIN) instead.

you need to free this instance with in3_free after use!

Before using the client you still need to set the tramsport and optional the storage handlers:

	example of initialization:

// register verifiers
in3_register_eth_full();

// create new client
in3_t* client = in3_new();

// configure storage...
in3_storage_handler_t storage_handler;
storage_handler.get_item = storage_get_item;
storage_handler.set_item = storage_set_item;
storage_handler.clear = storage_clear;

// configure transport
client->transport = send_curl;

// configure storage
client->cache = &storage_handler;

// init cache
in3_cache_init(client);

// ready to use ...

returns: in3_t * : the incubed instance.

in3_for_chain

in3_t* in3_for_chain(chain_id_t chain_id);

creates a new Incubes configuration for a specified chain and returns the pointer.

when creating the client only the one chain will be configured. (saves memory). but if you pass ETH_CHAIN_ID_MULTICHAIN as argument all known chains will be configured allowing you to switch between chains within the same client or configuring your own chain.

you need to free this instance with in3_free after use!

Before using the client you still need to set the tramsport and optional the storage handlers:

	example of initialization: , ** This Method is depricated. you should use in3_for_chain instead.**

// register verifiers
in3_register_eth_full();

// create new client
in3_t* client = in3_for_chain(ETH_CHAIN_ID_MAINNET);

// configure storage...
in3_storage_handler_t storage_handler;
storage_handler.get_item = storage_get_item;
storage_handler.set_item = storage_set_item;
storage_handler.clear = storage_clear;

// configure transport
client->transport = send_curl;

// configure storage
client->cache = &storage_handler;

// init cache
in3_cache_init(client);

// ready to use ...

arguments:

	chain_id_t

	chain_id

	the chain_id (see ETH_CHAIN_ID_… constants).

returns: in3_t * : the incubed instance.

in3_client_rpc

in3_ret_t in3_client_rpc(in3_t *c, char *method, char *params, char **result, char **error);

sends a request and stores the result in the provided buffer

arguments:

	in3_t *

	c

	the pointer to the incubed client config.

	char *

	method

	the name of the rpc-funcgtion to call.

	char *

	params

	docs for input parameter v.

	char **

	result

	pointer to string which will be set if the request was successfull. This will hold the result as json-rpc-string. (make sure you free this after use!)

	char **

	error

	pointer to a string containg the error-message. (make sure you free it after use!)

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_client_exec_req

char* in3_client_exec_req(in3_t *c, char *req);

executes a request and returns result as string.

in case of an error, the error-property of the result will be set. The resulting string must be free by the the caller of this function!

arguments:

	in3_t *

	c

	the pointer to the incubed client config.

	char *

	req

	the request as rpc.

returns: char *

in3_req_add_response

void in3_req_add_response(in3_response_t *res, int index, bool is_error, void *data, int data_len);

adds a response for a request-object.

This function should be used in the transport-function to set the response.

arguments:

	in3_response_t *

	res

	the response-pointer

	int

	index

	the index of the url, since this request could go out to many urls

	bool

	is_error

	if true this will be reported as error. the message should then be the error-message

	void *

	data

	the data or the the string

	int

	data_len

	the length of the data or the the string (use -1 if data is a null terminated string)

in3_client_register_chain

in3_ret_t in3_client_register_chain(in3_t *client, chain_id_t chain_id, in3_chain_type_t type, address_t contract, bytes32_t registry_id, uint8_t version, address_t wl_contract);

registers a new chain or replaces a existing (but keeps the nodelist)

arguments:

	in3_t *

	client

	the pointer to the incubed client config.

	chain_id_t

	chain_id

	the chain id.

	in3_chain_type_t

	type

	the verification type of the chain.

	address_t

	contract

	contract of the registry.

	bytes32_t

	registry_id

	the identifier of the registry.

	uint8_t

	version

	the chain version.

	address_t

	wl_contract

	contract of whiteList.

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_client_add_node

in3_ret_t in3_client_add_node(in3_t *client, chain_id_t chain_id, char *url, in3_node_props_t props, address_t address);

adds a node to a chain ore updates a existing node

[in] public address of the signer.

arguments:

	in3_t *

	client

	the pointer to the incubed client config.

	chain_id_t

	chain_id

	the chain id.

	char *

	url

	url of the nodes.

	in3_node_props_t

	props

	properties of the node.

	address_t

	address

	

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_client_remove_node

in3_ret_t in3_client_remove_node(in3_t *client, chain_id_t chain_id, address_t address);

removes a node from a nodelist

[in] public address of the signer.

arguments:

	in3_t *

	client

	the pointer to the incubed client config.

	chain_id_t

	chain_id

	the chain id.

	address_t

	address

	

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_client_clear_nodes

in3_ret_t in3_client_clear_nodes(in3_t *client, chain_id_t chain_id);

removes all nodes from the nodelist

[in] the chain id.

arguments:

	in3_t *

	client

	the pointer to the incubed client config.

	chain_id_t

	chain_id

	

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_free

void in3_free(in3_t *a);

frees the references of the client

arguments:

	in3_t *

	a

	the pointer to the incubed client config to free.

in3_cache_init

in3_ret_t in3_cache_init(in3_t *c);

inits the cache.

this will try to read the nodelist from cache.

arguments:

	in3_t *

	c

	the incubed client

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_find_chain

in3_chain_t* in3_find_chain(in3_t *c, chain_id_t chain_id);

finds the chain-config for the given chain_id.

My return NULL if not found.

arguments:

	in3_t *

	c

	the incubed client

	chain_id_t

	chain_id

	chain_id

returns: in3_chain_t *

in3_configure

char* in3_configure(in3_t *c, const char *config);

configures the clent based on a json-config.

For details about the structure of ther config see https://in3.readthedocs.io/en/develop/api-ts.html#type-in3config

arguments:

	in3_t *

	c

	the incubed client

	const char *

	config

	JSON-string with the configuration to set.

returns: char *

in3_set_default_transport

void in3_set_default_transport(in3_transport_send transport);

defines a default transport which is used when creating a new client.

arguments:

	in3_transport_send

	transport

	the default transport-function.

in3_set_default_storage

void in3_set_default_storage(in3_storage_handler_t *cacheStorage);

defines a default storage handler which is used when creating a new client.

arguments:

	in3_storage_handler_t *

	cacheStorage

	pointer to the handler-struct

in3_set_default_signer

void in3_set_default_signer(in3_signer_t *signer);

defines a default signer which is used when creating a new client.

arguments:

	in3_signer_t *

	signer

	default signer-function.

in3_create_signer

in3_signer_t* in3_create_signer(in3_sign sign, in3_prepare_tx prepare_tx, void *wallet);

create a new signer-object to be set on the client.

the caller will need to free this pointer after usage.

arguments:

	in3_sign

	sign

	function pointer returning a stored value for the given key.

	in3_prepare_tx

	prepare_tx

	function pointer returning capable of manipulating the transaction before signing it. This is needed in order to support multisigs.

	void *

	wallet

	custom object whill will be passed to functions

returns: in3_signer_t *

in3_create_storage_handler

in3_storage_handler_t* in3_create_storage_handler(in3_storage_get_item get_item, in3_storage_set_item set_item, in3_storage_clear clear, void *cptr);

create a new storage handler-object to be set on the client.

the caller will need to free this pointer after usage.

arguments:

	in3_storage_get_item

	get_item

	function pointer returning a stored value for the given key.

	in3_storage_set_item

	set_item

	function pointer setting a stored value for the given key.

	in3_storage_clear

	clear

	function pointer clearing all contents of cache.

	void *

	cptr

	custom pointer which will will be passed to functions

returns: in3_storage_handler_t *

context.h

Request Context. This is used for each request holding request and response-pointers but also controls the execution process.

File: src/core/client/context.h [https://github.com/slockit/in3-c/blob/master/src/core/client/context.h]

ctx_set_error (c,msg,err)

#define ctx_set_error (c,msg,err) ctx_set_error_intern(c, NULL, err)

ctx_type_t

type of the request context,

The enum type contains the following values:

	CT_RPC

	0

	a json-rpc request, which needs to be send to a incubed node

	CT_SIGN

	1

	a sign request

node_match_t

the weight of a certain node as linked list.

This will be used when picking the nodes to send the request to. A linked list of these structs desribe the result.

The stuct contains following fields:

	in3_node_t *

	node

	the node definition including the url

	in3_node_weight_t *

	weight

	the current weight and blacklisting-stats

	float

	s

	The starting value.

	float

	w

	weight value

	weightstruct , *

	next

	next in the linkedlist or NULL if this is the last element

in3_ctx_t

The Request config.

This is generated for each request and represents the current state. it holds the state until the request is finished and must be freed afterwards.

The stuct contains following fields:

	ctx_type_t

	type

	the type of the request

	in3_t *

	client

	reference to the client

	json_ctx_t *

	request_context

	the result of the json-parser for the request.

	json_ctx_t *

	response_context

	the result of the json-parser for the response.

	char *

	error

	in case of an error this will hold the message, if not it points to NULL

	int

	len

	the number of requests

	unsigned int

	attempt

	the number of attempts

	d_token_t **

	responses

	references to the tokens representring the parsed responses

	d_token_t **

	requests

	references to the tokens representring the requests

	in3_request_config_t *

	requests_configs

	array of configs adjusted for each request.

	node_match_t *

	nodes

	

	cache_entry_t *

	cache

	optional cache-entries.

These entries will be freed when cleaning up the context.

	in3_response_t *

	raw_response

	the raw response-data, which should be verified.

	in3_ctxstruct , *

	required

	pointer to the next required context.

if not NULL the data from this context need get finished first, before being able to resume this context.

	in3_ret_t

	verification_state

	state of the verification

in3_ctx_state_t

The current state of the context.

you can check this state after each execute-call.

The enum type contains the following values:

	CTX_SUCCESS

	0

	The ctx has a verified result.

	CTX_WAITING_FOR_REQUIRED_CTX

	1

	there are required contexts, which need to be resolved first

	CTX_WAITING_FOR_RESPONSE

	2

	the response is not set yet

	CTX_ERROR

	-1

	the request has a error

ctx_new

in3_ctx_t* ctx_new(in3_t *client, char *req_data);

creates a new context.

the request data will be parsed and represented in the context. calling this function will only parse the request data, but not send anything yet.

Important: the req_data will not be cloned but used during the execution. The caller of the this function is also responsible for freeing this string afterwards.

arguments:

	in3_t *

	client

	the client-config.

	char *

	req_data

	the rpc-request as json string.

returns: in3_ctx_t *

in3_send_ctx

in3_ret_t in3_send_ctx(in3_ctx_t *ctx);

sends a previously created context to nodes and verifies it.

The execution happens within the same thread, thich mean it will be blocked until the response ha beedn received and verified. In order to handle calls asynchronously, you need to call the in3_ctx_execute function and provide the data as needed.

arguments:

	in3_ctx_t *

	ctx

	the request context.

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_ctx_execute

in3_ret_t in3_ctx_execute(in3_ctx_t *ctx);

tries to execute the context, but stops whenever data are required.

This function should be used in order to call data in a asyncronous way, since this function will not use the transport-function to actually send it.

The caller is responsible for delivering the required responses. After calling you need to check the return-value:

	IN3_WAITING : provide the required data and then call in3_ctx_execute again.

	IN3_OK : success, we have a result.

	any other status = error

Here is a example how to use this function:

 in3_ret_t in3_send_ctx(in3_ctx_t* ctx) {
 in3_ret_t ret;
 // execute the context and store the return value.
 // if the return value is 0 == IN3_OK, it was successful and we return,
 // if not, we keep on executing
 while ((ret = in3_ctx_execute(ctx))) {
 // error we stop here, because this means we got an error
 if (ret != IN3_WAITING) return ret;

 // handle subcontexts first, if they have not been finished
 while (ctx->required && in3_ctx_state(ctx->required) != CTX_SUCCESS) {
 // exxecute them, and return the status if still waiting or error
 if ((ret = in3_send_ctx(ctx->required))) return ret;

 // recheck in order to prepare the request.
 // if it is not waiting, then it we cannot do much, becaus it will an error or successfull.
 if ((ret = in3_ctx_execute(ctx)) != IN3_WAITING) return ret;
 }

 // only if there is no response yet...
 if (!ctx->raw_response) {

 // what kind of request do we need to provide?
 switch (ctx->type) {

 // RPC-request to send to the nodes
 case CT_RPC: {

 // build the request
 in3_request_t* request = in3_create_request(ctx);

 // here we use the transport, but you can also try to fetch the data in any other way.
 ctx->client->transport(request);

 // clean up
 request_free(request, ctx, false);
 break;
 }

 // this is a request to sign a transaction
 case CT_SIGN: {
 // read the data to sign from the request
 d_token_t* params = d_get(ctx->requests[0], K_PARAMS);
 // the data to sign
 bytes_t data = d_to_bytes(d_get_at(params, 0));
 // the account to sign with
 bytes_t from = d_to_bytes(d_get_at(params, 1));

 // prepare the response
 ctx->raw_response = _malloc(sizeof(in3_response_t));
 sb_init(&ctx->raw_response[0].error);
 sb_init(&ctx->raw_response[0].result);

 // data for the signature
 uint8_t sig[65];
 // use the signer to create the signature
 ret = ctx->client->signer->sign(ctx, SIGN_EC_HASH, data, from, sig);
 // if it fails we report this as error
 if (ret < 0) return ctx_set_error(ctx, ctx->raw_response->error.data, ret);
 // otherwise we simply add the raw 65 bytes to the response.
 sb_add_range(&ctx->raw_response->result, (char*) sig, 0, 65);
 }
 }
 }
 }
 // done...
 return ret;
}

arguments:

	in3_ctx_t *

	ctx

	the request context.

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_ctx_state

in3_ctx_state_t in3_ctx_state(in3_ctx_t *ctx);

returns the current state of the context.

arguments:

	in3_ctx_t *

	ctx

	the request context.

returns: in3_ctx_state_t

in3_create_request

in3_request_t* in3_create_request(in3_ctx_t *ctx);

creates a request-object, which then need to be filled with the responses.

each request object contains a array of reponse-objects. In order to set the response, you need to call

// set a succesfull response
sb_add_chars(&request->results[0].result, my_response);
// set a error response
sb_add_chars(&request->results[0].error, my_error);

arguments:

	in3_ctx_t *

	ctx

	the request context.

returns: in3_request_t *

request_free

void request_free(in3_request_t *req, const in3_ctx_t *ctx, bool response_free);

frees a previuosly allocated request.

arguments:

	in3_request_t *

	req

	the request.

	in3_ctx_tconst , *

	ctx

	the request context.

	bool

	response_free

	if true the responses will freed also, but usually this is done when the ctx is freed.

ctx_free

void ctx_free(in3_ctx_t *ctx);

frees all resources allocated during the request.

But this will not free the request string passed when creating the context!

arguments:

	in3_ctx_t *

	ctx

	the request context.

ctx_add_required

in3_ret_t ctx_add_required(in3_ctx_t *parent, in3_ctx_t *ctx);

adds a new context as a requirment.

Whenever a verifier needs more data and wants to send a request, we should create the request and add it as dependency and stop.

If the function is called again, we need to search and see if the required status is now useable.

Here is an example of how to use it:

in3_ret_t get_from_nodes(in3_ctx_t* parent, char* method, char* params, bytes_t* dst) {
 // check if the method is already existing
 in3_ctx_t* ctx = ctx_find_required(parent, method);
 if (ctx) {
 // found one - so we check if it is useable.
 switch (in3_ctx_state(ctx)) {
 // in case of an error, we report it back to the parent context
 case CTX_ERROR:
 return ctx_set_error(parent, ctx->error, IN3_EUNKNOWN);
 // if we are still waiting, we stop here and report it.
 case CTX_WAITING_FOR_REQUIRED_CTX:
 case CTX_WAITING_FOR_RESPONSE:
 return IN3_WAITING;

 // if it is useable, we can now handle the result.
 case CTX_SUCCESS: {
 d_token_t* r = d_get(ctx->responses[0], K_RESULT);
 if (r) {
 // we have a result, so write it back to the dst
 *dst = d_to_bytes(r);
 return IN3_OK;
 } else
 // or check the error and report it
 return ctx_check_response_error(parent, 0);
 }
 }
 }

 // no required context found yet, so we create one:

 // since this is a subrequest it will be freed when the parent is freed.
 // allocate memory for the request-string
 char* req = _malloc(strlen(method) + strlen(params) + 200);
 // create it
 sprintf(req, "{\"method\":\"%s\",\"jsonrpc\":\"2.0\",\"id\":1,\"params\":%s}", method, params);
 // and add the request context to the parent.
 return ctx_add_required(parent, ctx_new(parent->client, req));
}

arguments:

	in3_ctx_t *

	parent

	the current request context.

	in3_ctx_t *

	ctx

	the new request context to add.

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

ctx_find_required

in3_ctx_t* ctx_find_required(const in3_ctx_t *parent, const char *method);

searches within the required request contextes for one with the given method.

This method is used internaly to find a previously added context.

arguments:

	in3_ctx_tconst , *

	parent

	the current request context.

	const char *

	method

	the method of the rpc-request.

returns: in3_ctx_t *

ctx_remove_required

in3_ret_t ctx_remove_required(in3_ctx_t *parent, in3_ctx_t *ctx);

removes a required context after usage.

removing will also call free_ctx to free resources.

arguments:

	in3_ctx_t *

	parent

	the current request context.

	in3_ctx_t *

	ctx

	the request context to remove.

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

ctx_check_response_error

in3_ret_t ctx_check_response_error(in3_ctx_t *c, int i);

check if the response contains a error-property and reports this as error in the context.

arguments:

	in3_ctx_t *

	c

	the current request context.

	int

	i

	the index of the request to check (if this is a batch-request, otherwise 0).

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

ctx_set_error_intern

in3_ret_t ctx_set_error_intern(in3_ctx_t *c, char *msg, in3_ret_t errnumber);

sets the error message in the context.

If there is a previous error it will append it. the return value will simply be passed so you can use it like

return ctx_set_error(ctx, "wrong number of arguments", IN3_EINVAL)

arguments:

	in3_ctx_t *

	c

	the current request context.

	char *

	msg

	the error message. (This string will be copied)

	in3_ret_t

	errnumber

	the error code to return

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

ctx_get_error

in3_ret_t ctx_get_error(in3_ctx_t *ctx, int id);

determins the errorcode for the given request.

arguments:

	in3_ctx_t *

	ctx

	the current request context.

	int

	id

	the index of the request to check (if this is a batch-request, otherwise 0).

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_client_rpc_ctx

in3_ctx_t* in3_client_rpc_ctx(in3_t *c, char *method, char *params);

sends a request and returns a context used to access the result or errors.

This context MUST be freed with ctx_free(ctx) after usage to release the resources.

arguments:

	in3_t *

	c

	the clientt config.

	char *

	method

	rpc method.

	char *

	params

	params as string.

returns: in3_ctx_t *

verifier.h

Verification Context. This context is passed to the verifier.

File: src/core/client/verifier.h [https://github.com/slockit/in3-c/blob/master/src/core/client/verifier.h]

vc_err (vc,msg)

#define vc_err (vc,msg) vc_set_error(vc, NULL)

in3_verify

function to verify the result.

typedef in3_ret_t(* in3_verify) (in3_vctx_t *c)

returns: in3_ret_t(* the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_pre_handle

function which is called to fill the response before a request is triggered.

This can be used to handle requests which don’t need a node to response.

typedef in3_ret_t(* in3_pre_handle) (in3_ctx_t *ctx, in3_response_t **response)

returns: in3_ret_t(* the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_verifier_t

The stuct contains following fields:

	in3_verify

	verify

	in3_pre_handle

	pre_handle

	in3_chain_type_t

	type

	verifierstruct , *

	next

in3_get_verifier

in3_verifier_t* in3_get_verifier(in3_chain_type_t type);

returns the verifier for the given chainType

arguments:

	in3_chain_type_t

	type

returns: in3_verifier_t *

in3_register_verifier

void in3_register_verifier(in3_verifier_t *verifier);

arguments:

	in3_verifier_t *

	verifier

vc_set_error

in3_ret_t vc_set_error(in3_vctx_t *vc, char *msg);

arguments:

	in3_vctx_t *

	vc

	char *

	msg

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

bytes.h

util helper on byte arrays.

File: src/core/util/bytes.h [https://github.com/slockit/in3-c/blob/master/src/core/util/bytes.h]

bb_new ()

creates a new bytes_builder with a initial size of 32 bytes

#define bb_new () bb_newl(32)

bb_read (bb,i,vptr)

#define bb_read (_bb_,_i_,_vptr_) bb_readl((_bb_), (_i_), (_vptr_), sizeof(*_vptr_))

bb_read_next (bb,iptr,vptr)

#define bb_read_next (_bb_,_iptr_,_vptr_) do { \
 size_t _l_ = sizeof(*_vptr_); \
 bb_readl((_bb_), *(_iptr_), (_vptr_), _l_); \
 *(_iptr_) += _l_; \
 } while (0)

bb_readl (bb,i,vptr,l)

#define bb_readl (_bb_,_i_,_vptr_,_l_) memcpy((_vptr_), (_bb_)->b.data + (_i_), _l_)

b_read (b,i,vptr)

#define b_read (_b_,_i_,_vptr_) b_readl((_b_), (_i_), _vptr_, sizeof(*_vptr_))

b_readl (b,i,vptr,l)

#define b_readl (_b_,_i_,_vptr_,_l_) memcpy(_vptr_, (_b_)->data + (_i_), (_l_))

address_t

pointer to a 20byte address

typedef uint8_t address_t[20]

bytes32_t

pointer to a 32byte word

typedef uint8_t bytes32_t[32]

wlen_t

number of bytes within a word (min 1byte but usually a uint)

typedef uint_fast8_t wlen_t

bytes_t

a byte array

The stuct contains following fields:

	uint8_t *

	data

	the byte-data

	uint32_t

	len

	the length of the array ion bytes

b_new

bytes_t* b_new(const char *data, int len);

allocates a new byte array with 0 filled

arguments:

	const char *

	data

	int

	len

returns: bytes_t *

b_print

void b_print(const bytes_t *a);

prints a the bytes as hex to stdout

arguments:

	bytes_tconst , *

	a

ba_print

void ba_print(const uint8_t *a, size_t l);

prints a the bytes as hex to stdout

arguments:

	const uint8_t *

	a

	size_t

	l

b_cmp

int b_cmp(const bytes_t *a, const bytes_t *b);

compares 2 byte arrays and returns 1 for equal and 0 for not equal

arguments:

	bytes_tconst , *

	a

	bytes_tconst , *

	b

returns: int

bytes_cmp

int bytes_cmp(const bytes_t a, const bytes_t b);

compares 2 byte arrays and returns 1 for equal and 0 for not equal

arguments:

	bytes_tconst

	a

	bytes_tconst

	b

returns: int

b_free

void b_free(bytes_t *a);

frees the data

arguments:

	bytes_t *

	a

b_dup

bytes_t* b_dup(const bytes_t *a);

clones a byte array

arguments:

	bytes_tconst , *

	a

returns: bytes_t *

b_read_byte

uint8_t b_read_byte(bytes_t *b, size_t *pos);

reads a byte on the current position and updates the pos afterwards.

arguments:

	bytes_t *

	b

	size_t *

	pos

returns: uint8_t

b_read_int

uint32_t b_read_int(bytes_t *b, size_t *pos);

reads a integer on the current position and updates the pos afterwards.

arguments:

	bytes_t *

	b

	size_t *

	pos

returns: uint32_t

b_read_long

uint64_t b_read_long(bytes_t *b, size_t *pos);

reads a long on the current position and updates the pos afterwards.

arguments:

	bytes_t *

	b

	size_t *

	pos

returns: uint64_t

b_new_chars

char* b_new_chars(bytes_t *b, size_t *pos);

creates a new string (needs to be freed) on the current position and updates the pos afterwards.

arguments:

	bytes_t *

	b

	size_t *

	pos

returns: char *

b_new_fixed_bytes

bytes_t* b_new_fixed_bytes(bytes_t *b, size_t *pos, int len);

reads bytes with a fixed length on the current position and updates the pos afterwards.

arguments:

	bytes_t *

	b

	size_t *

	pos

	int

	len

returns: bytes_t *

bb_newl

bytes_builder_t* bb_newl(size_t l);

creates a new bytes_builder

arguments:

	size_t

	l

returns: bytes_builder_t *

bb_free

void bb_free(bytes_builder_t *bb);

frees a bytebuilder and its content.

arguments:

	bytes_builder_t *

	bb

bb_check_size

int bb_check_size(bytes_builder_t *bb, size_t len);

internal helper to increase the buffer if needed

arguments:

	bytes_builder_t *

	bb

	size_t

	len

returns: int

bb_write_chars

void bb_write_chars(bytes_builder_t *bb, char *c, int len);

writes a string to the builder.

arguments:

	bytes_builder_t *

	bb

	char *

	c

	int

	len

bb_write_dyn_bytes

void bb_write_dyn_bytes(bytes_builder_t *bb, const bytes_t *src);

writes bytes to the builder with a prefixed length.

arguments:

	bytes_builder_t *

	bb

	bytes_tconst , *

	src

bb_write_fixed_bytes

void bb_write_fixed_bytes(bytes_builder_t *bb, const bytes_t *src);

writes fixed bytes to the builder.

arguments:

	bytes_builder_t *

	bb

	bytes_tconst , *

	src

bb_write_int

void bb_write_int(bytes_builder_t *bb, uint32_t val);

writes a ineteger to the builder.

arguments:

	bytes_builder_t *

	bb

	uint32_t

	val

bb_write_long

void bb_write_long(bytes_builder_t *bb, uint64_t val);

writes s long to the builder.

arguments:

	bytes_builder_t *

	bb

	uint64_t

	val

bb_write_long_be

void bb_write_long_be(bytes_builder_t *bb, uint64_t val, int len);

writes any integer value with the given length of bytes

arguments:

	bytes_builder_t *

	bb

	uint64_t

	val

	int

	len

bb_write_byte

void bb_write_byte(bytes_builder_t *bb, uint8_t val);

writes a single byte to the builder.

arguments:

	bytes_builder_t *

	bb

	uint8_t

	val

bb_write_raw_bytes

void bb_write_raw_bytes(bytes_builder_t *bb, void *ptr, size_t len);

writes the bytes to the builder.

arguments:

	bytes_builder_t *

	bb

	void *

	ptr

	size_t

	len

bb_clear

void bb_clear(bytes_builder_t *bb);

resets the content of the builder.

arguments:

	bytes_builder_t *

	bb

bb_replace

void bb_replace(bytes_builder_t *bb, int offset, int delete_len, uint8_t *data, int data_len);

replaces or deletes a part of the content.

arguments:

	bytes_builder_t *

	bb

	int

	offset

	int

	delete_len

	uint8_t *

	data

	int

	data_len

bb_move_to_bytes

bytes_t* bb_move_to_bytes(bytes_builder_t *bb);

frees the builder and moves the content in a newly created bytes struct (which needs to be freed later).

arguments:

	bytes_builder_t *

	bb

returns: bytes_t *

bb_read_long

uint64_t bb_read_long(bytes_builder_t *bb, size_t *i);

reads a long from the builder

arguments:

	bytes_builder_t *

	bb

	size_t *

	i

returns: uint64_t

bb_read_int

uint32_t bb_read_int(bytes_builder_t *bb, size_t *i);

reads a int from the builder

arguments:

	bytes_builder_t *

	bb

	size_t *

	i

returns: uint32_t

bytes

static bytes_t bytes(uint8_t *a, uint32_t len);

converts the given bytes to a bytes struct

arguments:

	uint8_t *

	a

	uint32_t

	len

returns: bytes_t

cloned_bytes

bytes_t cloned_bytes(bytes_t data);

cloned the passed data

arguments:

	bytes_t

	data

returns: bytes_t

b_optimize_len

static void b_optimize_len(bytes_t *b);

< changed the data and len to remove leading 0-bytes

arguments:

	bytes_t *

	b

data.h

json-parser.

The parser can read from :

	json

	bin

When reading from json all ‘0x’… values will be stored as bytes_t. If the value is lower than 0xFFFFFFF, it is converted as integer.

File: src/core/util/data.h [https://github.com/slockit/in3-c/blob/master/src/core/util/data.h]

DATA_DEPTH_MAX

the max DEPTH of the JSON-data allowed.

It will throw an error if reached.

#define DATA_DEPTH_MAX 11

printX

#define printX printf

fprintX

#define fprintX fprintf

snprintX

#define snprintX snprintf

vprintX

#define vprintX vprintf

d_key_t

typedef uint16_t d_key_t

d_token_t

a token holding any kind of value.

use d_type, d_len or the cast-function to get the value.

The stuct contains following fields:

	uint8_t *

	data

	the byte or string-data

	uint32_t

	len

	the length of the content (or number of properties) depending + type.

	d_key_t

	key

	the key of the property.

str_range_t

internal type used to represent the a range within a string.

The stuct contains following fields:

	char *

	data

	pointer to the start of the string

	size_t

	len

	len of the characters

json_ctx_t

parser for json or binary-data.

it needs to freed after usage.

The stuct contains following fields:

	d_token_t *

	result

	the list of all tokens.

the first token is the main-token as returned by the parser.

	char *

	c

	

	size_t

	allocated

	pointer to the src-data

	size_t

	len

	amount of tokens allocated result

	size_t

	depth

	number of tokens in result

d_iterator_t

iterator over elements of a array opf object.

usage:

for (d_iterator_t iter = d_iter(parent); iter.left ; d_iter_next(&iter)) {
 uint32_t val = d_int(iter.token);
}

The stuct contains following fields:

	d_token_t *

	token

	current token

	int

	left

	number of result left

d_to_bytes

bytes_t d_to_bytes(d_token_t *item);

returns the byte-representation of token.

In case of a number it is returned as bigendian. booleans as 0x01 or 0x00 and NULL as 0x. Objects or arrays will return 0x.

arguments:

	d_token_t *

	item

returns: bytes_t

d_bytes_to

int d_bytes_to(d_token_t *item, uint8_t *dst, const int max);

writes the byte-representation to the dst.

details see d_to_bytes.

arguments:

	d_token_t *

	item

	uint8_t *

	dst

	const int

	max

returns: int

d_bytes

bytes_t* d_bytes(const d_token_t *item);

returns the value as bytes (Carefully, make sure that the token is a bytes-type!)

arguments:

	d_token_tconst , *

	item

returns: bytes_t *

d_bytesl

bytes_t* d_bytesl(d_token_t *item, size_t l);

returns the value as bytes with length l (may reallocates)

arguments:

	d_token_t *

	item

	size_t

	l

returns: bytes_t *

d_string

char* d_string(const d_token_t *item);

converts the value as string.

Make sure the type is string!

arguments:

	d_token_tconst , *

	item

returns: char *

d_int

int32_t d_int(const d_token_t *item);

returns the value as integer.

only if type is integer

arguments:

	d_token_tconst , *

	item

returns: int32_t

d_intd

int32_t d_intd(const d_token_t *item, const uint32_t def_val);

returns the value as integer or if NULL the default.

only if type is integer

arguments:

	d_token_tconst , *

	item

	const uint32_t

	def_val

returns: int32_t

d_long

uint64_t d_long(const d_token_t *item);

returns the value as long.

only if type is integer or bytes, but short enough

arguments:

	d_token_tconst , *

	item

returns: uint64_t

d_longd

uint64_t d_longd(const d_token_t *item, const uint64_t def_val);

returns the value as long or if NULL the default.

only if type is integer or bytes, but short enough

arguments:

	d_token_tconst , *

	item

	const uint64_t

	def_val

returns: uint64_t

d_create_bytes_vec

bytes_t** d_create_bytes_vec(const d_token_t *arr);

arguments:

	d_token_tconst , *

	arr

returns: bytes_t **

d_type

static d_type_t d_type(const d_token_t *item);

creates a array of bytes from JOSN-array

type of the token

arguments:

	d_token_tconst , *

	item

returns: d_type_t

d_len

static int d_len(const d_token_t *item);

number of elements in the token (only for object or array, other will return 0)

arguments:

	d_token_tconst , *

	item

returns: int

d_eq

bool d_eq(const d_token_t *a, const d_token_t *b);

compares 2 token and if the value is equal

arguments:

	d_token_tconst , *

	a

	d_token_tconst , *

	b

returns: bool

keyn

d_key_t keyn(const char *c, const size_t len);

generates the keyhash for the given stringrange as defined by len

arguments:

	const char *

	c

	const size_t

	len

returns: d_key_t

d_get

d_token_t* d_get(d_token_t *item, const uint16_t key);

returns the token with the given propertyname (only if item is a object)

arguments:

	d_token_t *

	item

	const uint16_t

	key

returns: d_token_t *

d_get_or

d_token_t* d_get_or(d_token_t *item, const uint16_t key1, const uint16_t key2);

returns the token with the given propertyname or if not found, tries the other.

(only if item is a object)

arguments:

	d_token_t *

	item

	const uint16_t

	key1

	const uint16_t

	key2

returns: d_token_t *

d_get_at

d_token_t* d_get_at(d_token_t *item, const uint32_t index);

returns the token of an array with the given index

arguments:

	d_token_t *

	item

	const uint32_t

	index

returns: d_token_t *

d_next

d_token_t* d_next(d_token_t *item);

returns the next sibling of an array or object

arguments:

	d_token_t *

	item

returns: d_token_t *

d_serialize_binary

void d_serialize_binary(bytes_builder_t *bb, d_token_t *t);

write the token as binary data into the builder

arguments:

	bytes_builder_t *

	bb

	d_token_t *

	t

parse_binary

json_ctx_t* parse_binary(const bytes_t *data);

parses the data and returns the context with the token, which needs to be freed after usage!

arguments:

	bytes_tconst , *

	data

returns: json_ctx_t *

parse_binary_str

json_ctx_t* parse_binary_str(const char *data, int len);

parses the data and returns the context with the token, which needs to be freed after usage!

arguments:

	const char *

	data

	int

	len

returns: json_ctx_t *

parse_json

json_ctx_t* parse_json(char *js);

parses json-data, which needs to be freed after usage!

arguments:

	char *

	js

returns: json_ctx_t *

json_free

void json_free(json_ctx_t *parser_ctx);

frees the parse-context after usage

arguments:

	json_ctx_t *

	parser_ctx

d_to_json

str_range_t d_to_json(const d_token_t *item);

returns the string for a object or array.

This only works for json as string. For binary it will not work!

arguments:

	d_token_tconst , *

	item

returns: str_range_t

d_create_json

char* d_create_json(d_token_t *item);

creates a json-string.

It does not work for objects if the parsed data were binary!

arguments:

	d_token_t *

	item

returns: char *

json_create

json_ctx_t* json_create();

returns: json_ctx_t *

json_create_null

d_token_t* json_create_null(json_ctx_t *jp);

arguments:

	json_ctx_t *

	jp

returns: d_token_t *

json_create_bool

d_token_t* json_create_bool(json_ctx_t *jp, bool value);

arguments:

	json_ctx_t *

	jp

	bool

	value

returns: d_token_t *

json_create_int

d_token_t* json_create_int(json_ctx_t *jp, uint64_t value);

arguments:

	json_ctx_t *

	jp

	uint64_t

	value

returns: d_token_t *

json_create_string

d_token_t* json_create_string(json_ctx_t *jp, char *value);

arguments:

	json_ctx_t *

	jp

	char *

	value

returns: d_token_t *

json_create_bytes

d_token_t* json_create_bytes(json_ctx_t *jp, bytes_t value);

arguments:

	json_ctx_t *

	jp

	bytes_t

	value

returns: d_token_t *

json_create_object

d_token_t* json_create_object(json_ctx_t *jp);

arguments:

	json_ctx_t *

	jp

returns: d_token_t *

json_create_array

d_token_t* json_create_array(json_ctx_t *jp);

arguments:

	json_ctx_t *

	jp

returns: d_token_t *

json_object_add_prop

d_token_t* json_object_add_prop(d_token_t *object, d_key_t key, d_token_t *value);

arguments:

	d_token_t *

	object

	d_key_t

	key

	d_token_t *

	value

returns: d_token_t *

json_array_add_value

d_token_t* json_array_add_value(d_token_t *object, d_token_t *value);

arguments:

	d_token_t *

	object

	d_token_t *

	value

returns: d_token_t *

d_get_keystr

char* d_get_keystr(d_key_t k);

returns the string for a key.

This only works track_keynames was activated before!

arguments:

	d_key_t

	k

returns: char *

d_track_keynames

void d_track_keynames(uint8_t v);

activates the keyname-cache, which stores the string for the keys when parsing.

arguments:

	uint8_t

	v

d_clear_keynames

void d_clear_keynames();

delete the cached keynames

key

static d_key_t key(const char *c);

arguments:

	const char *

	c

returns: d_key_t

d_get_stringk

static char* d_get_stringk(d_token_t *r, d_key_t k);

reads token of a property as string.

arguments:

	d_token_t *

	r

	d_key_t

	k

returns: char *

d_get_string

static char* d_get_string(d_token_t *r, char *k);

reads token of a property as string.

arguments:

	d_token_t *

	r

	char *

	k

returns: char *

d_get_string_at

static char* d_get_string_at(d_token_t *r, uint32_t pos);

reads string at given pos of an array.

arguments:

	d_token_t *

	r

	uint32_t

	pos

returns: char *

d_get_intk

static int32_t d_get_intk(d_token_t *r, d_key_t k);

reads token of a property as int.

arguments:

	d_token_t *

	r

	d_key_t

	k

returns: int32_t

d_get_intkd

static int32_t d_get_intkd(d_token_t *r, d_key_t k, uint32_t d);

reads token of a property as int.

arguments:

	d_token_t *

	r

	d_key_t

	k

	uint32_t

	d

returns: int32_t

d_get_int

static int32_t d_get_int(d_token_t *r, char *k);

reads token of a property as int.

arguments:

	d_token_t *

	r

	char *

	k

returns: int32_t

d_get_int_at

static int32_t d_get_int_at(d_token_t *r, uint32_t pos);

reads a int at given pos of an array.

arguments:

	d_token_t *

	r

	uint32_t

	pos

returns: int32_t

d_get_longk

static uint64_t d_get_longk(d_token_t *r, d_key_t k);

reads token of a property as long.

arguments:

	d_token_t *

	r

	d_key_t

	k

returns: uint64_t

d_get_longkd

static uint64_t d_get_longkd(d_token_t *r, d_key_t k, uint64_t d);

reads token of a property as long.

arguments:

	d_token_t *

	r

	d_key_t

	k

	uint64_t

	d

returns: uint64_t

d_get_long

static uint64_t d_get_long(d_token_t *r, char *k);

reads token of a property as long.

arguments:

	d_token_t *

	r

	char *

	k

returns: uint64_t

d_get_long_at

static uint64_t d_get_long_at(d_token_t *r, uint32_t pos);

reads long at given pos of an array.

arguments:

	d_token_t *

	r

	uint32_t

	pos

returns: uint64_t

d_get_bytesk

static bytes_t* d_get_bytesk(d_token_t *r, d_key_t k);

reads token of a property as bytes.

arguments:

	d_token_t *

	r

	d_key_t

	k

returns: bytes_t *

d_get_bytes

static bytes_t* d_get_bytes(d_token_t *r, char *k);

reads token of a property as bytes.

arguments:

	d_token_t *

	r

	char *

	k

returns: bytes_t *

d_get_bytes_at

static bytes_t* d_get_bytes_at(d_token_t *r, uint32_t pos);

reads bytes at given pos of an array.

arguments:

	d_token_t *

	r

	uint32_t

	pos

returns: bytes_t *

d_is_binary_ctx

static bool d_is_binary_ctx(json_ctx_t *ctx);

check if the parser context was created from binary data.

arguments:

	json_ctx_t *

	ctx

returns: bool

d_get_byteskl

bytes_t* d_get_byteskl(d_token_t *r, d_key_t k, uint32_t minl);

arguments:

	d_token_t *

	r

	d_key_t

	k

	uint32_t

	minl

returns: bytes_t *

d_getl

d_token_t* d_getl(d_token_t *item, uint16_t k, uint32_t minl);

arguments:

	d_token_t *

	item

	uint16_t

	k

	uint32_t

	minl

returns: d_token_t *

d_iter

static d_iterator_t d_iter(d_token_t *parent);

creates a iterator for a object or array

arguments:

	d_token_t *

	parent

returns: d_iterator_t

d_iter_next

static bool d_iter_next(d_iterator_t *const iter);

fetched the next token an returns a boolean indicating whther there is a next or not.

arguments:

	d_iterator_t *const

	iter

returns: bool

debug.h

logs debug data only if the DEBUG-flag is set.

File: src/core/util/debug.h [https://github.com/slockit/in3-c/blob/master/src/core/util/debug.h]

IN3_EXPORT_TEST

#define IN3_EXPORT_TEST static

dbg_log (msg,…)

logs a debug-message including file and linenumber

dbg_log_raw (msg,…)

logs a debug-message without the filename

msg_dump

void msg_dump(const char *s, const unsigned char *data, unsigned len);

dumps the given data as hex coded bytes to stdout

arguments:

	const char *

	s

	const unsigned char *

	data

	unsigned

	len

error.h

defines the return-values of a function call.

File: src/core/util/error.h [https://github.com/slockit/in3-c/blob/master/src/core/util/error.h]

DEPRECATED

depreacted-attribute

#define DEPRECATED __attribute__((deprecated))

OPTIONAL_T (t)

Optional type similar to C++ std::optional Optional types must be defined prior to usage (e.g.

DEFINE_OPTIONAL_T(int)) Use OPTIONAL_T_UNDEFINED(t) & OPTIONAL_T_VALUE(t, v) for easy initialization (rvalues) Note: Defining optional types for pointers is ill-formed by definition. This is because redundant

#define OPTIONAL_T (t) opt_##t

DEFINE_OPTIONAL_T (t)

Optional types must be defined prior to usage (e.g.

DEFINE_OPTIONAL_T(int)) Use OPTIONAL_T_UNDEFINED(t) & OPTIONAL_T_VALUE(t, v) for easy initialization (rvalues)

#define DEFINE_OPTIONAL_T (t) typedef struct { \
 t value; \
 bool defined; \
 } OPTIONAL_T(t)

OPTIONAL_T_UNDEFINED (t)

marks a used value as undefined.

#define OPTIONAL_T_UNDEFINED (t) ((OPTIONAL_T(t)){.defined = false})

OPTIONAL_T_VALUE (t,v)

sets the value of an optional type.

#define OPTIONAL_T_VALUE (t,v) ((OPTIONAL_T(t)){.value = v, .defined = true})

in3_errmsg

char* in3_errmsg(in3_ret_t err);

converts a error code into a string.

These strings are constants and do not need to be freed.

arguments:

	in3_ret_t

	err

	the error code

returns: char *

scache.h

util helper on byte arrays.

File: src/core/util/scache.h [https://github.com/slockit/in3-c/blob/master/src/core/util/scache.h]

cache_entry_t

represents a single cache entry in a linked list.

These are used within a request context to cache values and automaticly free them.

The stuct contains following fields:

	bytes_t

	key

	an optional key of the entry

	bytes_t

	value

	the value

	uint8_t

	buffer

	the buffer is used to store extra data, which will be cleaned when freed.

	bool

	must_free

	if true, the cache-entry will be freed when the request context is cleaned up.

	cache_entrystruct , *

	next

	pointer to the next entry.

in3_cache_get_entry

bytes_t* in3_cache_get_entry(cache_entry_t *cache, bytes_t *key);

get the entry for a given key.

arguments:

	cache_entry_t *

	cache

	the root entry of the linked list.

	bytes_t *

	key

	the key to compare with

returns: bytes_t *

in3_cache_add_entry

cache_entry_t* in3_cache_add_entry(cache_entry_t **cache, bytes_t key, bytes_t value);

adds an entry to the linked list.

arguments:

	cache_entry_t **

	cache

	the root entry of the linked list.

	bytes_t

	key

	an optional key

	bytes_t

	value

	the value of the entry

returns: cache_entry_t *

in3_cache_free

void in3_cache_free(cache_entry_t *cache);

clears all entries in the linked list.

arguments:

	cache_entry_t *

	cache

	the root entry of the linked list.

in3_cache_add_ptr

static cache_entry_t* in3_cache_add_ptr(cache_entry_t **cache, void *ptr);

adds a pointer, which should be freed when the context is freed.

arguments:

	cache_entry_t **

	cache

	the root entry of the linked list.

	void *

	ptr

	pointer to memory which shold be freed.

returns: cache_entry_t *

stringbuilder.h

simple string buffer used to dynamicly add content.

File: src/core/util/stringbuilder.h [https://github.com/slockit/in3-c/blob/master/src/core/util/stringbuilder.h]

sb_add_hexuint (sb,i)

shortcut macro for adding a uint to the stringbuilder using sizeof(i) to automaticly determine the size

#define sb_add_hexuint (sb,i) sb_add_hexuint_l(sb, i, sizeof(i))

sb_t

string build struct, which is able to hold and modify a growing string.

The stuct contains following fields:

	char *

	data

	the current string (null terminated)

	size_t

	allocted

	number of bytes currently allocated

	size_t

	len

	the current length of the string

sb_new

sb_t* sb_new(const char *chars);

creates a new stringbuilder and copies the inital characters into it.

arguments:

	const char *

	chars

returns: sb_t *

sb_init

sb_t* sb_init(sb_t *sb);

initializes a stringbuilder by allocating memory.

arguments:

	sb_t *

	sb

returns: sb_t *

sb_free

void sb_free(sb_t *sb);

frees all resources of the stringbuilder

arguments:

	sb_t *

	sb

sb_add_char

sb_t* sb_add_char(sb_t *sb, char c);

add a single character

arguments:

	sb_t *

	sb

	char

	c

returns: sb_t *

sb_add_chars

sb_t* sb_add_chars(sb_t *sb, const char *chars);

adds a string

arguments:

	sb_t *

	sb

	const char *

	chars

returns: sb_t *

sb_add_range

sb_t* sb_add_range(sb_t *sb, const char *chars, int start, int len);

add a string range

arguments:

	sb_t *

	sb

	const char *

	chars

	int

	start

	int

	len

returns: sb_t *

sb_add_key_value

sb_t* sb_add_key_value(sb_t *sb, const char *key, const char *value, int value_len, bool as_string);

adds a value with an optional key.

if as_string is true the value will be quoted.

arguments:

	sb_t *

	sb

	const char *

	key

	const char *

	value

	int

	value_len

	bool

	as_string

returns: sb_t *

sb_add_bytes

sb_t* sb_add_bytes(sb_t *sb, const char *prefix, const bytes_t *bytes, int len, bool as_array);

add bytes as 0x-prefixed hexcoded string (including an optional prefix), if len>1 is passed bytes maybe an array (if as_array==true)

arguments:

	sb_t *

	sb

	const char *

	prefix

	bytes_tconst , *

	bytes

	int

	len

	bool

	as_array

returns: sb_t *

sb_add_hexuint_l

sb_t* sb_add_hexuint_l(sb_t *sb, uintmax_t uint, size_t l);

add a integer value as hexcoded, 0x-prefixed string

Other types not supported

arguments:

	sb_t *

	sb

	uintmax_t

	uint

	size_t

	l

returns: sb_t *

utils.h

utility functions.

File: src/core/util/utils.h [https://github.com/slockit/in3-c/blob/master/src/core/util/utils.h]

SWAP (a,b)

simple swap macro for integral types

#define SWAP (a,b) { \
 void* p = a; \
 a = b; \
 b = p; \
 }

min (a,b)

simple min macro for interagl types

#define min (a,b) ((a) < (b) ? (a) : (b))

max (a,b)

simple max macro for interagl types

#define max (a,b) ((a) > (b) ? (a) : (b))

IS_APPROX (n1,n2,err)

Check if n1 & n2 are at max err apart Expects n1 & n2 to be integral types.

#define IS_APPROX (n1,n2,err) ((n1 > n2) ? ((n1 - n2) <= err) : ((n2 - n1) <= err))

optimize_len (a,l)

changes to pointer (a) and it length (l) to remove leading 0 bytes.

#define optimize_len (a,l) while (l > 1 && *a == 0) { \
 l--; \
 a++; \
 }

TRY (exp)

executes the expression and expects the return value to be a int indicating the error.

if the return value is negative it will stop and return this value otherwise continue.

#define TRY (exp) { \
 int _r = (exp); \
 if (_r < 0) return _r; \
 }

TRY_SET (var,exp)

executes the expression and expects the return value to be a int indicating the error.

the return value will be set to a existing variable (var). if the return value is negative it will stop and return this value otherwise continue.

#define TRY_SET (var,exp) { \
 var = (exp); \
 if (var < 0) return var; \
 }

TRY_GOTO (exp)

executes the expression and expects the return value to be a int indicating the error.

if the return value is negative it will stop and jump (goto) to a marked position “clean”. it also expects a previously declared variable “in3_ret_t res”.

#define TRY_GOTO (exp) { \
 res = (exp); \
 if (res < 0) goto clean; \
 }

bytes_to_long

uint64_t bytes_to_long(const uint8_t *data, int len);

converts the bytes to a unsigned long (at least the last max len bytes)

arguments:

	const uint8_t *

	data

	int

	len

returns: uint64_t

bytes_to_int

static uint32_t bytes_to_int(const uint8_t *data, int len);

converts the bytes to a unsigned int (at least the last max len bytes)

arguments:

	const uint8_t *

	data

	int

	len

returns: uint32_t

char_to_long

uint64_t char_to_long(const char *a, int l);

converts a character into a uint64_t

arguments:

	const char *

	a

	int

	l

returns: uint64_t

hexchar_to_int

uint8_t hexchar_to_int(char c);

converts a hexchar to byte (4bit)

arguments:

	char

	c

returns: uint8_t

u64_to_str

const unsigned char* u64_to_str(uint64_t value, char *pBuf, int szBuf);

converts a uint64_t to string (char*); buffer-size min.

21 bytes

arguments:

	uint64_t

	value

	char *

	pBuf

	int

	szBuf

returns: const unsigned char *

hex_to_bytes

int hex_to_bytes(const char *hexdata, int hexlen, uint8_t *out, int outlen);

convert a c hex string to a byte array storing it into an existing buffer.

arguments:

	const char *

	hexdata

	int

	hexlen

	uint8_t *

	out

	int

	outlen

returns: int

hex_to_new_bytes

bytes_t* hex_to_new_bytes(const char *buf, int len);

convert a c string to a byte array creating a new buffer

arguments:

	const char *

	buf

	int

	len

returns: bytes_t *

bytes_to_hex

int bytes_to_hex(const uint8_t *buffer, int len, char *out);

convefrts a bytes into hex

arguments:

	const uint8_t *

	buffer

	int

	len

	char *

	out

returns: int

sha3

bytes_t* sha3(const bytes_t *data);

hashes the bytes and creates a new bytes_t

arguments:

	bytes_tconst , *

	data

returns: bytes_t *

sha3_to

int sha3_to(bytes_t *data, void *dst);

writes 32 bytes to the pointer.

arguments:

	bytes_t *

	data

	void *

	dst

returns: int

long_to_bytes

void long_to_bytes(uint64_t val, uint8_t *dst);

converts a long to 8 bytes

arguments:

	uint64_t

	val

	uint8_t *

	dst

int_to_bytes

void int_to_bytes(uint32_t val, uint8_t *dst);

converts a int to 4 bytes

arguments:

	uint32_t

	val

	uint8_t *

	dst

_strdupn

char* _strdupn(const char *src, int len);

duplicate the string

arguments:

	const char *

	src

	int

	len

returns: char *

min_bytes_len

int min_bytes_len(uint64_t val);

calculate the min number of byte to represents the len

arguments:

	uint64_t

	val

returns: int

uint256_set

void uint256_set(const uint8_t *src, wlen_t src_len, bytes32_t dst);

sets a variable value to 32byte word.

arguments:

	const uint8_t *

	src

	wlen_t

	src_len

	bytes32_t

	dst

str_replace

char* str_replace(const char *orig, const char *rep, const char *with);

replaces a string and returns a copy.

arguments:

	const char *

	orig

	const char *

	rep

	const char *

	with

returns: char *

str_replace_pos

char* str_replace_pos(const char *orig, size_t pos, size_t len, const char *rep);

replaces a string at the given position.

arguments:

	const char *

	orig

	size_t

	pos

	size_t

	len

	const char *

	rep

returns: char *

str_find

char* str_find(const char *haystack, const char *needle);

lightweight strstr() replacements

arguments:

	const char *

	haystack

	const char *

	needle

returns: char *

current_ms

uint64_t current_ms();

current timestamp in ms.

returns: uint64_t

memiszero

static bool memiszero(uint8_t *ptr, size_t l);

arguments:

	uint8_t *

	ptr

	size_t

	l

returns: bool

Module transport/curl

in3_curl.h

transport-handler using libcurl.

File: src/transport/curl/in3_curl.h [https://github.com/slockit/in3-c/blob/master/src/transport/curl/in3_curl.h]

send_curl

in3_ret_t send_curl(in3_request_t *req);

a transport function using curl.

You can use it by setting the transport-function-pointer in the in3_t->transport to this function:

#include <in3/in3_curl.h>
...
c->transport = send_curl;

arguments:

	in3_request_t *

	req

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_register_curl

void in3_register_curl();

registers curl as a default transport.

Module transport/http

in3_http.h

transport-handler using simple http.

File: src/transport/http/in3_http.h [https://github.com/slockit/in3-c/blob/master/src/transport/http/in3_http.h]

send_http

in3_ret_t send_http(in3_request_t *req);

a very simple transport function, which allows to send http-requests without a dependency to curl.

Here each request will be transformed to http instead of https.

You can use it by setting the transport-function-pointer in the in3_t->transport to this function:

#include <in3/in3_http.h>
...
c->transport = send_http;

arguments:

	in3_request_t *

	req

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

Module verifier/eth1/basic

eth_basic.h

Ethereum Nanon verification.

File: src/verifier/eth1/basic/eth_basic.h [https://github.com/slockit/in3-c/blob/master/src/verifier/eth1/basic/eth_basic.h]

in3_verify_eth_basic

in3_ret_t in3_verify_eth_basic(in3_vctx_t *v);

entry-function to execute the verification context.

arguments:

	in3_vctx_t *

	v

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_verify_tx_values

in3_ret_t eth_verify_tx_values(in3_vctx_t *vc, d_token_t *tx, bytes_t *raw);

verifies internal tx-values.

arguments:

	in3_vctx_t *

	vc

	d_token_t *

	tx

	bytes_t *

	raw

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_verify_eth_getTransaction

in3_ret_t eth_verify_eth_getTransaction(in3_vctx_t *vc, bytes_t *tx_hash);

verifies a transaction.

arguments:

	in3_vctx_t *

	vc

	bytes_t *

	tx_hash

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_verify_eth_getTransactionByBlock

in3_ret_t eth_verify_eth_getTransactionByBlock(in3_vctx_t *vc, d_token_t *blk, uint32_t tx_idx);

verifies a transaction by block hash/number and id.

arguments:

	in3_vctx_t *

	vc

	d_token_t *

	blk

	uint32_t

	tx_idx

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_verify_account_proof

in3_ret_t eth_verify_account_proof(in3_vctx_t *vc);

verify account-proofs

arguments:

	in3_vctx_t *

	vc

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_verify_eth_getBlock

in3_ret_t eth_verify_eth_getBlock(in3_vctx_t *vc, bytes_t *block_hash, uint64_t blockNumber);

verifies a block

arguments:

	in3_vctx_t *

	vc

	bytes_t *

	block_hash

	uint64_t

	blockNumber

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_register_eth_basic

void in3_register_eth_basic();

this function should only be called once and will register the eth-nano verifier.

eth_verify_eth_getLog

in3_ret_t eth_verify_eth_getLog(in3_vctx_t *vc, int l_logs);

verify logs

arguments:

	in3_vctx_t *

	vc

	int

	l_logs

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_handle_intern

in3_ret_t eth_handle_intern(in3_ctx_t *ctx, in3_response_t **response);

this is called before a request is send

arguments:

	in3_ctx_t *

	ctx

	in3_response_t **

	response

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

signer.h

Ethereum Nano verification.

File: src/verifier/eth1/basic/signer.h [https://github.com/slockit/in3-c/blob/master/src/verifier/eth1/basic/signer.h]

eth_set_pk_signer

in3_ret_t eth_set_pk_signer(in3_t *in3, bytes32_t pk);

simply signer with one private key.

since the pk pointting to the 32 byte private key is not cloned, please make sure, you manage memory allocation correctly!

simply signer with one private key.

arguments:

	in3_t *

	in3

	bytes32_t

	pk

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

trie.h

Patricia Merkle Tree Imnpl

File: src/verifier/eth1/basic/trie.h [https://github.com/slockit/in3-c/blob/master/src/verifier/eth1/basic/trie.h]

in3_hasher_t

hash-function

typedef void(* in3_hasher_t) (bytes_t *src, uint8_t *dst)

in3_codec_add_t

codec to organize the encoding of the nodes

typedef void(* in3_codec_add_t) (bytes_builder_t *bb, bytes_t *val)

in3_codec_finish_t

typedef void(* in3_codec_finish_t) (bytes_builder_t *bb, bytes_t *dst)

in3_codec_decode_size_t

typedef int(* in3_codec_decode_size_t) (bytes_t *src)

returns: int(*

in3_codec_decode_index_t

typedef int(* in3_codec_decode_index_t) (bytes_t *src, int index, bytes_t *dst)

returns: int(*

trie_node_t

single node in the merkle trie.

The stuct contains following fields:

	uint8_t

	hash

	the hash of the node

	bytes_t

	data

	the raw data

	bytes_t

	items

	the data as list

	uint8_t

	own_memory

	if true this is a embedded node with own memory

	trie_node_type_t

	type

	type of the node

	trie_nodestruct , *

	next

	used as linked list

trie_codec_t

the codec used to encode nodes.

The stuct contains following fields:

	in3_codec_add_t

	encode_add

	in3_codec_finish_t

	encode_finish

	in3_codec_decode_size_t

	decode_size

	in3_codec_decode_index_t

	decode_item

trie_t

a merkle trie implementation.

This is a Patricia Merkle Tree.

The stuct contains following fields:

	in3_hasher_t

	hasher

	hash-function.

	trie_codec_t *

	codec

	encoding of the nocds.

	bytes32_t

	root

	The root-hash.

	trie_node_t *

	nodes

	linked list of containes nodes

trie_new

trie_t* trie_new();

creates a new Merkle Trie.

returns: trie_t *

trie_free

void trie_free(trie_t *val);

frees all resources of the trie.

arguments:

	trie_t *

	val

trie_set_value

void trie_set_value(trie_t *t, bytes_t *key, bytes_t *value);

sets a value in the trie.

The root-hash will be updated automaticly.

arguments:

	trie_t *

	t

	bytes_t *

	key

	bytes_t *

	value

Module verifier/eth1/evm

big.h

Ethereum Nanon verification.

File: src/verifier/eth1/evm/big.h [https://github.com/slockit/in3-c/blob/master/src/verifier/eth1/evm/big.h]

big_is_zero

uint8_t big_is_zero(uint8_t *data, wlen_t l);

arguments:

	uint8_t *

	data

	wlen_t

	l

returns: uint8_t

big_shift_left

void big_shift_left(uint8_t *a, wlen_t len, int bits);

arguments:

	uint8_t *

	a

	wlen_t

	len

	int

	bits

big_shift_right

void big_shift_right(uint8_t *a, wlen_t len, int bits);

arguments:

	uint8_t *

	a

	wlen_t

	len

	int

	bits

big_cmp

int big_cmp(const uint8_t *a, const wlen_t len_a, const uint8_t *b, const wlen_t len_b);

arguments:

	const uint8_t *

	a

	wlen_tconst

	len_a

	const uint8_t *

	b

	wlen_tconst

	len_b

returns: int

big_signed

int big_signed(uint8_t *val, wlen_t len, uint8_t *dst);

returns 0 if the value is positive or 1 if negavtive.

in this case the absolute value is copied to dst.

arguments:

	uint8_t *

	val

	wlen_t

	len

	uint8_t *

	dst

returns: int

big_int

int32_t big_int(uint8_t *val, wlen_t len);

arguments:

	uint8_t *

	val

	wlen_t

	len

returns: int32_t

big_add

int big_add(uint8_t *a, wlen_t len_a, uint8_t *b, wlen_t len_b, uint8_t *out, wlen_t max);

arguments:

	uint8_t *

	a

	wlen_t

	len_a

	uint8_t *

	b

	wlen_t

	len_b

	uint8_t *

	out

	wlen_t

	max

returns: int

big_sub

int big_sub(uint8_t *a, wlen_t len_a, uint8_t *b, wlen_t len_b, uint8_t *out);

arguments:

	uint8_t *

	a

	wlen_t

	len_a

	uint8_t *

	b

	wlen_t

	len_b

	uint8_t *

	out

returns: int

big_mul

int big_mul(uint8_t *a, wlen_t la, uint8_t *b, wlen_t lb, uint8_t *res, wlen_t max);

arguments:

	uint8_t *

	a

	wlen_t

	la

	uint8_t *

	b

	wlen_t

	lb

	uint8_t *

	res

	wlen_t

	max

returns: int

big_div

int big_div(uint8_t *a, wlen_t la, uint8_t *b, wlen_t lb, wlen_t sig, uint8_t *res);

arguments:

	uint8_t *

	a

	wlen_t

	la

	uint8_t *

	b

	wlen_t

	lb

	wlen_t

	sig

	uint8_t *

	res

returns: int

big_mod

int big_mod(uint8_t *a, wlen_t la, uint8_t *b, wlen_t lb, wlen_t sig, uint8_t *res);

arguments:

	uint8_t *

	a

	wlen_t

	la

	uint8_t *

	b

	wlen_t

	lb

	wlen_t

	sig

	uint8_t *

	res

returns: int

big_exp

int big_exp(uint8_t *a, wlen_t la, uint8_t *b, wlen_t lb, uint8_t *res);

arguments:

	uint8_t *

	a

	wlen_t

	la

	uint8_t *

	b

	wlen_t

	lb

	uint8_t *

	res

returns: int

big_log256

int big_log256(uint8_t *a, wlen_t len);

arguments:

	uint8_t *

	a

	wlen_t

	len

returns: int

code.h

code cache.

File: src/verifier/eth1/evm/code.h [https://github.com/slockit/in3-c/blob/master/src/verifier/eth1/evm/code.h]

in3_get_code

in3_ret_t in3_get_code(in3_vctx_t *vc, address_t address, cache_entry_t **target);

fetches the code and adds it to the context-cache as cache_entry.

So calling this function a second time will take the result from cache.

arguments:

	in3_vctx_t *

	vc

	address_t

	address

	cache_entry_t **

	target

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

evm.h

main evm-file.

File: src/verifier/eth1/evm/evm.h [https://github.com/slockit/in3-c/blob/master/src/verifier/eth1/evm/evm.h]

gas_options

EVM_ERROR_EMPTY_STACK

the no more elements on the stack

#define EVM_ERROR_EMPTY_STACK -20

EVM_ERROR_INVALID_OPCODE

the opcode is not supported

#define EVM_ERROR_INVALID_OPCODE -21

EVM_ERROR_BUFFER_TOO_SMALL

reading data from a position, which is not initialized

#define EVM_ERROR_BUFFER_TOO_SMALL -22

EVM_ERROR_ILLEGAL_MEMORY_ACCESS

the memory-offset does not exist

#define EVM_ERROR_ILLEGAL_MEMORY_ACCESS -23

EVM_ERROR_INVALID_JUMPDEST

the jump destination is not marked as valid destination

#define EVM_ERROR_INVALID_JUMPDEST -24

EVM_ERROR_INVALID_PUSH

the push data is empy

#define EVM_ERROR_INVALID_PUSH -25

EVM_ERROR_UNSUPPORTED_CALL_OPCODE

error handling the call, usually because static-calls are not allowed to change state

#define EVM_ERROR_UNSUPPORTED_CALL_OPCODE -26

EVM_ERROR_TIMEOUT

the evm ran into a loop

#define EVM_ERROR_TIMEOUT -27

EVM_ERROR_INVALID_ENV

the enviroment could not deliver the data

#define EVM_ERROR_INVALID_ENV -28

EVM_ERROR_OUT_OF_GAS

not enough gas to exewcute the opcode

#define EVM_ERROR_OUT_OF_GAS -29

EVM_ERROR_BALANCE_TOO_LOW

not enough funds to transfer the requested value.

#define EVM_ERROR_BALANCE_TOO_LOW -30

EVM_ERROR_STACK_LIMIT

stack limit reached

#define EVM_ERROR_STACK_LIMIT -31

EVM_ERROR_SUCCESS_CONSUME_GAS

write success but consume all gas

#define EVM_ERROR_SUCCESS_CONSUME_GAS -32

EVM_PROP_FRONTIER

#define EVM_PROP_FRONTIER 1

EVM_PROP_EIP150

#define EVM_PROP_EIP150 2

EVM_PROP_EIP158

#define EVM_PROP_EIP158 4

EVM_PROP_CONSTANTINOPL

#define EVM_PROP_CONSTANTINOPL 16

EVM_PROP_ISTANBUL

#define EVM_PROP_ISTANBUL 32

EVM_PROP_NO_FINALIZE

#define EVM_PROP_NO_FINALIZE 32768

EVM_PROP_STATIC

#define EVM_PROP_STATIC 256

EVM_ENV_BALANCE

#define EVM_ENV_BALANCE 1

EVM_ENV_CODE_SIZE

#define EVM_ENV_CODE_SIZE 2

EVM_ENV_CODE_COPY

#define EVM_ENV_CODE_COPY 3

EVM_ENV_BLOCKHASH

#define EVM_ENV_BLOCKHASH 4

EVM_ENV_STORAGE

#define EVM_ENV_STORAGE 5

EVM_ENV_BLOCKHEADER

#define EVM_ENV_BLOCKHEADER 6

EVM_ENV_CODE_HASH

#define EVM_ENV_CODE_HASH 7

EVM_ENV_NONCE

#define EVM_ENV_NONCE 8

MATH_ADD

#define MATH_ADD 1

MATH_SUB

#define MATH_SUB 2

MATH_MUL

#define MATH_MUL 3

MATH_DIV

#define MATH_DIV 4

MATH_SDIV

#define MATH_SDIV 5

MATH_MOD

#define MATH_MOD 6

MATH_SMOD

#define MATH_SMOD 7

MATH_EXP

#define MATH_EXP 8

MATH_SIGNEXP

#define MATH_SIGNEXP 9

CALL_CALL

#define CALL_CALL 0

CALL_CODE

#define CALL_CODE 1

CALL_DELEGATE

#define CALL_DELEGATE 2

CALL_STATIC

#define CALL_STATIC 3

OP_AND

#define OP_AND 0

OP_OR

#define OP_OR 1

OP_XOR

#define OP_XOR 2

EVM_DEBUG_BLOCK (…)

OP_LOG (…)

#define OP_LOG (...) EVM_ERROR_UNSUPPORTED_CALL_OPCODE

OP_SLOAD_GAS (…)

OP_CREATE (…)

#define OP_CREATE (...) EVM_ERROR_UNSUPPORTED_CALL_OPCODE

OP_ACCOUNT_GAS (…)

#define OP_ACCOUNT_GAS (...) 0

OP_SELFDESTRUCT (…)

#define OP_SELFDESTRUCT (...) EVM_ERROR_UNSUPPORTED_CALL_OPCODE

OP_EXTCODECOPY_GAS (evm)

OP_SSTORE (…)

#define OP_SSTORE (...) EVM_ERROR_UNSUPPORTED_CALL_OPCODE

EVM_CALL_MODE_STATIC

#define EVM_CALL_MODE_STATIC 1

EVM_CALL_MODE_DELEGATE

#define EVM_CALL_MODE_DELEGATE 2

EVM_CALL_MODE_CALLCODE

#define EVM_CALL_MODE_CALLCODE 3

EVM_CALL_MODE_CALL

#define EVM_CALL_MODE_CALL 4

evm_state_t

the current state of the evm

The enum type contains the following values:

	EVM_STATE_INIT

	0

	just initialised, but not yet started

	EVM_STATE_RUNNING

	1

	started and still running

	EVM_STATE_STOPPED

	2

	successfully stopped

	EVM_STATE_REVERTED

	3

	stopped, but results must be reverted

evm_get_env

This function provides data from the enviroment.

depending on the key the function will set the out_data-pointer to the result. This means the enviroment is responsible for memory management and also to clean up resources afterwards.

typedef int(* evm_get_env) (void *evm, uint16_t evm_key, uint8_t *in_data, int in_len, uint8_t **out_data, int offset, int len)

returns: int(*

storage_t

The stuct contains following fields:

	bytes32_t

	key

	bytes32_t

	value

	account_storagestruct , *

	next

logs_t

The stuct contains following fields:

	bytes_t

	topics

	bytes_t

	data

	logsstruct , *

	next

account_t

The stuct contains following fields:

	address_t

	address

	bytes32_t

	balance

	bytes32_t

	nonce

	bytes_t

	code

	storage_t *

	storage

	accountstruct , *

	next

evm_t

The stuct contains following fields:

	bytes_builder_t

	stack

	

	bytes_builder_t

	memory

	

	int

	stack_size

	

	bytes_t

	code

	

	uint32_t

	pos

	

	evm_state_t

	state

	

	bytes_t

	last_returned

	

	bytes_t

	return_data

	

	uint32_t *

	invalid_jumpdest

	

	uint32_t

	properties

	

	evm_get_env

	env

	

	void *

	env_ptr

	

	uint64_t

	chain_id

	the chain_id as returned by the opcode

	uint8_t *

	address

	the address of the current storage

	uint8_t *

	account

	the address of the code

	uint8_t *

	origin

	the address of original sender of the root-transaction

	uint8_t *

	caller

	the address of the parent sender

	bytes_t

	call_value

	value send

	bytes_t

	call_data

	data send in the tx

	bytes_t

	gas_price

	current gasprice

	uint64_t

	gas

	

	
	gas_options

	

evm_stack_push

int evm_stack_push(evm_t *evm, uint8_t *data, uint8_t len);

arguments:

	evm_t *

	evm

	uint8_t *

	data

	uint8_t

	len

returns: int

evm_stack_push_ref

int evm_stack_push_ref(evm_t *evm, uint8_t **dst, uint8_t len);

arguments:

	evm_t *

	evm

	uint8_t **

	dst

	uint8_t

	len

returns: int

evm_stack_push_int

int evm_stack_push_int(evm_t *evm, uint32_t val);

arguments:

	evm_t *

	evm

	uint32_t

	val

returns: int

evm_stack_push_long

int evm_stack_push_long(evm_t *evm, uint64_t val);

arguments:

	evm_t *

	evm

	uint64_t

	val

returns: int

evm_stack_get_ref

int evm_stack_get_ref(evm_t *evm, uint8_t pos, uint8_t **dst);

arguments:

	evm_t *

	evm

	uint8_t

	pos

	uint8_t **

	dst

returns: int

evm_stack_pop

int evm_stack_pop(evm_t *evm, uint8_t *dst, uint8_t len);

arguments:

	evm_t *

	evm

	uint8_t *

	dst

	uint8_t

	len

returns: int

evm_stack_pop_ref

int evm_stack_pop_ref(evm_t *evm, uint8_t **dst);

arguments:

	evm_t *

	evm

	uint8_t **

	dst

returns: int

evm_stack_pop_byte

int evm_stack_pop_byte(evm_t *evm, uint8_t *dst);

arguments:

	evm_t *

	evm

	uint8_t *

	dst

returns: int

evm_stack_pop_int

int32_t evm_stack_pop_int(evm_t *evm);

arguments:

	evm_t *

	evm

returns: int32_t

evm_stack_peek_len

int evm_stack_peek_len(evm_t *evm);

arguments:

	evm_t *

	evm

returns: int

evm_run

int evm_run(evm_t *evm, address_t code_address);

arguments:

	evm_t *

	evm

	address_t

	code_address

returns: int

evm_sub_call

int evm_sub_call(evm_t *parent, uint8_t address[20], uint8_t account[20], uint8_t *value, wlen_t l_value, uint8_t *data, uint32_t l_data, uint8_t caller[20], uint8_t origin[20], uint64_t gas, wlen_t mode, uint32_t out_offset, uint32_t out_len);

handle internal calls.

arguments:

	evm_t *

	parent

	uint8_t

	address

	uint8_t

	account

	uint8_t *

	value

	wlen_t

	l_value

	uint8_t *

	data

	uint32_t

	l_data

	uint8_t

	caller

	uint8_t

	origin

	uint64_t

	gas

	wlen_t

	mode

	uint32_t

	out_offset

	uint32_t

	out_len

returns: int

evm_ensure_memory

int evm_ensure_memory(evm_t *evm, uint32_t max_pos);

arguments:

	evm_t *

	evm

	uint32_t

	max_pos

returns: int

in3_get_env

int in3_get_env(void *evm_ptr, uint16_t evm_key, uint8_t *in_data, int in_len, uint8_t **out_data, int offset, int len);

arguments:

	void *

	evm_ptr

	uint16_t

	evm_key

	uint8_t *

	in_data

	int

	in_len

	uint8_t **

	out_data

	int

	offset

	int

	len

returns: int

evm_call

int evm_call(void *vc, uint8_t address[20], uint8_t *value, wlen_t l_value, uint8_t *data, uint32_t l_data, uint8_t caller[20], uint64_t gas, uint64_t chain_id, bytes_t **result);

run a evm-call

arguments:

	void *

	vc

	uint8_t

	address

	uint8_t *

	value

	wlen_t

	l_value

	uint8_t *

	data

	uint32_t

	l_data

	uint8_t

	caller

	uint64_t

	gas

	uint64_t

	chain_id

	bytes_t **

	result

returns: int

evm_print_stack

void evm_print_stack(evm_t *evm, uint64_t last_gas, uint32_t pos);

arguments:

	evm_t *

	evm

	uint64_t

	last_gas

	uint32_t

	pos

evm_free

void evm_free(evm_t *evm);

arguments:

	evm_t *

	evm

evm_execute

int evm_execute(evm_t *evm);

arguments:

	evm_t *

	evm

returns: int

gas.h

evm gas defines.

File: src/verifier/eth1/evm/gas.h [https://github.com/slockit/in3-c/blob/master/src/verifier/eth1/evm/gas.h]

op_exec (m,gas)

#define op_exec (m,gas) return m;

subgas (g)

GAS_CC_NET_SSTORE_NOOP_GAS

Once per SSTORE operation if the value doesn’t change.

#define GAS_CC_NET_SSTORE_NOOP_GAS 200

GAS_CC_NET_SSTORE_INIT_GAS

Once per SSTORE operation from clean zero.

#define GAS_CC_NET_SSTORE_INIT_GAS 20000

GAS_CC_NET_SSTORE_CLEAN_GAS

Once per SSTORE operation from clean non-zero.

#define GAS_CC_NET_SSTORE_CLEAN_GAS 5000

GAS_CC_NET_SSTORE_DIRTY_GAS

Once per SSTORE operation from dirty.

#define GAS_CC_NET_SSTORE_DIRTY_GAS 200

GAS_CC_NET_SSTORE_CLEAR_REFUND

Once per SSTORE operation for clearing an originally existing storage slot.

#define GAS_CC_NET_SSTORE_CLEAR_REFUND 15000

GAS_CC_NET_SSTORE_RESET_REFUND

Once per SSTORE operation for resetting to the original non-zero value.

#define GAS_CC_NET_SSTORE_RESET_REFUND 4800

GAS_CC_NET_SSTORE_RESET_CLEAR_REFUND

Once per SSTORE operation for resetting to the original zero valuev.

#define GAS_CC_NET_SSTORE_RESET_CLEAR_REFUND 19800

G_ZERO

Nothing is paid for operations of the set Wzero.

#define G_ZERO 0

G_JUMPDEST

JUMP DEST.

#define G_JUMPDEST 1

G_BASE

This is the amount of gas to pay for operations of the set Wbase.

#define G_BASE 2

G_VERY_LOW

This is the amount of gas to pay for operations of the set Wverylow.

#define G_VERY_LOW 3

G_LOW

This is the amount of gas to pay for operations of the set Wlow.

#define G_LOW 5

G_MID

This is the amount of gas to pay for operations of the set Wmid.

#define G_MID 8

G_HIGH

This is the amount of gas to pay for operations of the set Whigh.

#define G_HIGH 10

G_EXTCODE

This is the amount of gas to pay for operations of the set Wextcode.

#define G_EXTCODE 700

G_BALANCE

This is the amount of gas to pay for a BALANCE operation.

#define G_BALANCE 400

G_SLOAD

This is paid for an SLOAD operation.

#define G_SLOAD 200

G_SSET

This is paid for an SSTORE operation when the storage value is set to non-zero from zero.

#define G_SSET 20000

G_SRESET

This is the amount for an SSTORE operation when the storage value’s zeroness remains unchanged or is set to zero.

#define G_SRESET 5000

R_SCLEAR

This is the refund given (added into the refund counter) when the storage value is set to zero from non-zero.

#define R_SCLEAR 15000

R_SELFDESTRUCT

This is the refund given (added into the refund counter) for self-destructing an account.

#define R_SELFDESTRUCT 24000

G_SELFDESTRUCT

This is the amount of gas to pay for a SELFDESTRUCT operation.

#define G_SELFDESTRUCT 5000

G_CREATE

This is paid for a CREATE operation.

#define G_CREATE 32000

G_CODEDEPOSIT

This is paid per byte for a CREATE operation to succeed in placing code into the state.

#define G_CODEDEPOSIT 200

G_CALL

This is paid for a CALL operation.

#define G_CALL 700

G_CALLVALUE

This is paid for a non-zero value transfer as part of the CALL operation.

#define G_CALLVALUE 9000

G_CALLSTIPEND

This is a stipend for the called contract subtracted from Gcallvalue for a non-zero value transfer.

#define G_CALLSTIPEND 2300

G_NEWACCOUNT

This is paid for a CALL or for a SELFDESTRUCT operation which creates an account.

#define G_NEWACCOUNT 25000

G_EXP

This is a partial payment for an EXP operation.

#define G_EXP 10

G_EXPBYTE

This is a partial payment when multiplied by dlog256(exponent)e for the EXP operation.

#define G_EXPBYTE 50

G_MEMORY

This is paid for every additional word when expanding memory.

#define G_MEMORY 3

G_TXCREATE

This is paid by all contract-creating transactions after the Homestead transition.

#define G_TXCREATE 32000

G_TXDATA_ZERO

This is paid for every zero byte of data or code for a transaction.

#define G_TXDATA_ZERO 4

G_TXDATA_NONZERO

This is paid for every non-zero byte of data or code for a transaction.

#define G_TXDATA_NONZERO 68

G_TRANSACTION

This is paid for every transaction.

#define G_TRANSACTION 21000

G_LOG

This is a partial payment for a LOG operation.

#define G_LOG 375

G_LOGDATA

This is paid for each byte in a LOG operation’s data.

#define G_LOGDATA 8

G_LOGTOPIC

This is paid for each topic of a LOG operation.

#define G_LOGTOPIC 375

G_SHA3

This is paid for each SHA3 operation.

#define G_SHA3 30

G_SHA3WORD

This is paid for each word (rounded up) for input data to a SHA3 operation.

#define G_SHA3WORD 6

G_COPY

This is a partial payment for *COPY operations, multiplied by the number of words copied, rounded up.

#define G_COPY 3

G_BLOCKHASH

This is a payment for a BLOCKHASH operation.

#define G_BLOCKHASH 20

G_PRE_EC_RECOVER

Precompile EC RECOVER.

#define G_PRE_EC_RECOVER 3000

G_PRE_SHA256

Precompile SHA256.

#define G_PRE_SHA256 60

G_PRE_SHA256_WORD

Precompile SHA256 per word.

#define G_PRE_SHA256_WORD 12

G_PRE_RIPEMD160

Precompile RIPEMD160.

#define G_PRE_RIPEMD160 600

G_PRE_RIPEMD160_WORD

Precompile RIPEMD160 per word.

#define G_PRE_RIPEMD160_WORD 120

G_PRE_IDENTITY

Precompile IDENTIY (copyies data)

#define G_PRE_IDENTITY 15

G_PRE_IDENTITY_WORD

Precompile IDENTIY per word.

#define G_PRE_IDENTITY_WORD 3

G_PRE_MODEXP_GQUAD_DIVISOR

Gquaddivisor from modexp precompile for gas calculation.

#define G_PRE_MODEXP_GQUAD_DIVISOR 20

G_PRE_ECADD

Gas costs for curve addition precompile.

#define G_PRE_ECADD 500

G_PRE_ECMUL

Gas costs for curve multiplication precompile.

#define G_PRE_ECMUL 40000

G_PRE_ECPAIRING

Base gas costs for curve pairing precompile.

#define G_PRE_ECPAIRING 100000

G_PRE_ECPAIRING_WORD

Gas costs regarding curve pairing precompile input length.

#define G_PRE_ECPAIRING_WORD 80000

EVM_STACK_LIMIT

max elements of the stack

#define EVM_STACK_LIMIT 1024

EVM_MAX_CODE_SIZE

max size of the code

#define EVM_MAX_CODE_SIZE 24576

FRONTIER_G_EXPBYTE

fork values

This is a partial payment when multiplied by dlog256(exponent)e for the EXP operation.

#define FRONTIER_G_EXPBYTE 10

FRONTIER_G_SLOAD

This is a partial payment when multiplied by dlog256(exponent)e for the EXP operation.

#define FRONTIER_G_SLOAD 50

FREE_EVM (…)

INIT_EVM (…)

INIT_GAS (…)

SUBGAS (…)

FINALIZE_SUBCALL_GAS (…)

UPDATE_SUBCALL_GAS (…)

FINALIZE_AND_REFUND_GAS (…)

KEEP_TRACK_GAS (evm)

#define KEEP_TRACK_GAS (evm) 0

SELFDESTRUCT_GAS (evm,g)

#define SELFDESTRUCT_GAS (evm,g) EVM_ERROR_UNSUPPORTED_CALL_OPCODE

UPDATE_ACCOUNT_CODE (…)

Module verifier/eth1/full

eth_full.h

Ethereum Nanon verification.

File: src/verifier/eth1/full/eth_full.h [https://github.com/slockit/in3-c/blob/master/src/verifier/eth1/full/eth_full.h]

in3_verify_eth_full

int in3_verify_eth_full(in3_vctx_t *v);

entry-function to execute the verification context.

arguments:

	in3_vctx_t *

	v

returns: int

in3_register_eth_full

void in3_register_eth_full();

this function should only be called once and will register the eth-full verifier.

Module verifier/eth1/nano

chainspec.h

Ethereum chain specification

File: src/verifier/eth1/nano/chainspec.h [https://github.com/slockit/in3-c/blob/master/src/verifier/eth1/nano/chainspec.h]

BLOCK_LATEST

#define BLOCK_LATEST 0xFFFFFFFFFFFFFFFF

eip_transition_t

The stuct contains following fields:

	uint64_t

	transition_block

	eip_t

	eips

consensus_transition_t

The stuct contains following fields:

	uint64_t

	transition_block

	eth_consensus_type_t

	type

	bytes_t

	validators

	uint8_t *

	contract

chainspec_t

The stuct contains following fields:

	uint64_t

	network_id

	uint64_t

	account_start_nonce

	uint32_t

	eip_transitions_len

	eip_transition_t *

	eip_transitions

	uint32_t

	consensus_transitions_len

	consensus_transition_t *

	consensus_transitions

attribute

struct __attribute__((__packed__)) eip_;

defines the flags for the current activated EIPs.

Since it does not make sense to support a evm defined before Homestead, homestead EIP is always turned on!

< REVERT instruction

< Bitwise shifting instructions in EVM

< Gas cost changes for IO-heavy operations

< Simple replay attack protection

< EXP cost increase

< Contract code size limit

< Precompiled contracts for addition and scalar multiplication on the elliptic curve alt_bn128

< Precompiled contracts for optimal ate pairing check on the elliptic curve alt_bn128

< Big integer modular exponentiation

< New opcodes: RETURNDATASIZE and RETURNDATACOPY

< New opcode STATICCALL

< Embedding transaction status code in receipts

< Skinny CREATE2

< EXTCODEHASH opcode

< Net gas metering for SSTORE without dirty maps

arguments:

(__packed__)

returns: struct

chainspec_create_from_json

chainspec_t* chainspec_create_from_json(d_token_t *data);

arguments:

	d_token_t *

	data

returns: chainspec_t *

chainspec_get_eip

eip_t chainspec_get_eip(chainspec_t *spec, uint64_t block_number);

arguments:

	chainspec_t *

	spec

	uint64_t

	block_number

returns: eip_t

chainspec_get_consensus

consensus_transition_t* chainspec_get_consensus(chainspec_t *spec, uint64_t block_number);

arguments:

	chainspec_t *

	spec

	uint64_t

	block_number

returns: consensus_transition_t *

chainspec_to_bin

in3_ret_t chainspec_to_bin(chainspec_t *spec, bytes_builder_t *bb);

arguments:

	chainspec_t *

	spec

	bytes_builder_t *

	bb

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

chainspec_from_bin

chainspec_t* chainspec_from_bin(void *raw);

arguments:

	void *

	raw

returns: chainspec_t *

chainspec_get

chainspec_t* chainspec_get(chain_id_t chain_id);

arguments:

	chain_id_t

	chain_id

returns: chainspec_t *

chainspec_put

void chainspec_put(chain_id_t chain_id, chainspec_t *spec);

arguments:

	chain_id_t

	chain_id

	chainspec_t *

	spec

eth_nano.h

Ethereum Nanon verification.

File: src/verifier/eth1/nano/eth_nano.h [https://github.com/slockit/in3-c/blob/master/src/verifier/eth1/nano/eth_nano.h]

in3_verify_eth_nano

in3_ret_t in3_verify_eth_nano(in3_vctx_t *v);

entry-function to execute the verification context.

arguments:

	in3_vctx_t *

	v

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_verify_blockheader

in3_ret_t eth_verify_blockheader(in3_vctx_t *vc, bytes_t *header, bytes_t *expected_blockhash);

verifies a blockheader.

verifies a blockheader.

arguments:

	in3_vctx_t *

	vc

	bytes_t *

	header

	bytes_t *

	expected_blockhash

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_verify_signature

int eth_verify_signature(in3_vctx_t *vc, bytes_t *msg_hash, d_token_t *sig);

verifies a single signature blockheader.

This function will return a positive integer with a bitmask holding the bit set according to the address that signed it. This is based on the signatiures in the request-config.

arguments:

	in3_vctx_t *

	vc

	bytes_t *

	msg_hash

	d_token_t *

	sig

returns: int

ecrecover_signature

bytes_t* ecrecover_signature(bytes_t *msg_hash, d_token_t *sig);

returns the address of the signature if the msg_hash is correct

arguments:

	bytes_t *

	msg_hash

	d_token_t *

	sig

returns: bytes_t *

eth_verify_eth_getTransactionReceipt

in3_ret_t eth_verify_eth_getTransactionReceipt(in3_vctx_t *vc, bytes_t *tx_hash);

verifies a transaction receipt.

arguments:

	in3_vctx_t *

	vc

	bytes_t *

	tx_hash

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_verify_in3_nodelist

in3_ret_t eth_verify_in3_nodelist(in3_vctx_t *vc, uint32_t node_limit, bytes_t *seed, d_token_t *required_addresses);

verifies the nodelist.

arguments:

	in3_vctx_t *

	vc

	uint32_t

	node_limit

	bytes_t *

	seed

	d_token_t *

	required_addresses

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_verify_in3_whitelist

in3_ret_t eth_verify_in3_whitelist(in3_vctx_t *vc);

verifies the nodelist.

arguments:

	in3_vctx_t *

	vc

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_register_eth_nano

void in3_register_eth_nano();

this function should only be called once and will register the eth-nano verifier.

create_tx_path

bytes_t* create_tx_path(uint32_t index);

helper function to rlp-encode the transaction_index.

The result must be freed after use!

arguments:

	uint32_t

	index

returns: bytes_t *

merkle.h

Merkle Proof Verification.

File: src/verifier/eth1/nano/merkle.h [https://github.com/slockit/in3-c/blob/master/src/verifier/eth1/nano/merkle.h]

MERKLE_DEPTH_MAX

#define MERKLE_DEPTH_MAX 64

trie_verify_proof

int trie_verify_proof(bytes_t *rootHash, bytes_t *path, bytes_t **proof, bytes_t *expectedValue);

verifies a merkle proof.

expectedValue == NULL : value must not exist expectedValue.data ==NULL : please copy the data I want to evaluate it afterwards. expectedValue.data !=NULL : the value must match the data.

arguments:

	bytes_t *

	rootHash

	bytes_t *

	path

	bytes_t **

	proof

	bytes_t *

	expectedValue

returns: int

trie_path_to_nibbles

uint8_t* trie_path_to_nibbles(bytes_t path, int use_prefix);

helper function split a path into 4-bit nibbles.

The result must be freed after use!

arguments:

	bytes_t

	path

	int

	use_prefix

returns: uint8_t * : the resulting bytes represent a 4bit-number each and are terminated with a 0xFF.

trie_matching_nibbles

int trie_matching_nibbles(uint8_t *a, uint8_t *b);

helper function to find the number of nibbles matching both paths.

arguments:

	uint8_t *

	a

	uint8_t *

	b

returns: int

trie_free_proof

void trie_free_proof(bytes_t **proof);

used to free the NULL-terminated proof-array.

arguments:

	bytes_t **

	proof

rlp.h

RLP-En/Decoding as described in the Ethereum RLP-Spec [https://github.com/ethereum/wiki/wiki/RLP].

This decoding works without allocating new memory.

File: src/verifier/eth1/nano/rlp.h [https://github.com/slockit/in3-c/blob/master/src/verifier/eth1/nano/rlp.h]

rlp_decode

int rlp_decode(bytes_t *b, int index, bytes_t *dst);

this function decodes the given bytes and returns the element with the given index by updating the reference of dst.

the bytes will only hold references and do not need to be freed!

bytes_t* tx_raw = serialize_tx(tx);

bytes_t item;

// decodes the tx_raw by letting the item point to range of the first element, which should be the body of a list.
if (rlp_decode(tx_raw, 0, &item) !=2) return -1 ;

// now decode the 4th element (which is the value) and let item point to that range.
if (rlp_decode(&item, 4, &item) !=1) return -1 ;

arguments:

	bytes_t *

	b

	int

	index

	bytes_t *

	dst

returns: int : - 0 : means item out of range

	1 : item found

	2 : list found (you can then decode the same bytes again)

rlp_decode_in_list

int rlp_decode_in_list(bytes_t *b, int index, bytes_t *dst);

this function expects a list item (like the blockheader as first item and will then find the item within this list).

It is a shortcut for

// decode the list
if (rlp_decode(b,0,dst)!=2) return 0;
// and the decode the item
return rlp_decode(dst,index,dst);

arguments:

	bytes_t *

	b

	int

	index

	bytes_t *

	dst

returns: int : - 0 : means item out of range

	1 : item found

	2 : list found (you can then decode the same bytes again)

rlp_decode_len

int rlp_decode_len(bytes_t *b);

returns the number of elements found in the data.

arguments:

	bytes_t *

	b

returns: int

rlp_encode_item

void rlp_encode_item(bytes_builder_t *bb, bytes_t *val);

encode a item as single string and add it to the bytes_builder.

arguments:

	bytes_builder_t *

	bb

	bytes_t *

	val

rlp_encode_list

void rlp_encode_list(bytes_builder_t *bb, bytes_t *val);

encode a the value as list of already encoded items.

arguments:

	bytes_builder_t *

	bb

	bytes_t *

	val

rlp_encode_to_list

bytes_builder_t* rlp_encode_to_list(bytes_builder_t *bb);

converts the data in the builder to a list.

This function is optimized to not increase the memory more than needed and is fastet than creating a second builder to encode the data.

arguments:

	bytes_builder_t *

	bb

returns: bytes_builder_t * : the same builder.

rlp_encode_to_item

bytes_builder_t* rlp_encode_to_item(bytes_builder_t *bb);

converts the data in the builder to a rlp-encoded item.

This function is optimized to not increase the memory more than needed and is fastet than creating a second builder to encode the data.

arguments:

	bytes_builder_t *

	bb

returns: bytes_builder_t * : the same builder.

rlp_add_length

void rlp_add_length(bytes_builder_t *bb, uint32_t len, uint8_t offset);

helper to encode the prefix for a value

arguments:

	bytes_builder_t *

	bb

	uint32_t

	len

	uint8_t

	offset

serialize.h

serialization of ETH-Objects.

This incoming tokens will represent their values as properties based on JSON-RPC [https://github.com/ethereum/wiki/wiki/JSON-RPC].

File: src/verifier/eth1/nano/serialize.h [https://github.com/slockit/in3-c/blob/master/src/verifier/eth1/nano/serialize.h]

BLOCKHEADER_PARENT_HASH

#define BLOCKHEADER_PARENT_HASH 0

BLOCKHEADER_SHA3_UNCLES

#define BLOCKHEADER_SHA3_UNCLES 1

BLOCKHEADER_MINER

#define BLOCKHEADER_MINER 2

BLOCKHEADER_STATE_ROOT

#define BLOCKHEADER_STATE_ROOT 3

BLOCKHEADER_TRANSACTIONS_ROOT

#define BLOCKHEADER_TRANSACTIONS_ROOT 4

BLOCKHEADER_RECEIPT_ROOT

#define BLOCKHEADER_RECEIPT_ROOT 5

BLOCKHEADER_LOGS_BLOOM

#define BLOCKHEADER_LOGS_BLOOM 6

BLOCKHEADER_DIFFICULTY

#define BLOCKHEADER_DIFFICULTY 7

BLOCKHEADER_NUMBER

#define BLOCKHEADER_NUMBER 8

BLOCKHEADER_GAS_LIMIT

#define BLOCKHEADER_GAS_LIMIT 9

BLOCKHEADER_GAS_USED

#define BLOCKHEADER_GAS_USED 10

BLOCKHEADER_TIMESTAMP

#define BLOCKHEADER_TIMESTAMP 11

BLOCKHEADER_EXTRA_DATA

#define BLOCKHEADER_EXTRA_DATA 12

BLOCKHEADER_SEALED_FIELD1

#define BLOCKHEADER_SEALED_FIELD1 13

BLOCKHEADER_SEALED_FIELD2

#define BLOCKHEADER_SEALED_FIELD2 14

BLOCKHEADER_SEALED_FIELD3

#define BLOCKHEADER_SEALED_FIELD3 15

serialize_tx_receipt

bytes_t* serialize_tx_receipt(d_token_t *receipt);

creates rlp-encoded raw bytes for a receipt.

The bytes must be freed with b_free after use!

arguments:

	d_token_t *

	receipt

returns: bytes_t *

serialize_tx

bytes_t* serialize_tx(d_token_t *tx);

creates rlp-encoded raw bytes for a transaction.

The bytes must be freed with b_free after use!

arguments:

	d_token_t *

	tx

returns: bytes_t *

serialize_tx_raw

bytes_t* serialize_tx_raw(bytes_t nonce, bytes_t gas_price, bytes_t gas_limit, bytes_t to, bytes_t value, bytes_t data, uint64_t v, bytes_t r, bytes_t s);

creates rlp-encoded raw bytes for a transaction from direct values.

The bytes must be freed with b_free after use!

arguments:

	bytes_t

	nonce

	bytes_t

	gas_price

	bytes_t

	gas_limit

	bytes_t

	to

	bytes_t

	value

	bytes_t

	data

	uint64_t

	v

	bytes_t

	r

	bytes_t

	s

returns: bytes_t *

serialize_account

bytes_t* serialize_account(d_token_t *a);

creates rlp-encoded raw bytes for a account.

The bytes must be freed with b_free after use!

arguments:

	d_token_t *

	a

returns: bytes_t *

serialize_block_header

bytes_t* serialize_block_header(d_token_t *block);

creates rlp-encoded raw bytes for a blockheader.

The bytes must be freed with b_free after use!

arguments:

	d_token_t *

	block

returns: bytes_t *

rlp_add

int rlp_add(bytes_builder_t *rlp, d_token_t *t, int ml);

adds the value represented by the token rlp-encoded to the byte_builder.

arguments:

	bytes_builder_t *

	rlp

	d_token_t *

	t

	int

	ml

returns: int : 0 if added -1 if the value could not be handled.

API Reference TS

This page contains a list of all Datastructures and Classes used within the TypeScript IN3 Client.

Examples

This is a collection of different incubed-examples.

using Web3

Since incubed works with on a JSON-RPC-Level it can easily be used as Provider for Web3:

// import in3-Module
import In3Client from 'in3'
import * as web3 from 'web3'

// use the In3Client as Http-Provider
const web3 = new Web3(new In3Client({
 proof : 'standard',
 signatureCount: 1,
 requestCount : 2,
 chainId : 'mainnet'
}).createWeb3Provider())

// use the web3
const block = await web.eth.getBlockByNumber('latest')
...

using Incubed API

Incubed includes a light API, allowinng not only to use all RPC-Methods in a typesafe way, but also to sign transactions and call funnctions of a contract without the web3-library.

For more details see the API-Doc

// import in3-Module
import In3Client from 'in3'

// use the In3Client
const in3 = new In3Client({
 proof : 'standard',
 signatureCount: 1,
 requestCount : 2,
 chainId : 'mainnet'
})

// use the api to call a funnction..
const myBalance = await in3.eth.callFn(myTokenContract, 'balanceOf(address):uint', myAccount)

// ot to send a transaction..
const receipt = await in3.eth.sendTransaction({
 to : myTokenContract,
 method : 'transfer(address,uint256)',
 args : [target,amount],
 confirmations: 2,
 pk : myKey
})

...

Reading event with incubed

// import in3-Module
import In3Client from 'in3'

// use the In3Client
const in3 = new In3Client({
 proof : 'standard',
 signatureCount: 1,
 requestCount : 2,
 chainId : 'mainnet'
})

// use the ABI-String of the smart contract
abi = [{"anonymous":false,"inputs":[{"indexed":false,"name":"name","type":"string"},{"indexed":true,"name":"label","type":"bytes32"},{"indexed":true,"name":"owner","type":"address"},{"indexed":false,"name":"cost","type":"uint256"},{"indexed":false,"name":"expires","type":"uint256"}],"name":"NameRegistered","type":"event"}]

// create a contract-object for a given address
const contract = in3.eth.contractAt(abi, '0xF0AD5cAd05e10572EfcEB849f6Ff0c68f9700455') // ENS contract.

// read all events starting from a specified block until the latest
const logs = await c.events.NameRegistered.getLogs({fromBlock:8022948}))

// print out the properties of the event.
for (const ev of logs)
 console.log(`${ev.owner} registered ${ev.name} for ${ev.cost} wei until ${new Date(ev.expires.toNumber()*1000).toString()}`)

...

Main Module

Importing incubed is as easy as

import Client,{util} from "in3"

While the In3Client-class is the default import, the following imports can be used:

	
Type

	
ABI

	
the ABI

	
Interface

	
AccountProof

	
the AccountProof

	
Interface

	
AuraValidatoryProof

	
the AuraValidatoryProof

	
Type

	
BlockData

	
the BlockData

	
Type

	
BlockType

	
the BlockType

	
Interface

	
ChainSpec

	
the ChainSpec

	
Class

	
IN3Client

	
the IN3Client

	
Interface

	
IN3Config

	
the IN3Config

	
Interface

	
IN3NodeConfig

	
the IN3NodeConfig

	
Interface

	
IN3NodeWeight

	
the IN3NodeWeight

	
Interface

	
IN3RPCConfig

	
the IN3RPCConfig

	
Interface

	
IN3RPCHandlerConfig

	
the IN3RPCHandlerConfig

	
Interface

	
IN3RPCRequestConfig

	
the IN3RPCRequestConfig

	
Interface

	
IN3ResponseConfig

	
the IN3ResponseConfig

	
Type

	
Log

	
the Log

	
Type

	
LogData

	
the LogData

	
Interface

	
LogProof

	
the LogProof

	
Interface

	
Proof

	
the Proof

	
Interface

	
RPCRequest

	
the RPCRequest

	
Interface

	
RPCResponse

	
the RPCResponse

	
Type

	
ReceiptData

	
the ReceiptData

	
Interface

	
ServerList

	
the ServerList

	
Interface

	
Signature

	
the Signature

	
Type

	
Transaction

	
the Transaction

	
Type

	
TransactionData

	
the TransactionData

	
Type

	
TransactionReceipt

	
the TransactionReceipt

	
Type

	
Transport

	
the Transport

	
any

	
AxiosTransport [https://github.com/slockit/in3/blob/master/src/index.ts#L102]

	
the AxiosTransport

value= transport.AxiosTransport

	
EthAPI

	
EthAPI [https://github.com/slockit/in3/blob/master/src/index.ts#L43]

	
the EthAPI

value= _ethapi.default

	
any

	
cbor [https://github.com/slockit/in3/blob/master/src/index.ts#L48]

	
the cbor

value= _cbor

	

	
chainAliases [https://github.com/slockit/in3/blob/master/src/index.ts#L105]

	
the chainAliases

value= aliases

	
chainData

	
chainData [https://github.com/slockit/in3/blob/master/src/index.ts#L64]

	
the chainData

value= _chainData

	
number []

	
createRandomIndexes [https://github.com/slockit/in3/blob/master/src/client/serverList.ts#L71] (

len:number,

limit:number,

seed:Buffer ,

result:number [])

	
helper function creating deterministic random indexes used for limited nodelists

	
header

	
header [https://github.com/slockit/in3/blob/master/src/index.ts#L54]

	
the header

value= _header

	
serialize

	
serialize [https://github.com/slockit/in3/blob/master/src/index.ts#L51]

	
the serialize

value= _serialize

	
any

	
storage [https://github.com/slockit/in3/blob/master/src/index.ts#L57]

	
the storage

value= _storage

	
any

	
transport [https://github.com/slockit/in3/blob/master/src/index.ts#L61]

	
the transport

value= _transport

	

	
typeDefs [https://github.com/slockit/in3/blob/master/src/index.ts#L103]

	
the typeDefs

value= types.validationDef

	
any

	
util [https://github.com/slockit/in3/blob/master/src/index.ts#L36]

	
the util

value= _util

	
any

	
validate [https://github.com/slockit/in3/blob/master/src/index.ts#L104]

	
the validate

value= validateOb.validate

Package client

Type Client

Source: client/Client.ts [https://github.com/slockit/in3/blob/master/src/client/Client.ts#L69]

Client for N3.

	
number

	
defaultMaxListeners [https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L9]

	
the defaultMaxListeners

	
number

	
listenerCount [https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L8] (

emitter:EventEmitter ,

event:string

| symbol)

	
listener count

	
Client

	
constructor [https://github.com/slockit/in3/blob/master/src/client/Client.ts#L80] (

config:Partial<IN3Config> ,

transport:Transport)

	
creates a new Client.

	
IN3Config

	
defConfig [https://github.com/slockit/in3/blob/master/src/client/Client.ts#L76]

	
the defConfig

	
EthAPI

	
eth [https://github.com/slockit/in3/blob/master/src/client/Client.ts#L72]

	
the eth

	
IpfsAPI

	
ipfs [https://github.com/slockit/in3/blob/master/src/client/Client.ts#L73]

	
the ipfs

	
IN3Config

	
config [https://github.com/slockit/in3/blob/master/src/client/Client.ts#L146]

	
config

	
this

	
addListener [https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L11] (

event:string

| symbol,

listener:)

	
add listener

	
Promise<any>

	
call [https://github.com/slockit/in3/blob/master/src/client/Client.ts#L259] (

method:string,

params:any,

chain:string,

config:Partial<IN3Config>)

	
sends a simply RPC-Request

	
void

	
clearStats [https://github.com/slockit/in3/blob/master/src/client/Client.ts#L311] ()

	
clears all stats and weights, like blocklisted nodes

	
any

	
createWeb3Provider [https://github.com/slockit/in3/blob/master/src/client/Client.ts#L127] ()

	
create web3 provider

	
boolean

	
emit [https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L23] (

event:string

| symbol,

args:any [])

	
emit

	
Array<>

	
eventNames [https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L24] ()

	
event names

	
ChainContext

	
getChainContext [https://github.com/slockit/in3/blob/master/src/client/Client.ts#L134] (

chainId:string)

	
Context for a specific chain including cache and chainSpecs.

	
number

	
getMaxListeners [https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L20] ()

	
get max listeners

	
number

	
listenerCount [https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L25] (

type:string

| symbol)

	
listener count

	
Function []

	
listeners [https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L21] (

event:string

| symbol)

	
listeners

	
this

	
off [https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L17] (

event:string

| symbol,

listener:)

	
off

	
this

	
on [https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L12] (

event:string

| symbol,

listener:)

	
on

	
this

	
once [https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L13] (

event:string

| symbol,

listener:)

	
once

	
this

	
prependListener [https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L14] (

event:string

| symbol,

listener:)

	
prepend listener

	
this

	
prependOnceListener [https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L15] (

event:string

| symbol,

listener:)

	
prepend once listener

	
Function []

	
rawListeners [https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L22] (

event:string

| symbol)

	
raw listeners

	
this

	
removeAllListeners [https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L18] (

event:string

| symbol)

	
remove all listeners

	
this

	
removeListener [https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L16] (

event:string

| symbol,

listener:)

	
remove listener

	
Promise<>

	
send [https://github.com/slockit/in3/blob/master/src/client/Client.ts#L271] (

request:RPCRequest []

| RPCRequest ,

callback:,

config:Partial<IN3Config>)

	
sends one or a multiple requests.

if the request is a array the response will be a array as well.

If the callback is given it will be called with the response, if not a Promise will be returned.

This function supports callback so it can be used as a Provider for the web3.

	
Promise<RPCResponse>

	
sendRPC [https://github.com/slockit/in3/blob/master/src/client/Client.ts#L248] (

method:string,

params:any [],

chain:string,

config:Partial<IN3Config>)

	
sends a simply RPC-Request

	
this

	
setMaxListeners [https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L19] (

n:number)

	
set max listeners

	
Promise<void>

	
updateNodeList [https://github.com/slockit/in3/blob/master/src/client/Client.ts#L182] (

chainId:string,

conf:Partial<IN3Config> ,

retryCount:number)

	
fetches the nodeList from the servers.

	
Promise<void>

	
updateWhiteListNodes [https://github.com/slockit/in3/blob/master/src/client/Client.ts#L155] (

config:IN3Config)

	
update white list nodes

	
Promise<boolean>

	
verifyResponse [https://github.com/slockit/in3/blob/master/src/client/Client.ts#L298] (

request:RPCRequest ,

response:RPCResponse ,

chain:string,

config:Partial<IN3Config>)

	
Verify the response of a request without any effect on the state of the client.

Note: The node-list will not be updated.

The method will either return true if its inputs could be verified.

Or else, it will throw an exception with a helpful message.

Type ChainContext

Source: client/ChainContext.ts [https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L42]

Context for a specific chain including cache and chainSpecs.

	
ChainContext

	
constructor [https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L49] (

client:Client ,

chainId:string,

chainSpec:ChainSpec [])

	
Context for a specific chain including cache and chainSpecs.

	
string

	
chainId [https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L46]

	
the chainId

	
ChainSpec []

	
chainSpec [https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L44]

	
the chainSpec

	
Client

	
client [https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L43]

	
the client

	

	
genericCache [https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L48]

	
the genericCache

	
number

	
lastValidatorChange [https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L47]

	
the lastValidatorChange

	
Module

	
module [https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L45]

	
the module

	
string

	
registryId [https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L49]

	
the registryId (optional)

	
void

	
clearCache [https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L156] (

prefix:string)

	
clear cache

	
ChainSpec

	
getChainSpec [https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L85] (

block:number)

	
returns the chainspec for th given block number

	
string

	
getFromCache [https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L146] (

key:string)

	
get from cache

	
Promise<RPCResponse>

	
handleIntern [https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L78] (

request:RPCRequest)

	
this function is calleds before the server is asked.

If it returns a promise than the request is handled internally otherwise the server will handle the response.

this function should be overriden by modules that want to handle calls internally

	
void

	
initCache [https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L90] ()

	
init cache

	
void

	
putInCache [https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L150] (

key:string,

value:string)

	
put in cache

	
void

	
updateCache [https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L137] (

whiteList:Set<string> ,

whiteListContract:string)

	
update cache

Type Module

Source: client/modules.ts [https://github.com/slockit/in3/blob/master/src/client/modules.ts#L41]

	
string

	
name [https://github.com/slockit/in3/blob/master/src/client/modules.ts#L42]

	
the name

	
ChainContext

	
createChainContext [https://github.com/slockit/in3/blob/master/src/client/modules.ts#L44] (

client:Client ,

chainId:string,

spec:ChainSpec [])

	
Context for a specific chain including cache and chainSpecs.

	
Promise<boolean>

	
verifyProof [https://github.com/slockit/in3/blob/master/src/client/modules.ts#L46] (

request:RPCRequest ,

response:RPCResponse ,

allowWithoutProof:boolean,

ctx:ChainContext)

	
general verification-function which handles it according to its given type.

Package index.ts

Type AccountProof

Source: index.ts [https://github.com/slockit/in3/blob/master/src/index.ts#L73]

the Proof-for a single Account
the Proof-for a single Account

	
string []

	
accountProof [https://github.com/slockit/in3/blob/master/src/types/types.ts#L42]

	
the serialized merle-noodes beginning with the root-node

	
string

	
address [https://github.com/slockit/in3/blob/master/src/types/types.ts#L46]

	
the address of this account

	
string

	
balance [https://github.com/slockit/in3/blob/master/src/types/types.ts#L50]

	
the balance of this account as hex

	
string

	
code [https://github.com/slockit/in3/blob/master/src/types/types.ts#L58]

	
the code of this account as hex (if required) (optional)

	
string

	
codeHash [https://github.com/slockit/in3/blob/master/src/types/types.ts#L54]

	
the codeHash of this account as hex

	
string

	
nonce [https://github.com/slockit/in3/blob/master/src/types/types.ts#L62]

	
the nonce of this account as hex

	
string

	
storageHash [https://github.com/slockit/in3/blob/master/src/types/types.ts#L66]

	
the storageHash of this account as hex

	
[]

	
storageProof [https://github.com/slockit/in3/blob/master/src/types/types.ts#L70]

	
proof for requested storage-data

Type AuraValidatoryProof

Source: index.ts [https://github.com/slockit/in3/blob/master/src/index.ts#L81]

a Object holding proofs for validator logs. The key is the blockNumber as hex
a Object holding proofs for validator logs. The key is the blockNumber as hex

	
string

	
block [https://github.com/slockit/in3/blob/master/src/types/types.ts#L97]

	
the serialized blockheader

example: 0x72804cfa0179d648ccbe6a65b01a6463a8f1ebb14f3aff6b19cb91acf2b8ec1ffee98c0437b4ac839d8a2ece1b18166da704b86d8f42c92bbda6463a8f1ebb14f3aff6b19cb91acf2b8ec1ffee98c0437b4ac839d8a2ece1b18166da704b

	
any []

	
finalityBlocks [https://github.com/slockit/in3/blob/master/src/types/types.ts#L110]

	
the serialized blockheader as hex, required in case of finality asked

example: 0x72804cfa0179d648ccbe6a65b01a6463a8f1ebb14f3aff6b19cb91acf2b8ec1ffee98c0437b4ac839d8a2ece1b18166da704b86d8f42c92bbda6463a8f1ebb14f3aff6b19cb91acf2b8ec1ffee98c0437b4ac839d8a2ece1b18166da704b (optional)

	
number

	
logIndex [https://github.com/slockit/in3/blob/master/src/types/types.ts#L92]

	
the transaction log index

	
string []

	
proof [https://github.com/slockit/in3/blob/master/src/types/types.ts#L105]

	
the merkleProof

	
number

	
txIndex [https://github.com/slockit/in3/blob/master/src/types/types.ts#L101]

	
the transactionIndex within the block

Type ChainSpec

Source: index.ts [https://github.com/slockit/in3/blob/master/src/index.ts#L92]

describes the chainspecific consensus params
describes the chainspecific consensus params

	
number

	
block [https://github.com/slockit/in3/blob/master/src/types/types.ts#L119]

	
the blocknumnber when this configuration should apply (optional)

	
number

	
bypassFinality [https://github.com/slockit/in3/blob/master/src/types/types.ts#L141]

	
Bypass finality check for transition to contract based Aura Engines

example: bypassFinality = 10960502 -> will skip the finality check and add the list at block 10960502 (optional)

	
string

	
contract [https://github.com/slockit/in3/blob/master/src/types/types.ts#L131]

	
The validator contract at the block (optional)

	
'ethHash'

| 'authorityRound'

| 'clique'

	
engine [https://github.com/slockit/in3/blob/master/src/types/types.ts#L123]

	
the engine type (like Ethhash, authorityRound, …) (optional)

	
string []

	
list [https://github.com/slockit/in3/blob/master/src/types/types.ts#L127]

	
The list of validators at the particular block (optional)

	
boolean

	
requiresFinality [https://github.com/slockit/in3/blob/master/src/types/types.ts#L136]

	
indicates whether the transition requires a finality check

example: true (optional)

Type IN3Client

Source: index.ts [https://github.com/slockit/in3/blob/master/src/index.ts#L45]

Client for N3.
Client for N3.

	
number

	
defaultMaxListeners [https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L9]

	
the defaultMaxListeners

	
number

	
listenerCount [https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L8] (

emitter:EventEmitter ,

event:string

| symbol)

	
listener count

	
Client

	
constructor [https://github.com/slockit/in3/blob/master/src/client/Client.ts#L80] (

config:Partial<IN3Config> ,

transport:Transport)

	
creates a new Client.

	
IN3Config

	
defConfig [https://github.com/slockit/in3/blob/master/src/client/Client.ts#L76]

	
the defConfig

	
EthAPI

	
eth [https://github.com/slockit/in3/blob/master/src/client/Client.ts#L72]

	
the eth

	
IpfsAPI

	
ipfs [https://github.com/slockit/in3/blob/master/src/client/Client.ts#L73]

	
the ipfs

	
IN3Config

	
config [https://github.com/slockit/in3/blob/master/src/client/Client.ts#L146]

	
config

	
this

	
addListener [https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L11] (

event:string

| symbol,

listener:)

	
add listener

	
Promise<any>

	
call [https://github.com/slockit/in3/blob/master/src/client/Client.ts#L259] (

method:string,

params:any,

chain:string,

config:Partial<IN3Config>)

	
sends a simply RPC-Request

	
void

	
clearStats [https://github.com/slockit/in3/blob/master/src/client/Client.ts#L311] ()

	
clears all stats and weights, like blocklisted nodes

	
any

	
createWeb3Provider [https://github.com/slockit/in3/blob/master/src/client/Client.ts#L127] ()

	
create web3 provider

	
boolean

	
emit [https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L23] (

event:string

| symbol,

args:any [])

	
emit

	
Array<>

	
eventNames [https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L24] ()

	
event names

	
ChainContext

	
getChainContext [https://github.com/slockit/in3/blob/master/src/client/Client.ts#L134] (

chainId:string)

	
Context for a specific chain including cache and chainSpecs.

	
number

	
getMaxListeners [https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L20] ()

	
get max listeners

	
number

	
listenerCount [https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L25] (

type:string

| symbol)

	
listener count

	
Function []

	
listeners [https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L21] (

event:string

| symbol)

	
listeners

	
this

	
off [https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L17] (

event:string

| symbol,

listener:)

	
off

	
this

	
on [https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L12] (

event:string

| symbol,

listener:)

	
on

	
this

	
once [https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L13] (

event:string

| symbol,

listener:)

	
once

	
this

	
prependListener [https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L14] (

event:string

| symbol,

listener:)

	
prepend listener

	
this

	
prependOnceListener [https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L15] (

event:string

| symbol,

listener:)

	
prepend once listener

	
Function []

	
rawListeners [https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L22] (

event:string

| symbol)

	
raw listeners

	
this

	
removeAllListeners [https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L18] (

event:string

| symbol)

	
remove all listeners

	
this

	
removeListener [https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L16] (

event:string

| symbol,

listener:)

	
remove listener

	
Promise<>

	
send [https://github.com/slockit/in3/blob/master/src/client/Client.ts#L271] (

request:RPCRequest []

| RPCRequest ,

callback:,

config:Partial<IN3Config>)

	
sends one or a multiple requests.

if the request is a array the response will be a array as well.

If the callback is given it will be called with the response, if not a Promise will be returned.

This function supports callback so it can be used as a Provider for the web3.

	
Promise<RPCResponse>

	
sendRPC [https://github.com/slockit/in3/blob/master/src/client/Client.ts#L248] (

method:string,

params:any [],

chain:string,

config:Partial<IN3Config>)

	
sends a simply RPC-Request

	
this

	
setMaxListeners [https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L19] (

n:number)

	
set max listeners

	
Promise<void>

	
updateNodeList [https://github.com/slockit/in3/blob/master/src/client/Client.ts#L182] (

chainId:string,

conf:Partial<IN3Config> ,

retryCount:number)

	
fetches the nodeList from the servers.

	
Promise<void>

	
updateWhiteListNodes [https://github.com/slockit/in3/blob/master/src/client/Client.ts#L155] (

config:IN3Config)

	
update white list nodes

	
Promise<boolean>

	
verifyResponse [https://github.com/slockit/in3/blob/master/src/client/Client.ts#L298] (

request:RPCRequest ,

response:RPCResponse ,

chain:string,

config:Partial<IN3Config>)

	
Verify the response of a request without any effect on the state of the client.

Note: The node-list will not be updated.

The method will either return true if its inputs could be verified.

Or else, it will throw an exception with a helpful message.

Type IN3Config

Source: index.ts [https://github.com/slockit/in3/blob/master/src/index.ts#L74]

the iguration of the IN3-Client. This can be paritally overriden for every request.
the iguration of the IN3-Client. This can be paritally overriden for every request.

	
boolean

	
archiveNodes [https://github.com/slockit/in3/blob/master/src/types/types.ts#L287]

	
if true the in3 client will filter out non archive supporting nodes

example: true (optional)

	
boolean

	
autoConfig [https://github.com/slockit/in3/blob/master/src/types/types.ts#L173]

	
if true the config will be adjusted depending on the request (optional)

	
boolean

	
autoUpdateList [https://github.com/slockit/in3/blob/master/src/types/types.ts#L255]

	
if true the nodelist will be automaticly updated if the lastBlock is newer

example: true (optional)

	
boolean

	
binaryNodes [https://github.com/slockit/in3/blob/master/src/types/types.ts#L297]

	
if true the in3 client will only include nodes that support binary encording

example: true (optional)

	
any

	
cacheStorage [https://github.com/slockit/in3/blob/master/src/types/types.ts#L259]

	
a cache handler offering 2 functions (setItem(string,string), getItem(string)) (optional)

	
number

	
cacheTimeout [https://github.com/slockit/in3/blob/master/src/types/types.ts#L150]

	
number of seconds requests can be cached. (optional)

	
string

	
chainId [https://github.com/slockit/in3/blob/master/src/types/types.ts#L240]

	
servers to filter for the given chain. The chain-id based on EIP-155.

example: 0x1

	
string

	
chainRegistry [https://github.com/slockit/in3/blob/master/src/types/types.ts#L245]

	
main chain-registry contract

example: 0xe36179e2286ef405e929C90ad3E70E649B22a945 (optional)

	
number

	
depositTimeout [https://github.com/slockit/in3/blob/master/src/types/types.ts#L307]

	
timeout after which the owner is allowed to receive its stored deposit. This information is also important for the client

example: 3000 (optional)

	
number

	
finality [https://github.com/slockit/in3/blob/master/src/types/types.ts#L230]

	
the number in percent needed in order reach finality (% of signature of the validators)

example: 50 (optional)

	
'json' | 'jsonRef' | 'cbor'

	
format [https://github.com/slockit/in3/blob/master/src/types/types.ts#L164]

	
the format for sending the data to the client. Default is json, but using cbor means using only 30-40% of the payload since it is using binary encoding

example: json (optional)

	
boolean

	
httpNodes [https://github.com/slockit/in3/blob/master/src/types/types.ts#L292]

	
if true the in3 client will include http nodes

example: true (optional)

	
boolean

	
includeCode [https://github.com/slockit/in3/blob/master/src/types/types.ts#L187]

	
if true, the request should include the codes of all accounts. otherwise only the the codeHash is returned. In this case the client may ask by calling eth_getCode() afterwards

example: true (optional)

	
boolean

	
keepIn3 [https://github.com/slockit/in3/blob/master/src/types/types.ts#L159]

	
if true, the in3-section of thr response will be kept. Otherwise it will be removed after validating the data. This is useful for debugging or if the proof should be used afterwards. (optional)

	
any

	
key [https://github.com/slockit/in3/blob/master/src/types/types.ts#L169]

	
the client key to sign requests

example: 0x387a8233c96e1fc0ad5e284353276177af2186e7afa85296f106336e376669f7 (optional)

	
string

	
loggerUrl [https://github.com/slockit/in3/blob/master/src/types/types.ts#L263]

	
a url of RES-Endpoint, the client will log all errors to. The client will post to this endpoint JSON like { id?, level, message, meta? } (optional)

	
string

	
mainChain [https://github.com/slockit/in3/blob/master/src/types/types.ts#L250]

	
main chain-id, where the chain registry is running.

example: 0x1 (optional)

	
number

	
maxAttempts [https://github.com/slockit/in3/blob/master/src/types/types.ts#L182]

	
max number of attempts in case a response is rejected

example: 10 (optional)

	
number

	
maxBlockCache [https://github.com/slockit/in3/blob/master/src/types/types.ts#L197]

	
number of number of blocks cached in memory

example: 100 (optional)

	
number

	
maxCodeCache [https://github.com/slockit/in3/blob/master/src/types/types.ts#L192]

	
number of max bytes used to cache the code in memory

example: 100000 (optional)

	
number

	
minDeposit [https://github.com/slockit/in3/blob/master/src/types/types.ts#L215]

	
min stake of the server. Only nodes owning at least this amount will be chosen.

	
boolean

	
multichainNodes [https://github.com/slockit/in3/blob/master/src/types/types.ts#L282]

	
if true the in3 client will filter out nodes other then which have capability of the same RPC endpoint may also accept requests for different chains

example: true (optional)

	
number

	
nodeLimit [https://github.com/slockit/in3/blob/master/src/types/types.ts#L155]

	
the limit of nodes to store in the client.

example: 150 (optional)

	
'none' | 'standard' | 'full'

	
proof [https://github.com/slockit/in3/blob/master/src/types/types.ts#L206]

	
if true the nodes should send a proof of the response

example: true (optional)

	
boolean

	
proofNodes [https://github.com/slockit/in3/blob/master/src/types/types.ts#L277]

	
if true the in3 client will filter out nodes which are providing no proof

example: true (optional)

	
number

	
replaceLatestBlock [https://github.com/slockit/in3/blob/master/src/types/types.ts#L220]

	
if specified, the blocknumber latest will be replaced by blockNumber- specified value

example: 6 (optional)

	
number

	
requestCount [https://github.com/slockit/in3/blob/master/src/types/types.ts#L225]

	
the number of request send when getting a first answer

example: 3

	
boolean

	
retryWithoutProof [https://github.com/slockit/in3/blob/master/src/types/types.ts#L177]

	
if true the the request may be handled without proof in case of an error. (use with care!) (optional)

	
string

	
rpc [https://github.com/slockit/in3/blob/master/src/types/types.ts#L267]

	
url of one or more rpc-endpoints to use. (list can be comma seperated) (optional)

	

	
servers [https://github.com/slockit/in3/blob/master/src/types/types.ts#L315]

	
the nodelist per chain (optional)

	
number

	
signatureCount [https://github.com/slockit/in3/blob/master/src/types/types.ts#L211]

	
number of signatures requested

example: 2 (optional)

	
number

	
timeout [https://github.com/slockit/in3/blob/master/src/types/types.ts#L235]

	
specifies the number of milliseconds before the request times out. increasing may be helpful if the device uses a slow connection.

example: 3000 (optional)

	
boolean

	
torNodes [https://github.com/slockit/in3/blob/master/src/types/types.ts#L302]

	
if true the in3 client will filter out non tor nodes

example: true (optional)

	
string []

	
verifiedHashes [https://github.com/slockit/in3/blob/master/src/types/types.ts#L201]

	
if the client sends a array of blockhashes the server will not deliver any signatures or blockheaders for these blocks, but only return a string with a number. This is automaticly updated by the cache, but can be overriden per request. (optional)

	
string []

	
whiteList [https://github.com/slockit/in3/blob/master/src/types/types.ts#L272]

	
a list of in3 server addresses which are whitelisted manually by client

example: 0xe36179e2286ef405e929C90ad3E70E649B22a945,0x6d17b34aeaf95fee98c0437b4ac839d8a2ece1b1 (optional)

	
string

	
whiteListContract [https://github.com/slockit/in3/blob/master/src/types/types.ts#L311]

	
White list contract address (optional)

Type IN3NodeConfig

Source: index.ts [https://github.com/slockit/in3/blob/master/src/index.ts#L75]

a configuration of a in3-server.
a configuration of a in3-server.

	
string

	
address [https://github.com/slockit/in3/blob/master/src/types/types.ts#L389]

	
the address of the node, which is the public address it iis signing with.

example: 0x6C1a01C2aB554930A937B0a2E8105fB47946c679

	
number

	
capacity [https://github.com/slockit/in3/blob/master/src/types/types.ts#L414]

	
the capacity of the node.

example: 100 (optional)

	
string []

	
chainIds [https://github.com/slockit/in3/blob/master/src/types/types.ts#L404]

	
the list of supported chains

example: 0x1

	
number

	
deposit [https://github.com/slockit/in3/blob/master/src/types/types.ts#L409]

	
the deposit of the node in wei

example: 12350000

	
number

	
index [https://github.com/slockit/in3/blob/master/src/types/types.ts#L384]

	
the index within the contract

example: 13 (optional)

	
number

	
props [https://github.com/slockit/in3/blob/master/src/types/types.ts#L419]

	
the properties of the node.

example: 3 (optional)

	
number

	
registerTime [https://github.com/slockit/in3/blob/master/src/types/types.ts#L424]

	
the UNIX-timestamp when the node was registered

example: 1563279168 (optional)

	
number

	
timeout [https://github.com/slockit/in3/blob/master/src/types/types.ts#L394]

	
the time (in seconds) until an owner is able to receive his deposit back after he unregisters himself

example: 3600 (optional)

	
number

	
unregisterTime [https://github.com/slockit/in3/blob/master/src/types/types.ts#L429]

	
the UNIX-timestamp when the node is allowed to be deregister

example: 1563279168 (optional)

	
string

	
url [https://github.com/slockit/in3/blob/master/src/types/types.ts#L399]

	
the endpoint to post to

example: https://in3.slock.it

Type IN3NodeWeight

Source: index.ts [https://github.com/slockit/in3/blob/master/src/index.ts#L76]

a local weight of a n3-node. (This is used internally to weight the requests)
a local weight of a n3-node. (This is used internally to weight the requests)

	
number

	
avgResponseTime [https://github.com/slockit/in3/blob/master/src/types/types.ts#L449]

	
average time of a response in ms

example: 240 (optional)

	
number

	
blacklistedUntil [https://github.com/slockit/in3/blob/master/src/types/types.ts#L463]

	
blacklisted because of failed requests until the timestamp

example: 1529074639623 (optional)

	
number

	
lastRequest [https://github.com/slockit/in3/blob/master/src/types/types.ts#L458]

	
timestamp of the last request in ms

example: 1529074632623 (optional)

	
number

	
pricePerRequest [https://github.com/slockit/in3/blob/master/src/types/types.ts#L453]

	
last price (optional)

	
number

	
responseCount [https://github.com/slockit/in3/blob/master/src/types/types.ts#L444]

	
number of uses.

example: 147 (optional)

	
number

	
weight [https://github.com/slockit/in3/blob/master/src/types/types.ts#L439]

	
factor the weight this noe (default 1.0)

example: 0.5 (optional)

Type IN3RPCConfig

Source: index.ts [https://github.com/slockit/in3/blob/master/src/index.ts#L90]

the configuration for the rpc-handler
the configuration for the rpc-handler

	

	
chains [https://github.com/slockit/in3/blob/master/src/types/types.ts#L561]

	
a definition of the Handler per chain (optional)

	

	
db [https://github.com/slockit/in3/blob/master/src/types/types.ts#L481]

	
the db (optional)

	
string

	
defaultChain [https://github.com/slockit/in3/blob/master/src/types/types.ts#L476]

	
the default chainId in case the request does not contain one. (optional)

	
string

	
id [https://github.com/slockit/in3/blob/master/src/types/types.ts#L472]

	
a identifier used in logfiles as also for reading the config from the database (optional)

	

	
logging [https://github.com/slockit/in3/blob/master/src/types/types.ts#L528]

	
logger config (optional)

	
number

	
port [https://github.com/slockit/in3/blob/master/src/types/types.ts#L480]

	
the listeneing port for the server (optional)

	

	
profile [https://github.com/slockit/in3/blob/master/src/types/types.ts#L503]

	
the profile (optional)

Type IN3RPCHandlerConfig

Source: index.ts [https://github.com/slockit/in3/blob/master/src/index.ts#L91]

the configuration for the rpc-handler
the configuration for the rpc-handler

	

	
autoRegistry [https://github.com/slockit/in3/blob/master/src/types/types.ts#L633]

	
the autoRegistry (optional)

	
string

	
clientKeys [https://github.com/slockit/in3/blob/master/src/types/types.ts#L588]

	
a comma sepearted list of client keys to use for simulating clients for the watchdog (optional)

	
number

	
freeScore [https://github.com/slockit/in3/blob/master/src/types/types.ts#L596]

	
the score for requests without a valid signature (optional)

	
'eth' | 'ipfs' | 'btc'

	
handler [https://github.com/slockit/in3/blob/master/src/types/types.ts#L572]

	
the impl used to handle the calls (optional)

	
string

	
ipfsUrl [https://github.com/slockit/in3/blob/master/src/types/types.ts#L576]

	
the url of the ipfs-client (optional)

	
number

	
maxThreads [https://github.com/slockit/in3/blob/master/src/types/types.ts#L604]

	
the maximal number of threads ofr running parallel processes (optional)

	
number

	
minBlockHeight [https://github.com/slockit/in3/blob/master/src/types/types.ts#L600]

	
the minimal blockheight in order to sign (optional)

	
string

	
persistentFile [https://github.com/slockit/in3/blob/master/src/types/types.ts#L608]

	
the filename of the file keeping track of the last handled blocknumber (optional)

	
string

	
privateKey [https://github.com/slockit/in3/blob/master/src/types/types.ts#L620]

	
the private key used to sign blockhashes. this can be either a 0x-prefixed string with the raw private key or the path to a key-file.

	
string

	
privateKeyPassphrase [https://github.com/slockit/in3/blob/master/src/types/types.ts#L624]

	
the password used to decrpyt the private key (optional)

	
string

	
registry [https://github.com/slockit/in3/blob/master/src/types/types.ts#L628]

	
the address of the server registry used in order to update the nodeList

	
string

	
registryRPC [https://github.com/slockit/in3/blob/master/src/types/types.ts#L632]

	
the url of the client in case the registry is not on the same chain. (optional)

	
string

	
rpcUrl [https://github.com/slockit/in3/blob/master/src/types/types.ts#L584]

	
the url of the client

	
number

	
startBlock [https://github.com/slockit/in3/blob/master/src/types/types.ts#L612]

	
blocknumber to start watching the registry (optional)

	
number

	
timeout [https://github.com/slockit/in3/blob/master/src/types/types.ts#L580]

	
number of milliseconds to wait before a request gets a timeout (optional)

	
number

	
watchInterval [https://github.com/slockit/in3/blob/master/src/types/types.ts#L616]

	
the number of seconds of the interval for checking for new events (optional)

	
number

	
watchdogInterval [https://github.com/slockit/in3/blob/master/src/types/types.ts#L592]

	
average time between sending requests to the same node. 0 turns it off (default) (optional)

Type IN3RPCRequestConfig

Source: index.ts [https://github.com/slockit/in3/blob/master/src/index.ts#L77]

additional config for a IN3 RPC-Request
additional config for a IN3 RPC-Request

	
string

	
chainId [https://github.com/slockit/in3/blob/master/src/types/types.ts#L670]

	
the requested chainId

example: 0x1

	
any

	
clientSignature [https://github.com/slockit/in3/blob/master/src/types/types.ts#L709]

	
the signature of the client (optional)

	
number

	
finality [https://github.com/slockit/in3/blob/master/src/types/types.ts#L700]

	
if given the server will deliver the blockheaders of the following blocks until at least the number in percent of the validators is reached. (optional)

	
boolean

	
includeCode [https://github.com/slockit/in3/blob/master/src/types/types.ts#L675]

	
if true, the request should include the codes of all accounts. otherwise only the the codeHash is returned. In this case the client may ask by calling eth_getCode() afterwards

example: true (optional)

	
number

	
latestBlock [https://github.com/slockit/in3/blob/master/src/types/types.ts#L684]

	
if specified, the blocknumber latest will be replaced by blockNumber- specified value

example: 6 (optional)

	
string []

	
signatures [https://github.com/slockit/in3/blob/master/src/types/types.ts#L714]

	
a list of addresses requested to sign the blockhash

example: 0x6C1a01C2aB554930A937B0a2E8105fB47946c679 (optional)

	
boolean

	
useBinary [https://github.com/slockit/in3/blob/master/src/types/types.ts#L692]

	
if true binary-data will be used. (optional)

	
boolean

	
useFullProof [https://github.com/slockit/in3/blob/master/src/types/types.ts#L696]

	
if true all data in the response will be proven, which leads to a higher payload. (optional)

	
boolean

	
useRef [https://github.com/slockit/in3/blob/master/src/types/types.ts#L688]

	
if true binary-data (starting with a 0x) will be refered if occuring again. (optional)

	
'never'

| 'proof'

| 'proofWithSignature'

	
verification [https://github.com/slockit/in3/blob/master/src/types/types.ts#L705]

	
defines the kind of proof the client is asking for

example: proof (optional)

	
string []

	
verifiedHashes [https://github.com/slockit/in3/blob/master/src/types/types.ts#L679]

	
if the client sends a array of blockhashes the server will not deliver any signatures or blockheaders for these blocks, but only return a string with a number. (optional)

	
string

	
version [https://github.com/slockit/in3/blob/master/src/types/types.ts#L719]

	
IN3 protocol version that client can specify explicitly in request

example: 1.0.0 (optional)

	
string

	
whiteList [https://github.com/slockit/in3/blob/master/src/types/types.ts#L724]

	
address of whitelist contract if added in3 server will register it in watch

and will notify client the whitelist event block number in reponses it depends on cahce settings (optional)

Type IN3ResponseConfig

Source: index.ts [https://github.com/slockit/in3/blob/master/src/index.ts#L78]

additional data returned from a IN3 Server
additional data returned from a IN3 Server

	
number

	
currentBlock [https://github.com/slockit/in3/blob/master/src/types/types.ts#L747]

	
the current blocknumber.

example: 320126478 (optional)

	
number

	
lastNodeList [https://github.com/slockit/in3/blob/master/src/types/types.ts#L738]

	
the blocknumber for the last block updating the nodelist. If the client has a smaller blocknumber he should update the nodeList.

example: 326478 (optional)

	
number

	
lastValidatorChange [https://github.com/slockit/in3/blob/master/src/types/types.ts#L742]

	
the blocknumber of the last change of the validatorList (optional)

	
number

	
lastWhiteList [https://github.com/slockit/in3/blob/master/src/types/types.ts#L756]

	
The blocknumber of the last white list event (optional)

	
Proof

	
proof [https://github.com/slockit/in3/blob/master/src/types/types.ts#L733]

	
the Proof-data (optional)

	
string

	
version [https://github.com/slockit/in3/blob/master/src/types/types.ts#L752]

	
IN3 protocol version

example: 1.0.0 (optional)

Type LogProof

Source: index.ts [https://github.com/slockit/in3/blob/master/src/index.ts#L79]

a Object holding proofs for event logs. The key is the blockNumber as hex
a Object holding proofs for event logs. The key is the blockNumber as hex

Type Proof

Source: index.ts [https://github.com/slockit/in3/blob/master/src/index.ts#L80]

the Proof-data as part of the in3-section
the Proof-data as part of the in3-section

	

	
accounts [https://github.com/slockit/in3/blob/master/src/types/types.ts#L849]

	
a map of addresses and their AccountProof (optional)

	
string

	
block [https://github.com/slockit/in3/blob/master/src/types/types.ts#L814]

	
the serialized blockheader as hex, required in most proofs

example: 0x72804cfa0179d648ccbe6a65b01a6463a8f1ebb14f3aff6b19cb91acf2b8ec1ffee98c0437b4ac839d8a2ece1b18166da704b86d8f42c92bbda6463a8f1ebb14f3aff6b19cb91acf2b8ec1ffee98c0437b4ac839d8a2ece1b18166da704b (optional)

	
any []

	
finalityBlocks [https://github.com/slockit/in3/blob/master/src/types/types.ts#L819]

	
the serialized blockheader as hex, required in case of finality asked

example: 0x72804cfa0179d648ccbe6a65b01a6463a8f1ebb14f3aff6b19cb91acf2b8ec1ffee98c0437b4ac839d8a2ece1b18166da704b86d8f42c92bbda6463a8f1ebb14f3aff6b19cb91acf2b8ec1ffee98c0437b4ac839d8a2ece1b18166da704b (optional)

	
LogProof

	
logProof [https://github.com/slockit/in3/blob/master/src/types/types.ts#L845]

	
the Log Proof in case of a Log-Request (optional)

	
string []

	
merkleProof [https://github.com/slockit/in3/blob/master/src/types/types.ts#L833]

	
the serialized merle-noodes beginning with the root-node (optional)

	
string []

	
merkleProofPrev [https://github.com/slockit/in3/blob/master/src/types/types.ts#L837]

	
the serialized merkle-noodes beginning with the root-node of the previous entry (only for full proof of receipts) (optional)

	
Signature []

	
signatures [https://github.com/slockit/in3/blob/master/src/types/types.ts#L860]

	
requested signatures (optional)

	
any []

	
transactions [https://github.com/slockit/in3/blob/master/src/types/types.ts#L824]

	
the list of transactions of the block

example: (optional)

	
number

	
txIndex [https://github.com/slockit/in3/blob/master/src/types/types.ts#L856]

	
the transactionIndex within the block

example: 4 (optional)

	
string []

	
txProof [https://github.com/slockit/in3/blob/master/src/types/types.ts#L841]

	
the serialized merkle-nodes beginning with the root-node in order to prrof the transactionIndex (optional)

	
'transactionProof'

| 'receiptProof'

| 'blockProof'

| 'accountProof'

| 'callProof'

| 'logProof'

	
type [https://github.com/slockit/in3/blob/master/src/types/types.ts#L809]

	
the type of the proof

example: accountProof

	
any []

	
uncles [https://github.com/slockit/in3/blob/master/src/types/types.ts#L829]

	
the list of uncle-headers of the block

example: (optional)

Type RPCRequest

Source: index.ts [https://github.com/slockit/in3/blob/master/src/index.ts#L72]

a JSONRPC-Request with N3-Extension
a JSONRPC-Request with N3-Extension

	
number | string

	
id [https://github.com/slockit/in3/blob/master/src/types/types.ts#L879]

	
the identifier of the request

example: 2 (optional)

	
IN3RPCRequestConfig

	
in3 [https://github.com/slockit/in3/blob/master/src/types/types.ts#L888]

	
the IN3-Config (optional)

	
'2.0'

	
jsonrpc [https://github.com/slockit/in3/blob/master/src/types/types.ts#L869]

	
the version

	
string

	
method [https://github.com/slockit/in3/blob/master/src/types/types.ts#L874]

	
the method to call

example: eth_getBalance

	
any []

	
params [https://github.com/slockit/in3/blob/master/src/types/types.ts#L884]

	
the params

example: 0xe36179e2286ef405e929C90ad3E70E649B22a945,latest (optional)

Type RPCResponse

Source: index.ts [https://github.com/slockit/in3/blob/master/src/index.ts#L82]

a JSONRPC-Responset with N3-Extension
a JSONRPC-Responset with N3-Extension

	
string

	
error [https://github.com/slockit/in3/blob/master/src/types/types.ts#L906]

	
in case of an error this needs to be set (optional)

	
string | number

	
id [https://github.com/slockit/in3/blob/master/src/types/types.ts#L902]

	
the id matching the request

example: 2

	
IN3ResponseConfig

	
in3 [https://github.com/slockit/in3/blob/master/src/types/types.ts#L915]

	
the IN3-Result (optional)

	
IN3NodeConfig

	
in3Node [https://github.com/slockit/in3/blob/master/src/types/types.ts#L919]

	
the node handling this response (internal only) (optional)

	
'2.0'

	
jsonrpc [https://github.com/slockit/in3/blob/master/src/types/types.ts#L897]

	
the version

	
any

	
result [https://github.com/slockit/in3/blob/master/src/types/types.ts#L911]

	
the params

example: 0xa35bc (optional)

Type ServerList

Source: index.ts [https://github.com/slockit/in3/blob/master/src/index.ts#L85]

a List of nodes
a List of nodes

	
string

	
contract [https://github.com/slockit/in3/blob/master/src/types/types.ts#L936]

	
IN3 Registry (optional)

	
number

	
lastBlockNumber [https://github.com/slockit/in3/blob/master/src/types/types.ts#L928]

	
last Block number (optional)

	
IN3NodeConfig []

	
nodes [https://github.com/slockit/in3/blob/master/src/types/types.ts#L932]

	
the list of nodes

	
Proof

	
proof [https://github.com/slockit/in3/blob/master/src/types/types.ts#L945]

	
the proof (optional)

	
string

	
registryId [https://github.com/slockit/in3/blob/master/src/types/types.ts#L940]

	
registry id of the contract (optional)

	
number

	
totalServers [https://github.com/slockit/in3/blob/master/src/types/types.ts#L944]

	
number of servers (optional)

Type Signature

Source: index.ts [https://github.com/slockit/in3/blob/master/src/index.ts#L83]

Verified ECDSA Signature. Signatures are a pair (r, s). Where r is computed as the X coordinate of a point R, modulo the curve order n.
Verified ECDSA Signature. Signatures are a pair (r, s). Where r is computed as the X coordinate of a point R, modulo the curve order n.

	
string

	
address [https://github.com/slockit/in3/blob/master/src/types/types.ts#L955]

	
the address of the signing node

example: 0x6C1a01C2aB554930A937B0a2E8105fB47946c679 (optional)

	
number

	
block [https://github.com/slockit/in3/blob/master/src/types/types.ts#L960]

	
the blocknumber

example: 3123874

	
string

	
blockHash [https://github.com/slockit/in3/blob/master/src/types/types.ts#L965]

	
the hash of the block

example: 0x6C1a01C2aB554930A937B0a212346037E8105fB47946c679

	
string

	
msgHash [https://github.com/slockit/in3/blob/master/src/types/types.ts#L970]

	
hash of the message

example: 0x9C1a01C2aB554930A937B0a212346037E8105fB47946AB5D

	
string

	
r [https://github.com/slockit/in3/blob/master/src/types/types.ts#L975]

	
Positive non-zero Integer signature.r

example: 0x72804cfa0179d648ccbe6a65b01a6463a8f1ebb14f3aff6b19cb91acf2b8ec1f

	
string

	
s [https://github.com/slockit/in3/blob/master/src/types/types.ts#L980]

	
Positive non-zero Integer signature.s

example: 0x6d17b34aeaf95fee98c0437b4ac839d8a2ece1b18166da704b86d8f42c92bbda

	
number

	
v [https://github.com/slockit/in3/blob/master/src/types/types.ts#L985]

	
Calculated curve point, or identity element O.

example: 28

Type Transport

Source: index.ts [https://github.com/slockit/in3/blob/master/src/index.ts#L84]

= _transporttype

Package modules/eth

Type EthAPI

Source: modules/eth/api.ts [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L290]

	
EthAPI

	
constructor [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L292] (

client:Client)

	
constructor

	
Client

	
client [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L291]

	
the client

	
Signer

	
signer [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L292]

	
the signer (optional)

	
Promise<number>

	
blockNumber [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L307] ()

	
Returns the number of most recent block. (as number)

	
Promise<string>

	
call [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L320] (

tx:Transaction ,

block:BlockType)

	
Executes a new message call immediately without creating a transaction on the block chain.

	
Promise<any>

	
callFn [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L327] (

to:Address ,

method:string,

args:any [])

	
Executes a function of a contract, by passing a [method-signature](https://github.com/ethereumjs/ethereumjs-abi/blob/master/README.md#simple-encoding-and-decoding) and the arguments, which will then be ABI-encoded and send as eth_call.

	
Promise<string>

	
chainId [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L335] ()

	
Returns the EIP155 chain ID used for transaction signing at the current best block. Null is returned if not available.

	

	
contractAt [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L627] (

abi:ABI [],

address:Address)

	
contract at

	
any

	
decodeEventData [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L708] (

log:Log ,

d:ABI)

	
decode event data

	
Promise<number>

	
estimateGas [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L342] (

tx:Transaction)

	
Makes a call or transaction, which won’t be added to the blockchain and returns the used gas, which can be used for estimating the used gas.

	
Promise<number>

	
gasPrice [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L313] ()

	
Returns the current price per gas in wei. (as number)

	
Promise<BN>

	
getBalance [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L349] (

address:Address ,

block:BlockType)

	
Returns the balance of the account of given address in wei (as hex).

	
Promise<Block>

	
getBlockByHash [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L372] (

hash:Hash ,

includeTransactions:boolean)

	
Returns information about a block by hash.

	
Promise<Block>

	
getBlockByNumber [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L379] (

block:BlockType ,

includeTransactions:boolean)

	
Returns information about a block by block number.

	
Promise<number>

	
getBlockTransactionCountByHash [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L387] (

block:Hash)

	
Returns the number of transactions in a block from a block matching the given block hash.

	
Promise<number>

	
getBlockTransactionCountByNumber [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L395] (

block:Hash)

	
Returns the number of transactions in a block from a block matching the given block number.

	
Promise<string>

	
getCode [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L356] (

address:Address ,

block:BlockType)

	
Returns code at a given address.

	
Promise<>

	
getFilterChanges [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L402] (

id:Quantity)

	
Polling method for a filter, which returns an array of logs which occurred since last poll.

	
Promise<>

	
getFilterLogs [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L409] (

id:Quantity)

	
Returns an array of all logs matching filter with given id.

	
Promise<>

	
getLogs [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L416] (

filter:LogFilter)

	
Returns an array of all logs matching a given filter object.

	
Promise<string>

	
getStorageAt [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L364] (

address:Address ,

pos:Quantity ,

block:BlockType)

	
Returns the value from a storage position at a given address.

	
Promise<TransactionDetail>

	
getTransactionByBlockHashAndIndex [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L429] (

hash:Hash ,

pos:Quantity)

	
Returns information about a transaction by block hash and transaction index position.

	
Promise<TransactionDetail>

	
getTransactionByBlockNumberAndIndex [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L437] (

block:BlockType ,

pos:Quantity)

	
Returns information about a transaction by block number and transaction index position.

	
Promise<TransactionDetail>

	
getTransactionByHash [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L444] (

hash:Hash)

	
Returns the information about a transaction requested by transaction hash.

	
Promise<number>

	
getTransactionCount [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L451] (

address:Address ,

block:BlockType)

	
Returns the number of transactions sent from an address. (as number)

	
Promise<TransactionReceipt>

	
getTransactionReceipt [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L459] (

hash:Hash)

	
Returns the receipt of a transaction by transaction hash.

Note That the receipt is available even for pending transactions.

	
Promise<Block>

	
getUncleByBlockHashAndIndex [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L471] (

hash:Hash ,

pos:Quantity)

	
Returns information about a uncle of a block by hash and uncle index position.

Note: An uncle doesn’t contain individual transactions.

	
Promise<Block>

	
getUncleByBlockNumberAndIndex [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L480] (

block:BlockType ,

pos:Quantity)

	
Returns information about a uncle of a block number and uncle index position.

Note: An uncle doesn’t contain individual transactions.

	
Promise<number>

	
getUncleCountByBlockHash [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L487] (

hash:Hash)

	
Returns the number of uncles in a block from a block matching the given block hash.

	
Promise<number>

	
getUncleCountByBlockNumber [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L494] (

block:BlockType)

	
Returns the number of uncles in a block from a block matching the given block hash.

	
Buffer

	
hashMessage [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L711] (

data:Data

| Buffer)

	
hash message

	
Promise<string>

	
newBlockFilter [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L502] ()

	
Creates a filter in the node, to notify when a new block arrives. To check if the state has changed, call eth_getFilterChanges.

	
Promise<string>

	
newFilter [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L519] (

filter:LogFilter)

	
Creates a filter object, based on filter options, to notify when the state changes (logs). To check if the state has changed, call eth_getFilterChanges.

	
Promise<string>

	
newPendingTransactionFilter [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L528] ()

	
Creates a filter in the node, to notify when new pending transactions arrive.

	
Promise<string>

	
protocolVersion [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L543] ()

	
Returns the current ethereum protocol version.

	
Promise<string>

	
sendRawTransaction [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L572] (

data:Data)

	
Creates new message call transaction or a contract creation for signed transactions.

	
Promise<>

	
sendTransaction [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L599] (

args:TxRequest)

	
sends a Transaction

	
Promise<Signature>

	
sign [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L581] (

account:Address ,

data:Data)

	
signs any kind of message using the x19Ethereum Signed Message:n-prefix

	
Promise<>

	
syncing [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L550] ()

	
Returns the current ethereum protocol version.

	
Promise<Quantity>

	
uninstallFilter [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L536] (

id:Quantity)

	
Uninstalls a filter with given id. Should always be called when watch is no longer needed. Additonally Filters timeout when they aren’t requested with eth_getFilterChanges for a period of time.

Type chainData

Source: modules/eth/chainData.ts [https://github.com/slockit/in3/blob/master/src/modules/eth/chainData.ts#L1]

	
Promise<any>

	
callContract [https://github.com/slockit/in3/blob/master/src/modules/eth/chainData.ts#L42] (

client:Client ,

contract:string,

chainId:string,

signature:string,

args:any [],

config:IN3Config)

	
call contract

	
Promise<>

	
getChainData [https://github.com/slockit/in3/blob/master/src/modules/eth/chainData.ts#L51] (

client:Client ,

chainId:string,

config:IN3Config)

	
get chain data

Type header

Source: modules/eth/header.ts [https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L1]

	
Interface

	
AuthSpec

	
Authority specification for proof of authority chains

	
Interface

	
HistoryEntry

	
the HistoryEntry

	
Promise<void>

	
addAuraValidators [https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L168] (

history:DeltaHistory<string> ,

ctx:ChainContext ,

states:HistoryEntry [],

contract:string)

	
add aura validators

	
void

	
addCliqueValidators [https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L128] (

history:DeltaHistory<string> ,

ctx:ChainContext ,

states:HistoryEntry [])

	
add clique validators

	
Promise<number>

	
checkBlockSignatures [https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L60] (

blockHeaders:any [],

getChainSpec:)

	
verify a Blockheader and returns the percentage of finality

	
void

	
checkForFinality [https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L233] (

stateBlockNumber:number,

proof:AuraValidatoryProof ,

current:Buffer [],

_finality:number)

	
check for finality

	
Promise<void>

	
checkForValidators [https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L213] (

ctx:ChainContext ,

validators:DeltaHistory<string>)

	
check for validators

	
Promise<AuthSpec>

	
getChainSpec [https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L263] (

b:Block ,

ctx:ChainContext)

	
get chain spec

	
Buffer

	
getCliqueSigner [https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L120] (

data:Block)

	
get clique signer

	
Buffer

	
getSigner [https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L109] (

data:Block)

	
get signer

Type Signer

Source: modules/eth/api.ts [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L278]

	
Promise<Transaction>

	
prepareTransaction [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L280] (

client:Client ,

tx:Transaction)

	
optiional method which allows to change the transaction-data before sending it. This can be used for redirecting it through a multisig.

	
Promise<Signature>

	
sign [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L286] (

data:Buffer ,

account:Address)

	
signing of any data.

	
Promise<boolean>

	
hasAccount [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L283] (

account:Address)

	
returns true if the account is supported (or unlocked)

Type Transaction

Source: modules/eth/api.ts [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L76]

	
any

	
chainId [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L92]

	
optional chain id (optional)

	
string

	
data [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L88]

	
4 byte hash of the method signature followed by encoded parameters. For details see Ethereum Contract ABI.

	
Address

	
from [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L78]

	
20 Bytes - The address the transaction is send from.

	
Quantity

	
gas [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L82]

	
Integer of the gas provided for the transaction execution. eth_call consumes zero gas, but this parameter may be needed by some executions.

	
Quantity

	
gasPrice [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L84]

	
Integer of the gas price used for each paid gas.

	
Quantity

	
nonce [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L90]

	
nonce

	
Address

	
to [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L80]

	
(optional when creating new contract) 20 Bytes - The address the transaction is directed to.

	
Quantity

	
value [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L86]

	
Integer of the value sent with this transaction.

Type BlockType

Source: modules/eth/api.ts [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L44]

= number | 'latest' | 'earliest' | 'pending'

Type Address

Source: modules/eth/api.ts [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L48]

= string

Type ABI

Source: modules/eth/api.ts [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L65]

	
boolean

	
anonymous [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L66]

	
the anonymous (optional)

	
boolean

	
constant [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L67]

	
the constant (optional)

	
ABIField []

	
inputs [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L71]

	
the inputs (optional)

	
string

	
name [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L73]

	
the name (optional)

	
ABIField []

	
outputs [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L72]

	
the outputs (optional)

	
boolean

	
payable [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L68]

	
the payable (optional)

	
'nonpayable'

| 'payable'

| 'view'

| 'pure'

	
stateMutability [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L69]

	
the stateMutability (optional)

	
'event'

| 'function'

| 'constructor'

| 'fallback'

	
type [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L74]

	
the type

Type Log

Source: modules/eth/api.ts [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L209]

	
Address

	
address [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L223]

	
20 Bytes - address from which this log originated.

	
Hash

	
blockHash [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L219]

	
Hash, 32 Bytes - hash of the block where this log was in. null when its pending. null when its pending log.

	
Quantity

	
blockNumber [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L221]

	
the block number where this log was in. null when its pending. null when its pending log.

	
Data

	
data [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L225]

	
contains the non-indexed arguments of the log.

	
Quantity

	
logIndex [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L213]

	
integer of the log index position in the block. null when its pending log.

	
boolean

	
removed [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L211]

	
true when the log was removed, due to a chain reorganization. false if its a valid log.

	
Data []

	
topics [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L227]

	
- Array of 0 to 4 32 Bytes DATA of indexed log arguments. (In solidity: The first topic is the hash of the signature of the event (e.g. Deposit(address,bytes32,uint256)), except you declared the event with the anonymous specifier.)

	
Hash

	
transactionHash [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L217]

	
Hash, 32 Bytes - hash of the transactions this log was created from. null when its pending log.

	
Quantity

	
transactionIndex [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L215]

	
integer of the transactions index position log was created from. null when its pending log.

Type Block

Source: modules/eth/api.ts [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L165]

	
Address

	
author [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L185]

	
20 Bytes - the address of the author of the block (the beneficiary to whom the mining rewards were given)

	
Quantity

	
difficulty [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L189]

	
integer of the difficulty for this block

	
Data

	
extraData [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L193]

	
the ‘extra data’ field of this block

	
Quantity

	
gasLimit [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L197]

	
the maximum gas allowed in this block

	
Quantity

	
gasUsed [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L199]

	
the total used gas by all transactions in this block

	
Hash

	
hash [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L169]

	
hash of the block. null when its pending block

	
Data

	
logsBloom [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L177]

	
256 Bytes - the bloom filter for the logs of the block. null when its pending block

	
Address

	
miner [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L187]

	
20 Bytes - alias of ‘author’

	
Data

	
nonce [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L173]

	
8 bytes hash of the generated proof-of-work. null when its pending block. Missing in case of PoA.

	
Quantity

	
number [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L167]

	
The block number. null when its pending block

	
Hash

	
parentHash [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L171]

	
hash of the parent block

	
Data

	
receiptsRoot [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L183]

	
32 Bytes - the root of the receipts trie of the block

	
Data []

	
sealFields [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L207]

	
PoA-Fields

	
Data

	
sha3Uncles [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L175]

	
SHA3 of the uncles data in the block

	
Quantity

	
size [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L195]

	
integer the size of this block in bytes

	
Data

	
stateRoot [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L181]

	
32 Bytes - the root of the final state trie of the block

	
Quantity

	
timestamp [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L201]

	
the unix timestamp for when the block was collated

	
Quantity

	
totalDifficulty [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L191]

	
integer of the total difficulty of the chain until this block

	
string | []

	
transactions [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L203]

	
Array of transaction objects, or 32 Bytes transaction hashes depending on the last given parameter

	
Data

	
transactionsRoot [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L179]

	
32 Bytes - the root of the transaction trie of the block

	
Hash []

	
uncles [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L205]

	
Array of uncle hashes

Type Hash

Source: modules/eth/api.ts [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L47]

= string

Type Quantity

Source: modules/eth/api.ts [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L46]

= number | Hex

Type LogFilter

Source: modules/eth/api.ts [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L230]

	
Address

	
address [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L236]

	
(optional) 20 Bytes - Contract address or a list of addresses from which logs should originate.

	
BlockType

	
fromBlock [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L232]

	
Quantity or Tag - (optional) (default: latest) Integer block number, or ‘latest’ for the last mined block or ‘pending’, ‘earliest’ for not yet mined transactions.

	
Quantity

	
limit [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L240]

	
å(optional) The maximum number of entries to retrieve (latest first).

	
BlockType

	
toBlock [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L234]

	
Quantity or Tag - (optional) (default: latest) Integer block number, or ‘latest’ for the last mined block or ‘pending’, ‘earliest’ for not yet mined transactions.

	
string | string [] []

	
topics [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L238]

	
(optional) Array of 32 Bytes Data topics. Topics are order-dependent. It’s possible to pass in null to match any topic, or a subarray of multiple topics of which one should be matching.

Type TransactionDetail

Source: modules/eth/api.ts [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L122]

	
Hash

	
blockHash [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L128]

	
32 Bytes - hash of the block where this transaction was in. null when its pending.

	
BlockType

	
blockNumber [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L130]

	
block number where this transaction was in. null when its pending.

	
Quantity

	
chainId [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L156]

	
the chain id of the transaction, if any.

	
any

	
condition [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L160]

	
(optional) conditional submission, Block number in block or timestamp in time or null. (parity-feature)

	
Address

	
creates [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L158]

	
creates contract address

	
Address

	
from [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L134]

	
20 Bytes - address of the sender.

	
Quantity

	
gas [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L142]

	
gas provided by the sender.

	
Quantity

	
gasPrice [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L140]

	
gas price provided by the sender in Wei.

	
Hash

	
hash [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L124]

	
32 Bytes - hash of the transaction.

	
Data

	
input [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L144]

	
the data send along with the transaction.

	
Quantity

	
nonce [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L126]

	
the number of transactions made by the sender prior to this one.

	
any

	
pk [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L162]

	
optional: the private key to use for signing (optional)

	
Hash

	
publicKey [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L154]

	
public key of the signer.

	
Quantity

	
r [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L150]

	
the R field of the signature.

	
Data

	
raw [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L152]

	
raw transaction data

	
Quantity

	
standardV [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L148]

	
the standardised V field of the signature (0 or 1).

	
Address

	
to [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L136]

	
20 Bytes - address of the receiver. null when its a contract creation transaction.

	
Quantity

	
transactionIndex [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L132]

	
integer of the transactions index position in the block. null when its pending.

	
Quantity

	
v [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L146]

	
the standardised V field of the signature.

	
Quantity

	
value [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L138]

	
value transferred in Wei.

Type TransactionReceipt

Source: modules/eth/api.ts [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L94]

	
Hash

	
blockHash [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L96]

	
32 Bytes - hash of the block where this transaction was in.

	
BlockType

	
blockNumber [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L98]

	
block number where this transaction was in.

	
Address

	
contractAddress [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L100]

	
20 Bytes - The contract address created, if the transaction was a contract creation, otherwise null.

	
Quantity

	
cumulativeGasUsed [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L102]

	
The total amount of gas used when this transaction was executed in the block.

	
Address

	
from [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L104]

	
20 Bytes - The address of the sender.

	
Quantity

	
gasUsed [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L108]

	
The amount of gas used by this specific transaction alone.

	
Log []

	
logs [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L110]

	
Array of log objects, which this transaction generated.

	
Data

	
logsBloom [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L112]

	
256 Bytes - A bloom filter of logs/events generated by contracts during transaction execution. Used to efficiently rule out transactions without expected logs.

	
Hash

	
root [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L114]

	
32 Bytes - Merkle root of the state trie after the transaction has been executed (optional after Byzantium hard fork EIP609)

	
Quantity

	
status [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L116]

	
0x0 indicates transaction failure , 0x1 indicates transaction success. Set for blocks mined after Byzantium hard fork EIP609, null before.

	
Address

	
to [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L106]

	
20 Bytes - The address of the receiver. null when it’s a contract creation transaction.

	
Hash

	
transactionHash [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L118]

	
32 Bytes - hash of the transaction.

	
Quantity

	
transactionIndex [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L120]

	
Integer of the transactions index position in the block.

Type Data

Source: modules/eth/api.ts [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L49]

= string

Type TxRequest

Source: modules/eth/api.ts [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L243]

	
any []

	
args [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L269]

	
the argument to pass to the method (optional)

	
number

	
confirmations [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L275]

	
number of block to wait before confirming (optional)

	
Data

	
data [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L251]

	
the data to send (optional)

	
Address

	
from [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L248]

	
address of the account to use (optional)

	
number

	
gas [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L254]

	
the gas needed (optional)

	
number

	
gasPrice [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L257]

	
the gasPrice used (optional)

	
string

	
method [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L266]

	
the ABI of the method to be used (optional)

	
number

	
nonce [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L260]

	
the nonce (optional)

	
Hash

	
pk [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L272]

	
raw private key in order to sign (optional)

	
Address

	
to [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L245]

	
contract (optional)

	
Quantity

	
value [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L263]

	
the value in wei (optional)

Type AuthSpec

Source: modules/eth/header.ts [https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L46]

Authority specification for proof of authority chains

	
Buffer []

	
authorities [https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L48]

	
List of validator addresses storead as an buffer array

	
Buffer

	
proposer [https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L52]

	
proposer of the block this authspec belongs

	
ChainSpec

	
spec [https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L50]

	
chain specification

Type HistoryEntry

Source: modules/eth/header.ts [https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L115]

	
number

	
block [https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L117]

	
the block

	
AuraValidatoryProof

| string []

	
proof [https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L118]

	
the proof

	
string []

	
validators [https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L116]

	
the validators

Type ABIField

Source: modules/eth/api.ts [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L60]

	
boolean

	
indexed [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L61]

	
the indexed (optional)

	
string

	
name [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L62]

	
the name

	
string

	
type [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L63]

	
the type

Type Hex

Source: modules/eth/api.ts [https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L45]

= string

Package modules/ipfs

Type IpfsAPI

Source: modules/ipfs/api.ts [https://github.com/slockit/in3/blob/master/src/modules/ipfs/api.ts#L40]

simple API for IPFS

	
IpfsAPI

	
constructor [https://github.com/slockit/in3/blob/master/src/modules/ipfs/api.ts#L41] (

_client:Client)

	
simple API for IPFS

	
Client

	
client [https://github.com/slockit/in3/blob/master/src/modules/ipfs/api.ts#L41]

	
the client

	
Promise<Buffer>

	
get [https://github.com/slockit/in3/blob/master/src/modules/ipfs/api.ts#L53] (

hash:string,

resultEncoding:string)

	
retrieves the conent for a hash from IPFS.

	
Promise<string>

	
put [https://github.com/slockit/in3/blob/master/src/modules/ipfs/api.ts#L64] (

data:Buffer ,

dataEncoding:string)

	
stores the data on ipfs and returns the IPFS-Hash.

Package util

a collection of util classes inside incubed. They can be get directly through require('in3/js/srrc/util/util')

Type DeltaHistory

Source: util/DeltaHistory.ts [https://github.com/slockit/in3/blob/master/src/util/DeltaHistory.ts#L42]

	
DeltaHistory

	
constructor [https://github.com/slockit/in3/blob/master/src/util/DeltaHistory.ts#L43] (

init:T [],

deltaStrings:boolean)

	
constructor

	
Delta<T> []

	
data [https://github.com/slockit/in3/blob/master/src/util/DeltaHistory.ts#L43]

	
the data

	
void

	
addState [https://github.com/slockit/in3/blob/master/src/util/DeltaHistory.ts#L68] (

start:number,

data:T [])

	
add state

	
T []

	
getData [https://github.com/slockit/in3/blob/master/src/util/DeltaHistory.ts#L55] (

index:number)

	
get data

	
number

	
getLastIndex [https://github.com/slockit/in3/blob/master/src/util/DeltaHistory.ts#L64] ()

	
get last index

	
void

	
loadDeltaStrings [https://github.com/slockit/in3/blob/master/src/util/DeltaHistory.ts#L115] (

deltas:string [])

	
load delta strings

	
string []

	
toDeltaStrings [https://github.com/slockit/in3/blob/master/src/util/DeltaHistory.ts#L112] ()

	
to delta strings

Type Delta

Source: util/DeltaHistory.ts [https://github.com/slockit/in3/blob/master/src/util/DeltaHistory.ts#L35]

This file is part of the Incubed project.
Sources: https://github.com/slockit/in3

	
number

	
block [https://github.com/slockit/in3/blob/master/src/util/DeltaHistory.ts#L36]

	
the block

	
T []

	
data [https://github.com/slockit/in3/blob/master/src/util/DeltaHistory.ts#L39]

	
the data

	
number

	
len [https://github.com/slockit/in3/blob/master/src/util/DeltaHistory.ts#L38]

	
the len

	
number

	
start [https://github.com/slockit/in3/blob/master/src/util/DeltaHistory.ts#L37]

	
the start

Common Module

The common module (in3-common) contains all the typedefs used in the node and server.

	
Interface

	
BlockData

	
the BlockData

	
Interface

	
LogData

	
the LogData

	
Type

	
Receipt

	
the Receipt

	
Interface

	
ReceiptData

	
the ReceiptData

	
Type

	
Transaction

	
the Transaction

	
Interface

	
TransactionData

	
the TransactionData

	
Interface

	
Transport

	
the Transport

	
AxiosTransport

	
AxiosTransport [https://github.com/slockit/in3-common/blob/master/src/index.ts#L77]

	
the AxiosTransport

value= _transport.AxiosTransport

	
Block

	
Block [https://github.com/slockit/in3-common/blob/master/src/index.ts#L69]

	
the Block

value= _serialize.Block

	
any

	
address [https://github.com/slockit/in3-common/blob/master/src/index.ts#L98] (

val:any)

	
converts it to a Buffer with 20 bytes length

	
Block

	
blockFromHex [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L331] (

hex:string)

	
converts a hexstring to a block-object

	
any

	
bytes [https://github.com/slockit/in3-common/blob/master/src/index.ts#L99] (

val:any)

	
converts it to a Buffer

	
any

	
bytes32 [https://github.com/slockit/in3-common/blob/master/src/index.ts#L93] (

val:any)

	
converts it to a Buffer with 32 bytes length

	
any

	
bytes8 [https://github.com/slockit/in3-common/blob/master/src/index.ts#L94] (

val:any)

	
converts it to a Buffer with 8 bytes length

	
cbor

	
cbor [https://github.com/slockit/in3-common/blob/master/src/index.ts#L86]

	
the cbor

value= _cbor

	

	
chainAliases [https://github.com/slockit/in3-common/blob/master/src/index.ts#L83]

	
the chainAliases

value= _util.aliases

	
number []

	
createRandomIndexes [https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L237] (

len:number,

limit:number,

seed:Buffer ,

result:number [])

	
create random indexes

	
any

	
createTx [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L296] (

transaction:any)

	
creates a Transaction-object from the rpc-transaction-data

	
Buffer

	
getSigner [https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L250] (

data:Block)

	
get signer

	
Buffer

	
hash [https://github.com/slockit/in3-common/blob/master/src/index.ts#L92] (

val:Block

| Transaction

| Receipt

| Account

| Buffer)

	
returns the hash of the object

	
index

	
rlp [https://github.com/slockit/in3-common/blob/master/src/index.ts#L101]

	
the rlp

value= _serialize.rlp

	
serialize

	
serialize [https://github.com/slockit/in3-common/blob/master/src/index.ts#L64]

	
the serialize

value= _serialize

	
storage

	
storage [https://github.com/slockit/in3-common/blob/master/src/index.ts#L80]

	
the storage

value= _storage

	
Buffer []

	
toAccount [https://github.com/slockit/in3-common/blob/master/src/index.ts#L90] (

account:AccountData)

	
to account

	
Buffer []

	
toBlockHeader [https://github.com/slockit/in3-common/blob/master/src/index.ts#L102] (

block:BlockData)

	
create a Buffer[] from RPC-Response

	
Object

	
toReceipt [https://github.com/slockit/in3-common/blob/master/src/index.ts#L91] (

r:ReceiptData)

	
create a Buffer[] from RPC-Response

	
Buffer []

	
toTransaction [https://github.com/slockit/in3-common/blob/master/src/index.ts#L100] (

tx:TransactionData)

	
create a Buffer[] from RPC-Response

	
transport

	
transport [https://github.com/slockit/in3-common/blob/master/src/index.ts#L75]

	
the transport

value= _transport

	
any

	
uint [https://github.com/slockit/in3-common/blob/master/src/index.ts#L95] (

val:any)

	
converts it to a Buffer with a variable length. 0 = length 0

	
any

	
uint128 [https://github.com/slockit/in3-common/blob/master/src/index.ts#L97] (

val:any)

	
uint128

	
any

	
uint64 [https://github.com/slockit/in3-common/blob/master/src/index.ts#L96] (

val:any)

	
uint64

	
util

	
util [https://github.com/slockit/in3-common/blob/master/src/index.ts#L40]

	
the util

value= _util

	
validate

	
validate [https://github.com/slockit/in3-common/blob/master/src/index.ts#L37]

	
the validate

value= _validate

Package index.ts

Type BlockData

Source: index.ts [https://github.com/slockit/in3-common/blob/master/src/index.ts#L65]

Block as returned by eth_getBlockByNumber
Block as returned by eth_getBlockByNumber

	
string

	
coinbase [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L59]

	
the coinbase (optional)

	
string | number

	
difficulty [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L65]

	
the difficulty

	
string

	
extraData [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L70]

	
the extraData

	
string | number

	
gasLimit [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L67]

	
the gasLimit

	
string | number

	
gasUsed [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L68]

	
the gasUsed

	
string

	
hash [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L55]

	
the hash

	
string

	
logsBloom [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L64]

	
the logsBloom

	
string

	
miner [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L58]

	
the miner

	
string

	
mixHash [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L72]

	
the mixHash (optional)

	
string | number

	
nonce [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L73]

	
the nonce (optional)

	
string | number

	
number [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L66]

	
the number

	
string

	
parentHash [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L56]

	
the parentHash

	
string

	
receiptRoot [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L63]

	
the receiptRoot (optional)

	
string

	
receiptsRoot [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L62]

	
the receiptsRoot

	
string []

	
sealFields [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L71]

	
the sealFields (optional)

	
string

	
sha3Uncles [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L57]

	
the sha3Uncles

	
string

	
stateRoot [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L60]

	
the stateRoot

	
string | number

	
timestamp [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L69]

	
the timestamp

	
any []

	
transactions [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L74]

	
the transactions (optional)

	
string

	
transactionsRoot [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L61]

	
the transactionsRoot

	
string []

	
uncles [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L75]

	
the uncles (optional)

Type LogData

Source: index.ts [https://github.com/slockit/in3-common/blob/master/src/index.ts#L66]

LogData as part of the TransactionReceipt
LogData as part of the TransactionReceipt

	
string

	
address [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L122]

	
the address

	
string

	
blockHash [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L120]

	
the blockHash

	
string

	
blockNumber [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L121]

	
the blockNumber

	
string

	
data [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L123]

	
the data

	
string

	
logIndex [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L116]

	
the logIndex

	
boolean

	
removed [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L115]

	
the removed

	
string []

	
topics [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L124]

	
the topics

	
string

	
transactionHash [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L119]

	
the transactionHash

	
string

	
transactionIndex [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L118]

	
the transactionIndex

	
string

	
transactionLogIndex [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L117]

	
the transactionLogIndex

Type ReceiptData

Source: index.ts [https://github.com/slockit/in3-common/blob/master/src/index.ts#L67]

TransactionReceipt as returned by eth_getTransactionReceipt
TransactionReceipt as returned by eth_getTransactionReceipt

	
string

	
blockHash [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L132]

	
the blockHash (optional)

	
string | number

	
blockNumber [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L131]

	
the blockNumber (optional)

	
string | number

	
cumulativeGasUsed [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L135]

	
the cumulativeGasUsed (optional)

	
string | number

	
gasUsed [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L136]

	
the gasUsed (optional)

	
LogData []

	
logs [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L138]

	
the logs

	
string

	
logsBloom [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L137]

	
the logsBloom (optional)

	
string

	
root [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L134]

	
the root (optional)

	
string | boolean

	
status [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L133]

	
the status (optional)

	
string

	
transactionHash [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L129]

	
the transactionHash (optional)

	
number

	
transactionIndex [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L130]

	
the transactionIndex (optional)

Type TransactionData

Source: index.ts [https://github.com/slockit/in3-common/blob/master/src/index.ts#L68]

Transaction as returned by eth_getTransactionByHash
Transaction as returned by eth_getTransactionByHash

	
string

	
blockHash [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L81]

	
the blockHash (optional)

	
number | string

	
blockNumber [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L82]

	
the blockNumber (optional)

	
number | string

	
chainId [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L83]

	
the chainId (optional)

	
string

	
condition [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L84]

	
the condition (optional)

	
string

	
creates [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L85]

	
the creates (optional)

	
string

	
data [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L91]

	
the data (optional)

	
string

	
from [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L86]

	
the from (optional)

	
number | string

	
gas [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L87]

	
the gas (optional)

	
number | string

	
gasLimit [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L88]

	
the gasLimit (optional)

	
number | string

	
gasPrice [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L89]

	
the gasPrice (optional)

	
string

	
hash [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L80]

	
the hash

	
string

	
input [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L90]

	
the input

	
number | string

	
nonce [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L92]

	
the nonce

	
string

	
publicKey [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L93]

	
the publicKey (optional)

	
string

	
r [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L98]

	
the r (optional)

	
string

	
raw [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L94]

	
the raw (optional)

	
string

	
s [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L99]

	
the s (optional)

	
string

	
standardV [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L95]

	
the standardV (optional)

	
string

	
to [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L96]

	
the to

	
number

	
transactionIndex [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L97]

	
the transactionIndex

	
string

	
v [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L100]

	
the v (optional)

	
number | string

	
value [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L101]

	
the value

Type Transport

Source: index.ts [https://github.com/slockit/in3-common/blob/master/src/index.ts#L76]

A Transport-object responsible to transport the message to the handler.
A Transport-object responsible to transport the message to the handler.

	
Promise<>

	
handle [https://github.com/slockit/in3-common/blob/master/src/util/transport.ts#L46] (

url:string,

data:RPCRequest

| RPCRequest [],

timeout:number)

	
handles a request by passing the data to the handler

	
Promise<boolean>

	
isOnline [https://github.com/slockit/in3-common/blob/master/src/util/transport.ts#L51] ()

	
check whether the handler is onlne.

	
number []

	
random [https://github.com/slockit/in3-common/blob/master/src/util/transport.ts#L56] (

count:number)

	
generates random numbers (between 0-1)

Package modules/eth

Type Block

Source: modules/eth/serialize.ts [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L240]

encodes and decodes the blockheader

	
Block

	
constructor [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L261] (

data:Buffer

| string

| BlockData)

	
creates a Block-Onject from either the block-data as returned from rpc, a buffer or a hex-string of the encoded blockheader

	
BlockHeader

	
raw [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L243]

	
the raw Buffer fields of the BlockHeader

	
Tx []

	
transactions [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L246]

	
the transaction-Object (if given)

	
Buffer

	
bloom [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L254]

	
bloom

	
Buffer

	
coinbase [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L250]

	
coinbase

	
Buffer

	
difficulty [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L255]

	
difficulty

	
Buffer

	
extra [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L260]

	
extra

	
Buffer

	
gasLimit [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L257]

	
gas limit

	
Buffer

	
gasUsed [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L258]

	
gas used

	
Buffer

	
number [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L256]

	
number

	
Buffer

	
parentHash [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L248]

	
parent hash

	
Buffer

	
receiptTrie [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L253]

	
receipt trie

	
Buffer []

	
sealedFields [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L261]

	
sealed fields

	
Buffer

	
stateRoot [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L251]

	
state root

	
Buffer

	
timestamp [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L259]

	
timestamp

	
Buffer

	
transactionsTrie [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L252]

	
transactions trie

	
Buffer

	
uncleHash [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L249]

	
uncle hash

	
Buffer

	
bareHash [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L284] ()

	
the blockhash as buffer without the seal fields

	
Buffer

	
hash [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L279] ()

	
the blockhash as buffer

	
Buffer

	
serializeHeader [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L289] ()

	
the serialized header as buffer

Type Transaction

Source: modules/eth/serialize.ts [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L45]

Buffer[] of the transaction
= Buffer []

Type Receipt

Source: modules/eth/serialize.ts [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L51]

Buffer[] of the Receipt
= [Buffer ,Buffer ,Buffer ,Buffer , Buffer [] , Buffer []]

Type Account

Source: modules/eth/serialize.ts [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L48]

Buffer[] of the Account
= Buffer []

Type serialize

Source: modules/eth/serialize.ts [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L1]

	
Class

	
Block

	
encodes and decodes the blockheader

	
Interface

	
AccountData

	
Account-Object

	
Interface

	
BlockData

	
Block as returned by eth_getBlockByNumber

	
Interface

	
LogData

	
LogData as part of the TransactionReceipt

	
Interface

	
ReceiptData

	
TransactionReceipt as returned by eth_getTransactionReceipt

	
Interface

	
TransactionData

	
Transaction as returned by eth_getTransactionByHash

	
Type

	
Account

	
Buffer[] of the Account

	
Type

	
BlockHeader

	
Buffer[] of the header

	
Type

	
Receipt

	
Buffer[] of the Receipt

	
Type

	
Transaction

	
Buffer[] of the transaction

	
index

	
rlp [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L40]

	
RLP-functions

value= ethUtil.rlp

	
any

	
address [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L160] (

val:any)

	
converts it to a Buffer with 20 bytes length

	
Block

	
blockFromHex [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L331] (

hex:string)

	
converts a hexstring to a block-object

	
string

	
blockToHex [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L326] (

block:any)

	
converts blockdata to a hexstring

	
any

	
bytes [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L158] (

val:any)

	
converts it to a Buffer

	
any

	
bytes256 [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L152] (

val:any)

	
converts it to a Buffer with 256 bytes length

	
any

	
bytes32 [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L154] (

val:any)

	
converts it to a Buffer with 32 bytes length

	
any

	
bytes8 [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L156] (

val:any)

	
converts it to a Buffer with 8 bytes length

	
any

	
createTx [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L296] (

transaction:any)

	
creates a Transaction-object from the rpc-transaction-data

	
Buffer

	
hash [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L146] (

val:Block

| Transaction

| Receipt

| Account

| Buffer)

	
returns the hash of the object

	
Buffer

	
serialize [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L143] (

val:Block

| Transaction

| Receipt

| Account

| any)

	
serialize the data

	
Buffer []

	
toAccount [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L207] (

account:AccountData)

	
to account

	
Buffer []

	
toBlockHeader [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L168] (

block:BlockData)

	
create a Buffer[] from RPC-Response

	
Object

	
toReceipt [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L216] (

r:ReceiptData)

	
create a Buffer[] from RPC-Response

	
Buffer []

	
toTransaction [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L193] (

tx:TransactionData)

	
create a Buffer[] from RPC-Response

	
any

	
uint [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L162] (

val:any)

	
converts it to a Buffer with a variable length. 0 = length 0

	
any

	
uint128 [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L165] (

val:any)

	
uint128

	
any

	
uint64 [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L164] (

val:any)

	
uint64

Type storage

Source: modules/eth/storage.ts [https://github.com/slockit/in3-common/blob/master/src/modules/eth/storage.ts#L1]

	
any

	
getStorageArrayKey [https://github.com/slockit/in3-common/blob/master/src/modules/eth/storage.ts#L43] (

pos:number,

arrayIndex:number,

structSize:number,

structPos:number)

	
calc the storrage array key

	
any

	
getStorageMapKey [https://github.com/slockit/in3-common/blob/master/src/modules/eth/storage.ts#L55] (

pos:number,

key:string,

structPos:number)

	
calcs the storage Map key.

	
Promise<>

	
getStorageValue [https://github.com/slockit/in3-common/blob/master/src/modules/eth/storage.ts#L103] (

rpc:string,

contract:string,

pos:number,

type:'address'

| 'bytes32'

| 'bytes16'

| 'bytes4'

| 'int'

| 'string',

keyOrIndex:number

| string,

structSize:number,

structPos:number)

	
get a storage value from the server

	
string |

	
getStringValue [https://github.com/slockit/in3-common/blob/master/src/modules/eth/storage.ts#L65] (

data:Buffer ,

storageKey:Buffer)

	
creates a string from storage.

	
string

	
getStringValueFromList [https://github.com/slockit/in3-common/blob/master/src/modules/eth/storage.ts#L84] (

values:Buffer [],

len:number)

	
concats the storage values to a string.

	
BN

	
toBN [https://github.com/slockit/in3-common/blob/master/src/modules/eth/storage.ts#L91] (

val:any)

	
converts any value to BN

Type AccountData

Source: modules/eth/serialize.ts [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L105]

Account-Object

	
string

	
balance [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L107]

	
the balance

	
string

	
code [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L110]

	
the code (optional)

	
string

	
codeHash [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L109]

	
the codeHash

	
string

	
nonce [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L106]

	
the nonce

	
string

	
storageHash [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L108]

	
the storageHash

Type BlockHeader

Source: modules/eth/serialize.ts [https://github.com/slockit/in3-common/blob/master/src/modules/eth/serialize.ts#L42]

Buffer[] of the header
= Buffer []

Package types

Type RPCRequest

Source: types/types.ts [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L370]

a JSONRPC-Request with N3-Extension

	
number | string

	
id [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L384]

	
the identifier of the request

example: 2 (optional)

	
IN3RPCRequestConfig

	
in3 [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L393]

	
the IN3-Config (optional)

	
'2.0'

	
jsonrpc [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L374]

	
the version

	
string

	
method [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L379]

	
the method to call

example: eth_getBalance

	
any []

	
params [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L389]

	
the params

example: 0xe36179e2286ef405e929C90ad3E70E649B22a945,latest (optional)

Type RPCResponse

Source: types/types.ts [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L398]

a JSONRPC-Responset with N3-Extension

	
string

	
error [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L411]

	
in case of an error this needs to be set (optional)

	
string | number

	
id [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L407]

	
the id matching the request

example: 2

	
IN3ResponseConfig

	
in3 [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L420]

	
the IN3-Result (optional)

	
IN3NodeConfig

	
in3Node [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L424]

	
the node handling this response (internal only) (optional)

	
'2.0'

	
jsonrpc [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L402]

	
the version

	
any

	
result [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L416]

	
the params

example: 0xa35bc (optional)

Type IN3RPCRequestConfig

Source: types/types.ts [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L179]

additional config for a IN3 RPC-Request

	
string

	
chainId [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L184]

	
the requested chainId

example: 0x1

	
any

	
clientSignature [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L223]

	
the signature of the client (optional)

	
number

	
finality [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L214]

	
if given the server will deliver the blockheaders of the following blocks until at least the number in percent of the validators is reached. (optional)

	
boolean

	
includeCode [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L189]

	
if true, the request should include the codes of all accounts. otherwise only the the codeHash is returned. In this case the client may ask by calling eth_getCode() afterwards

example: true (optional)

	
number

	
latestBlock [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L198]

	
if specified, the blocknumber latest will be replaced by blockNumber- specified value

example: 6 (optional)

	
string []

	
signatures [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L228]

	
a list of addresses requested to sign the blockhash

example: 0x6C1a01C2aB554930A937B0a2E8105fB47946c679 (optional)

	
boolean

	
useBinary [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L206]

	
if true binary-data will be used. (optional)

	
boolean

	
useFullProof [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L210]

	
if true all data in the response will be proven, which leads to a higher payload. (optional)

	
boolean

	
useRef [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L202]

	
if true binary-data (starting with a 0x) will be refered if occuring again. (optional)

	
'never'

| 'proof'

| 'proofWithSignature'

	
verification [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L219]

	
defines the kind of proof the client is asking for

example: proof (optional)

	
string []

	
verifiedHashes [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L193]

	
if the client sends a array of blockhashes the server will not deliver any signatures or blockheaders for these blocks, but only return a string with a number. (optional)

	
string

	
version [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L233]

	
IN3 protocol version that client can specify explicitly in request

example: 1.0.0 (optional)

Type IN3ResponseConfig

Source: types/types.ts [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L238]

additional data returned from a IN3 Server

	
number

	
currentBlock [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L256]

	
the current blocknumber.

example: 320126478 (optional)

	
number

	
lastNodeList [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L247]

	
the blocknumber for the last block updating the nodelist. If the client has a smaller blocknumber he should update the nodeList.

example: 326478 (optional)

	
number

	
lastValidatorChange [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L251]

	
the blocknumber of gthe last change of the validatorList (optional)

	
Proof

	
proof [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L242]

	
the Proof-data (optional)

	
string

	
version [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L261]

	
the in3 protocol version.

example: 1.0.0 (optional)

Type IN3NodeConfig

Source: types/types.ts [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L90]

a configuration of a in3-server.

	
string

	
address [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L100]

	
the address of the node, which is the public address it iis signing with.

example: 0x6C1a01C2aB554930A937B0a2E8105fB47946c679

	
number

	
capacity [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L125]

	
the capacity of the node.

example: 100 (optional)

	
string []

	
chainIds [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L115]

	
the list of supported chains

example: 0x1

	
number

	
deposit [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L120]

	
the deposit of the node in wei

example: 12350000

	
number

	
index [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L95]

	
the index within the contract

example: 13 (optional)

	
number

	
props [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L130]

	
the properties of the node.

example: 3 (optional)

	
number

	
registerTime [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L135]

	
the UNIX-timestamp when the node was registered

example: 1563279168 (optional)

	
number

	
timeout [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L105]

	
the time (in seconds) until an owner is able to receive his deposit back after he unregisters himself

example: 3600 (optional)

	
number

	
unregisterTime [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L140]

	
the UNIX-timestamp when the node is allowed to be deregister

example: 1563279168 (optional)

	
string

	
url [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L110]

	
the endpoint to post to

example: https://in3.slock.it

Type Proof

Source: types/types.ts [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L309]

the Proof-data as part of the in3-section

	

	
accounts [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L354]

	
a map of addresses and their AccountProof (optional)

	
string

	
block [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L319]

	
the serialized blockheader as hex, required in most proofs

example: 0x72804cfa0179d648ccbe6a65b01a6463a8f1ebb14f3aff6b19cb91acf2b8ec1ffee98c0437b4ac839d8a2ece1b18166da704b86d8f42c92bbda6463a8f1ebb14f3aff6b19cb91acf2b8ec1ffee98c0437b4ac839d8a2ece1b18166da704b (optional)

	
any []

	
finalityBlocks [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L324]

	
the serialized blockheader as hex, required in case of finality asked

example: 0x72804cfa0179d648ccbe6a65b01a6463a8f1ebb14f3aff6b19cb91acf2b8ec1ffee98c0437b4ac839d8a2ece1b18166da704b86d8f42c92bbda6463a8f1ebb14f3aff6b19cb91acf2b8ec1ffee98c0437b4ac839d8a2ece1b18166da704b (optional)

	
LogProof

	
logProof [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L350]

	
the Log Proof in case of a Log-Request (optional)

	
string []

	
merkleProof [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L338]

	
the serialized merle-noodes beginning with the root-node (optional)

	
string []

	
merkleProofPrev [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L342]

	
the serialized merkle-noodes beginning with the root-node of the previous entry (only for full proof of receipts) (optional)

	
Signature []

	
signatures [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L365]

	
requested signatures (optional)

	
any []

	
transactions [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L329]

	
the list of transactions of the block

example: (optional)

	
number

	
txIndex [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L361]

	
the transactionIndex within the block

example: 4 (optional)

	
string []

	
txProof [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L346]

	
the serialized merkle-nodes beginning with the root-node in order to prrof the transactionIndex (optional)

	
'transactionProof'

| 'receiptProof'

| 'blockProof'

| 'accountProof'

| 'callProof'

| 'logProof'

	
type [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L314]

	
the type of the proof

example: accountProof

	
any []

	
uncles [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L334]

	
the list of uncle-headers of the block

example: (optional)

Type LogProof

Source: types/types.ts [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L266]

a Object holding proofs for event logs. The key is the blockNumber as hex

Type Signature

Source: types/types.ts [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L429]

Verified ECDSA Signature. Signatures are a pair (r, s). Where r is computed as the X coordinate of a point R, modulo the curve order n.

	
string

	
address [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L434]

	
the address of the signing node

example: 0x6C1a01C2aB554930A937B0a2E8105fB47946c679 (optional)

	
number

	
block [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L439]

	
the blocknumber

example: 3123874

	
string

	
blockHash [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L444]

	
the hash of the block

example: 0x6C1a01C2aB554930A937B0a212346037E8105fB47946c679

	
string

	
msgHash [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L449]

	
hash of the message

example: 0x9C1a01C2aB554930A937B0a212346037E8105fB47946AB5D

	
string

	
r [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L454]

	
Positive non-zero Integer signature.r

example: 0x72804cfa0179d648ccbe6a65b01a6463a8f1ebb14f3aff6b19cb91acf2b8ec1f

	
string

	
s [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L459]

	
Positive non-zero Integer signature.s

example: 0x6d17b34aeaf95fee98c0437b4ac839d8a2ece1b18166da704b86d8f42c92bbda

	
number

	
v [https://github.com/slockit/in3-common/blob/master/src/types/types.ts#L464]

	
Calculated curve point, or identity element O.

example: 28

Package util

Type AxiosTransport

Source: util/transport.ts [https://github.com/slockit/in3-common/blob/master/src/util/transport.ts#L64]

Default Transport impl sending http-requests.

	
AxiosTransport

	
constructor [https://github.com/slockit/in3-common/blob/master/src/util/transport.ts#L66] (

format:'json'

| 'cbor'

| 'jsonRef')

	
Default Transport impl sending http-requests.

	
'json' | 'cbor' | 'jsonRef'

	
format [https://github.com/slockit/in3-common/blob/master/src/util/transport.ts#L66]

	
the format

	
Promise<>

	
handle [https://github.com/slockit/in3-common/blob/master/src/util/transport.ts#L81] (

url:string,

data:RPCRequest

| RPCRequest [],

timeout:number)

	
handle

	
Promise<boolean>

	
isOnline [https://github.com/slockit/in3-common/blob/master/src/util/transport.ts#L72] ()

	
is online

	
number []

	
random [https://github.com/slockit/in3-common/blob/master/src/util/transport.ts#L110] (

count:number)

	
random

Type cbor

Source: util/cbor.ts [https://github.com/slockit/in3-common/blob/master/src/util/cbor.ts#L1]

	
any

	
convertToBuffer [https://github.com/slockit/in3-common/blob/master/src/util/cbor.ts#L69] (

val:any)

	
convert to buffer

	
any

	
convertToHex [https://github.com/slockit/in3-common/blob/master/src/util/cbor.ts#L83] (

val:any)

	
convert to hex

	
T

	
createRefs [https://github.com/slockit/in3-common/blob/master/src/util/cbor.ts#L101] (

val:T ,

cache:string [])

	
create refs

	
RPCRequest []

	
decodeRequests [https://github.com/slockit/in3-common/blob/master/src/util/cbor.ts#L45] (

request:Buffer)

	
decode requests

	
RPCResponse []

	
decodeResponses [https://github.com/slockit/in3-common/blob/master/src/util/cbor.ts#L59] (

responses:Buffer)

	
decode responses

	
Buffer

	
encodeRequests [https://github.com/slockit/in3-common/blob/master/src/util/cbor.ts#L41] (

requests:RPCRequest [])

	
turn

	
Buffer

	
encodeResponses [https://github.com/slockit/in3-common/blob/master/src/util/cbor.ts#L56] (

responses:RPCResponse [])

	
encode responses

	
T

	
resolveRefs [https://github.com/slockit/in3-common/blob/master/src/util/cbor.ts#L122] (

val:T ,

cache:string [])

	
resolve refs

Type transport

Source: util/transport.ts [https://github.com/slockit/in3-common/blob/master/src/util/transport.ts#L1]

	
Class

	
AxiosTransport

	
Default Transport impl sending http-requests.

	
Interface

	
Transport

	
A Transport-object responsible to transport the message to the handler.

Type util

Source: util/util.ts [https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L1]

	
BN

	
BN [https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L44]

	
the BN

value= ethUtil.BN

	
any

	
Buffer [https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L36]

	
This file is part of the Incubed project.

Sources: https://github.com/slockit/in3-common

value= require('buffer').Buffer

	
T

	
checkForError [https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L76] (

res:T)

	
check a RPC-Response for errors and rejects the promise if found

	
number []

	
createRandomIndexes [https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L237] (

len:number,

limit:number,

seed:Buffer ,

result:number [])

	
create random indexes

	
string

	
fixLength [https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L48] (

hex:string)

	
fix length

	
string

	
getAddress [https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L191] (

pk:string)

	
returns a address from a private key

	
Buffer

	
getSigner [https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L250] (

data:Block)

	
get signer

	
string

	
padEnd [https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L230] (

val:string,

minLength:number,

fill:string)

	
padEnd for legacy

	
string

	
padStart [https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L223] (

val:string,

minLength:number,

fill:string)

	
padStart for legacy

	
Promise<any>

	
promisify [https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L54] (

self:any,

fn:any,

args:any [])

	
simple promisy-function

	
BN

	
toBN [https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L85] (

val:any)

	
convert to BigNumber

	
any

	
toBuffer [https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L147] (

val:any,

len:number)

	
converts any value as Buffer

if len === 0 it will return an empty Buffer if the value is 0 or ‘0x00’, since this is the way rlpencode works wit 0-values.

	
string

	
toHex [https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L96] (

val:any,

bytes:number)

	
converts any value as hex-string

	
string

	
toMinHex [https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L197] (

key:string

| Buffer

| number)

	
removes all leading 0 in the hexstring

	
number

	
toNumber [https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L119] (

val:any)

	
converts to a js-number

	
string

	
toSimpleHex [https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L180] (

val:string)

	
removes all leading 0 in a hex-string

	
string

	
toUtf8 [https://github.com/slockit/in3-common/blob/master/src/util/util.ts#L65] (

val:any)

	
to utf8

	
JSON

	
``object``

	
the aliases

Type validate

Source: util/validate.ts [https://github.com/slockit/in3-common/blob/master/src/util/validate.ts#L1]

	
Ajv

	
ajv [https://github.com/slockit/in3-common/blob/master/src/util/validate.ts#L42]

	
the ajv instance with custom formatters and keywords

value= new Ajv()

	
void

	
validate [https://github.com/slockit/in3-common/blob/master/src/util/validate.ts#L70] (

ob:any,

def:any)

	
validate

	
void

	
validateAndThrow [https://github.com/slockit/in3-common/blob/master/src/util/validate.ts#L64] (

fn:Ajv.ValidateFunction ,

ob:any)

	
validates the data and throws an error in case they are not valid.

API Reference WASM

This page contains a list of all Datastructures and Classes used within the IN3 WASM-Client.

Main Module

Importing incubed is as easy as

import Client from "in3-wasm"

While the In3Client-class is the default import, the following imports can be used:

This file is part of the Incubed project.
Sources: https://github.com/slockit/in3-c

	
Class

	
IN3

	
the IN3

	
Class

	
SimpleSigner

	
the SimpleSigner

	
Interface

	
EthAPI

	
the EthAPI

	
Interface

	
IN3Config

	
the iguration of the IN3-Client. This can be paritally overriden for every request.

	
Interface

	
IN3NodeConfig

	
a configuration of a in3-server.

	
Interface

	
IN3NodeWeight

	
a local weight of a n3-node. (This is used internally to weight the requests)

	
Interface

	
RPCRequest

	
a JSONRPC-Request with N3-Extension

	
Interface

	
RPCResponse

	
a JSONRPC-Responset with N3-Extension

	
Interface

	
Signer

	
the Signer

	
Interface

	
Utils

	
Collection of different util-functions.

	
Type literal

	
ABI

	
the ABI

	
Type literal

	
ABIField

	
the ABIField

	
Type alias

	
Address

	
a 20 byte Address encoded as Hex (starting with 0x)

	
Type literal

	
Block

	
the Block

	
Type

	
BlockType

	
BlockNumber or predefined Block

	
Type alias

	
Data

	
data encoded as Hex (starting with 0x)

	
Type alias

	
Hash

	
a 32 byte Hash encoded as Hex (starting with 0x)

	
Type

	
Hex

	
a Hexcoded String (starting with 0x)

	
Type literal

	
Log

	
the Log

	
Type literal

	
LogFilter

	
the LogFilter

	
Type

	
Quantity

	
a BigInteger encoded as hex.

	
Type literal

	
Signature

	
Signature

	
Type literal

	
Transaction

	
the Transaction

	
Type literal

	
TransactionDetail

	
the TransactionDetail

	
Type literal

	
TransactionReceipt

	
the TransactionReceipt

	
Type literal

	
TxRequest

	
the TxRequest

Package in3.d.ts

Type IN3

Source: in3.d.ts [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L346]

	
IN3

	
default [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L431]

	
supporting both ES6 and UMD usage

	
Utils

	
util [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L428]

	
collection of util-functions.

	
void

	
freeAll [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L412] ()

	
frees all Incubed instances.

	
Promise<T>

	
onInit [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L406] (

fn:)

	
registers a function to be called as soon as the wasm is ready.

If it is already initialized it will call it right away.

	
void

	
setStorage [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L395] (

handler:)

	
changes the storage handler, which is called to read and write to the cache.

	
void

	
setTransport [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L390] (

fn:)

	
changes the transport-function.

	
IN3

	
constructor [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L346] (

config:Partial<IN3Config>)

	
creates a new client.

	
EthAPI

	
eth [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L418]

	
eth1 API.

	
Signer

	
signer [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L382]

	
the signer, if specified this interface will be used to sign transactions, if not, sending transaction will not be possible.

	
Utils

	
util [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L423]

	
collection of util-functions.

	
any

	
free [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L377] ()

	
disposes the Client. This must be called in order to free allocated memory!

	
Promise<RPCResponse>

	
send [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L365] (

request:RPCRequest ,

callback:)

	
sends a raw request.

if the request is a array the response will be a array as well.

If the callback is given it will be called with the response, if not a Promise will be returned.

This function supports callback so it can be used as a Provider for the web3.

	
Promise<any>

	
sendRPC [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L372] (

method:string,

params:any [])

	
sends a RPC-Requests specified by name and params.

	
void

	
setConfig [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L357] (

config:Partial<IN3Config>)

	
sets configuration properties. You can pass a partial object specifieing any of defined properties.

Type SimpleSigner

Source: in3.d.ts [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L907]

	
SimpleSigner

	
constructor [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L910] (

pks:any [])

	
constructor

	

	
accounts [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L908]

	
the accounts

	
Promise<Transaction>

	
prepareTransaction [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L914] (

client:IN3 ,

tx:Transaction)

	
optiional method which allows to change the transaction-data before sending it. This can be used for redirecting it through a multisig.

	
Promise<Uint8Array>

	
sign [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L923] (

data:Hex ,

account:Address ,

hashFirst:boolean,

ethV:boolean)

	
signing of any data.

if hashFirst is true the data should be hashed first, otherwise the data is the hash.

	
string

	
addAccount [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L912] (

pk:Hash)

	
add account

	
Promise<boolean>

	
hasAccount [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L917] (

account:Address)

	
returns true if the account is supported (or unlocked)

Type EthAPI

Source: in3.d.ts [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L703]

	
IN3

	
client [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L704]

	
the client

	
Signer

	
signer [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L705]

	
the signer (optional)

	
Promise<number>

	
blockNumber [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L710] ()

	
Returns the number of most recent block. (as number)

	
Promise<string>

	
call [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L718] (

tx:Transaction ,

block:BlockType)

	
Executes a new message call immediately without creating a transaction on the block chain.

	
Promise<any>

	
callFn [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L722] (

to:Address ,

method:string,

args:any [])

	
Executes a function of a contract, by passing a [method-signature](https://github.com/ethereumjs/ethereumjs-abi/blob/master/README.md#simple-encoding-and-decoding) and the arguments, which will then be ABI-encoded and send as eth_call.

	
Promise<string>

	
chainId [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L726] ()

	
Returns the EIP155 chain ID used for transaction signing at the current best block. Null is returned if not available.

	
any

	
constructor [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L706] (

client:IN3)

	
constructor

	

	
contractAt [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L864] (

abi:ABI [],

address:Address)

	
contract at

	
any

	
decodeEventData [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L904] (

log:Log ,

d:ABI)

	
decode event data

	
Promise<number>

	
estimateGas [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L730] (

tx:Transaction)

	
Makes a call or transaction, which won’t be added to the blockchain and returns the used gas, which can be used for estimating the used gas.

	
Promise<number>

	
gasPrice [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L714] ()

	
Returns the current price per gas in wei. (as number)

	
Promise<bigint>

	
getBalance [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L734] (

address:Address ,

block:BlockType)

	
Returns the balance of the account of given address in wei (as hex).

	
Promise<Block>

	
getBlockByHash [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L746] (

hash:Hash ,

includeTransactions:boolean)

	
Returns information about a block by hash.

	
Promise<Block>

	
getBlockByNumber [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L750] (

block:BlockType ,

includeTransactions:boolean)

	
Returns information about a block by block number.

	
Promise<number>

	
getBlockTransactionCountByHash [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L754] (

block:Hash)

	
Returns the number of transactions in a block from a block matching the given block hash.

	
Promise<number>

	
getBlockTransactionCountByNumber [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L758] (

block:Hash)

	
Returns the number of transactions in a block from a block matching the given block number.

	
Promise<string>

	
getCode [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L738] (

address:Address ,

block:BlockType)

	
Returns code at a given address.

	
Promise<>

	
getFilterChanges [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L762] (

id:Quantity)

	
Polling method for a filter, which returns an array of logs which occurred since last poll.

	
Promise<>

	
getFilterLogs [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L766] (

id:Quantity)

	
Returns an array of all logs matching filter with given id.

	
Promise<>

	
getLogs [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L770] (

filter:LogFilter)

	
Returns an array of all logs matching a given filter object.

	
Promise<string>

	
getStorageAt [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L742] (

address:Address ,

pos:Quantity ,

block:BlockType)

	
Returns the value from a storage position at a given address.

	
Promise<TransactionDetail>

	
getTransactionByBlockHashAndIndex [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L774] (

hash:Hash ,

pos:Quantity)

	
Returns information about a transaction by block hash and transaction index position.

	
Promise<TransactionDetail>

	
getTransactionByBlockNumberAndIndex [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L778] (

block:BlockType ,

pos:Quantity)

	
Returns information about a transaction by block number and transaction index position.

	
Promise<TransactionDetail>

	
getTransactionByHash [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L782] (

hash:Hash)

	
Returns the information about a transaction requested by transaction hash.

	
Promise<number>

	
getTransactionCount [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L786] (

address:Address ,

block:BlockType)

	
Returns the number of transactions sent from an address. (as number)

	
Promise<TransactionReceipt>

	
getTransactionReceipt [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L791] (

hash:Hash)

	
Returns the receipt of a transaction by transaction hash.

Note That the receipt is available even for pending transactions.

	
Promise<Block>

	
getUncleByBlockHashAndIndex [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L796] (

hash:Hash ,

pos:Quantity)

	
Returns information about a uncle of a block by hash and uncle index position.

Note: An uncle doesn’t contain individual transactions.

	
Promise<Block>

	
getUncleByBlockNumberAndIndex [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L801] (

block:BlockType ,

pos:Quantity)

	
Returns information about a uncle of a block number and uncle index position.

Note: An uncle doesn’t contain individual transactions.

	
Promise<number>

	
getUncleCountByBlockHash [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L805] (

hash:Hash)

	
Returns the number of uncles in a block from a block matching the given block hash.

	
Promise<number>

	
getUncleCountByBlockNumber [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L809] (

block:BlockType)

	
Returns the number of uncles in a block from a block matching the given block hash.

	
Hex

	
hashMessage [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L905] (

data:Data)

	
a Hexcoded String (starting with 0x)

	
Promise<string>

	
newBlockFilter [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L813] ()

	
Creates a filter in the node, to notify when a new block arrives. To check if the state has changed, call eth_getFilterChanges.

	
Promise<string>

	
newFilter [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L826] (

filter:LogFilter)

	
Creates a filter object, based on filter options, to notify when the state changes (logs). To check if the state has changed, call eth_getFilterChanges.

	
Promise<string>

	
newPendingTransactionFilter [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L832] ()

	
Creates a filter in the node, to notify when new pending transactions arrive.

	
Promise<string>

	
protocolVersion [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L840] ()

	
Returns the current ethereum protocol version.

	
Promise<string>

	
sendRawTransaction [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L855] (

data:Data)

	
Creates new message call transaction or a contract creation for signed transactions.

	
Promise<>

	
sendTransaction [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L863] (

args:TxRequest)

	
sends a Transaction

	
Promise<Signature>

	
sign [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L861] (

account:Address ,

data:Data)

	
signs any kind of message using the x19Ethereum Signed Message:n-prefix

	
Promise<>

	
syncing [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L844] ()

	
Returns the current ethereum protocol version.

	
Promise<Quantity>

	
uninstallFilter [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L836] (

id:Quantity)

	
Uninstalls a filter with given id. Should always be called when watch is no longer needed. Additonally Filters timeout when they aren’t requested with eth_getFilterChanges for a period of time.

Type IN3Config

Source: in3.d.ts [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L38]

the iguration of the IN3-Client. This can be paritally overriden for every request.

	
boolean

	
autoConfig [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L65]

	
if true the config will be adjusted depending on the request (optional)

	
boolean

	
autoUpdateList [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L147]

	
if true the nodelist will be automaticly updated if the lastBlock is newer

example: true (optional)

	
number

	
cacheTimeout [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L42]

	
number of seconds requests can be cached. (optional)

	
string

	
chainId [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L132]

	
servers to filter for the given chain. The chain-id based on EIP-155.

example: 0x1

	
string

	
chainRegistry [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L137]

	
main chain-registry contract

example: 0xe36179e2286ef405e929C90ad3E70E649B22a945 (optional)

	
number

	
finality [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L122]

	
the number in percent needed in order reach finality (% of signature of the validators)

example: 50 (optional)

	
'json' | 'jsonRef' | 'cbor'

	
format [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L56]

	
the format for sending the data to the client. Default is json, but using cbor means using only 30-40% of the payload since it is using binary encoding

example: json (optional)

	
boolean

	
includeCode [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L79]

	
if true, the request should include the codes of all accounts. otherwise only the the codeHash is returned. In this case the client may ask by calling eth_getCode() afterwards

example: true (optional)

	
boolean

	
keepIn3 [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L51]

	
if true, the in3-section of thr response will be kept. Otherwise it will be removed after validating the data. This is useful for debugging or if the proof should be used afterwards. (optional)

	
any

	
key [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L61]

	
the client key to sign requests

example: 0x387a8233c96e1fc0ad5e284353276177af2186e7afa85296f106336e376669f7 (optional)

	
string

	
mainChain [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L142]

	
main chain-id, where the chain registry is running.

example: 0x1 (optional)

	
number

	
maxAttempts [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L74]

	
max number of attempts in case a response is rejected

example: 10 (optional)

	
number

	
maxBlockCache [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L89]

	
number of number of blocks cached in memory

example: 100 (optional)

	
number

	
maxCodeCache [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L84]

	
number of max bytes used to cache the code in memory

example: 100000 (optional)

	
number

	
minDeposit [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L107]

	
min stake of the server. Only nodes owning at least this amount will be chosen.

	
number

	
nodeLimit [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L47]

	
the limit of nodes to store in the client.

example: 150 (optional)

	
'none' | 'standard' | 'full'

	
proof [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L98]

	
if true the nodes should send a proof of the response

example: true (optional)

	
number

	
replaceLatestBlock [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L112]

	
if specified, the blocknumber latest will be replaced by blockNumber- specified value

example: 6 (optional)

	
number

	
requestCount [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L117]

	
the number of request send when getting a first answer

example: 3

	
boolean

	
retryWithoutProof [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L69]

	
if true the the request may be handled without proof in case of an error. (use with care!) (optional)

	
string

	
rpc [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L151]

	
url of one or more rpc-endpoints to use. (list can be comma seperated) (optional)

	

	
servers [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L155]

	
the nodelist per chain (optional)

	
number

	
signatureCount [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L103]

	
number of signatures requested

example: 2 (optional)

	
number

	
timeout [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L127]

	
specifies the number of milliseconds before the request times out. increasing may be helpful if the device uses a slow connection.

example: 3000 (optional)

	
string []

	
verifiedHashes [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L93]

	
if the client sends a array of blockhashes the server will not deliver any signatures or blockheaders for these blocks, but only return a string with a number. This is automaticly updated by the cache, but can be overriden per request. (optional)

Type IN3NodeConfig

Source: in3.d.ts [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L210]

a configuration of a in3-server.

	
string

	
address [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L220]

	
the address of the node, which is the public address it iis signing with.

example: 0x6C1a01C2aB554930A937B0a2E8105fB47946c679

	
number

	
capacity [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L245]

	
the capacity of the node.

example: 100 (optional)

	
string []

	
chainIds [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L235]

	
the list of supported chains

example: 0x1

	
number

	
deposit [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L240]

	
the deposit of the node in wei

example: 12350000

	
number

	
index [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L215]

	
the index within the contract

example: 13 (optional)

	
number

	
props [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L250]

	
the properties of the node.

example: 3 (optional)

	
number

	
registerTime [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L255]

	
the UNIX-timestamp when the node was registered

example: 1563279168 (optional)

	
number

	
timeout [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L225]

	
the time (in seconds) until an owner is able to receive his deposit back after he unregisters himself

example: 3600 (optional)

	
number

	
unregisterTime [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L260]

	
the UNIX-timestamp when the node is allowed to be deregister

example: 1563279168 (optional)

	
string

	
url [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L230]

	
the endpoint to post to

example: https://in3.slock.it

Type IN3NodeWeight

Source: in3.d.ts [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L265]

a local weight of a n3-node. (This is used internally to weight the requests)

	
number

	
avgResponseTime [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L280]

	
average time of a response in ms

example: 240 (optional)

	
number

	
blacklistedUntil [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L294]

	
blacklisted because of failed requests until the timestamp

example: 1529074639623 (optional)

	
number

	
lastRequest [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L289]

	
timestamp of the last request in ms

example: 1529074632623 (optional)

	
number

	
pricePerRequest [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L284]

	
last price (optional)

	
number

	
responseCount [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L275]

	
number of uses.

example: 147 (optional)

	
number

	
weight [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L270]

	
factor the weight this noe (default 1.0)

example: 0.5 (optional)

Type RPCRequest

Source: in3.d.ts [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L300]

a JSONRPC-Request with N3-Extension

	
number | string

	
id [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L314]

	
the identifier of the request

example: 2 (optional)

	
'2.0'

	
jsonrpc [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L304]

	
the version

	
string

	
method [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L309]

	
the method to call

example: eth_getBalance

	
any []

	
params [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L319]

	
the params

example: 0xe36179e2286ef405e929C90ad3E70E649B22a945,latest (optional)

Type RPCResponse

Source: in3.d.ts [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L324]

a JSONRPC-Responset with N3-Extension

	
string

	
error [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L337]

	
in case of an error this needs to be set (optional)

	
string | number

	
id [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L333]

	
the id matching the request

example: 2

	
'2.0'

	
jsonrpc [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L328]

	
the version

	
any

	
result [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L342]

	
the params

example: 0xa35bc (optional)

Type Signer

Source: in3.d.ts [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L689]

	
Promise<Transaction>

	
prepareTransaction [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L691] (

client:IN3 ,

tx:Transaction)

	
optiional method which allows to change the transaction-data before sending it. This can be used for redirecting it through a multisig.

	
Promise<Uint8Array>

	
sign [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L700] (

data:Hex ,

account:Address ,

hashFirst:boolean,

ethV:boolean)

	
signing of any data.

if hashFirst is true the data should be hashed first, otherwise the data is the hash.

	
Promise<boolean>

	
hasAccount [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L694] (

account:Address)

	
returns true if the account is supported (or unlocked)

Type Utils

Source: in3.d.ts [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L929]

Collection of different util-functions.

	
any []

	
abiDecode [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L947] (

signature:string,

data:Data)

	
decodes the given data as ABI-encoded (without the methodHash)

	
Hex

	
abiEncode [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L940] (

signature:string,

args:any [])

	
encodes the given arguments as ABI-encoded (including the methodHash)

	
string

	
createSignature [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L931] (

fields:ABIField [])

	
create signature

	
Hex

	
createSignatureHash [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L930] (

def:ABI)

	
a Hexcoded String (starting with 0x)

	
any

	
decodeEvent [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L932] (

log:Log ,

d:ABI)

	
decode event

	
Uint8Array

	
ecSign [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L983] (

pk:Uint8Array

| Hex ,

msg:Uint8Array

| Hex ,

hashFirst:boolean,

adjustV:boolean)

	
create a signature (65 bytes) for the given message and kexy

	
Uint8Array

	
keccak [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L961] (

data:Uint8Array

| Data)

	
calculates the keccack hash for the given data.

	
Address

	
private2address [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L997] (

pk:Hex

| Uint8Array)

	
generates the public address from the private key.

	
string

	
soliditySha3 [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L933] (

args:any [])

	
solidity sha3

	
Signature

	
splitSignature [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L991] (

signature:Uint8Array

| Hex ,

message:Uint8Array

| Hex ,

hashFirst:boolean)

	
takes raw signature (65 bytes) and splits it into a signature object.

	
Uint8Array

	
toBuffer [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L973] (

data:Hex

| Uint8Array

| number

| bigint,

len:number)

	
converts any value to a Uint8Array.

optionally the target length can be specified (in bytes)

	
Address

	
toChecksumAddress [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L955] (

address:Address ,

chainId:number)

	
generates a checksum Address for the given address.

If the chainId is passed, it will be included accord to EIP 1191

	
Hex

	
toHex [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L967] (

data:Hex

| Uint8Array

| number

| bigint,

len:number)

	
converts any value to a hex string (with prefix 0x).

optionally the target length can be specified (in bytes)

Type ABI

Source: in3.d.ts [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L476]

	
boolean

	
anonymous [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L477]

	
the anonymous (optional)

	
boolean

	
constant [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L478]

	
the constant (optional)

	
ABIField []

	
inputs [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L482]

	
the inputs (optional)

	
string

	
name [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L484]

	
the name (optional)

	
ABIField []

	
outputs [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L483]

	
the outputs (optional)

	
boolean

	
payable [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L479]

	
the payable (optional)

	
'nonpayable'

| 'payable'

| 'view'

| 'pure'

	
stateMutability [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L480]

	
the stateMutability (optional)

	
'event'

| 'function'

| 'constructor'

| 'fallback'

	
type [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L485]

	
the type

Type ABIField

Source: in3.d.ts [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L471]

	
boolean

	
indexed [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L472]

	
the indexed (optional)

	
string

	
name [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L473]

	
the name

	
string

	
type [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L474]

	
the type

Type Address

Source: in3.d.ts [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L453]

a 20 byte Address encoded as Hex (starting with 0x)
a Hexcoded String (starting with 0x)
= string

Type Block

Source: in3.d.ts [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L576]

	
Address

	
author [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L596]

	
20 Bytes - the address of the author of the block (the beneficiary to whom the mining rewards were given)

	
Quantity

	
difficulty [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L600]

	
integer of the difficulty for this block

	
Data

	
extraData [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L604]

	
the ‘extra data’ field of this block

	
Quantity

	
gasLimit [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L608]

	
the maximum gas allowed in this block

	
Quantity

	
gasUsed [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L610]

	
the total used gas by all transactions in this block

	
Hash

	
hash [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L580]

	
hash of the block. null when its pending block

	
Data

	
logsBloom [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L588]

	
256 Bytes - the bloom filter for the logs of the block. null when its pending block

	
Address

	
miner [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L598]

	
20 Bytes - alias of ‘author’

	
Data

	
nonce [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L584]

	
8 bytes hash of the generated proof-of-work. null when its pending block. Missing in case of PoA.

	
Quantity

	
number [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L578]

	
The block number. null when its pending block

	
Hash

	
parentHash [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L582]

	
hash of the parent block

	
Data

	
receiptsRoot [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L594]

	
32 Bytes - the root of the receipts trie of the block

	
Data []

	
sealFields [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L618]

	
PoA-Fields

	
Data

	
sha3Uncles [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L586]

	
SHA3 of the uncles data in the block

	
Quantity

	
size [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L606]

	
integer the size of this block in bytes

	
Data

	
stateRoot [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L592]

	
32 Bytes - the root of the final state trie of the block

	
Quantity

	
timestamp [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L612]

	
the unix timestamp for when the block was collated

	
Quantity

	
totalDifficulty [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L602]

	
integer of the total difficulty of the chain until this block

	
string | []

	
transactions [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L614]

	
Array of transaction objects, or 32 Bytes transaction hashes depending on the last given parameter

	
Data

	
transactionsRoot [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L590]

	
32 Bytes - the root of the transaction trie of the block

	
Hash []

	
uncles [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L616]

	
Array of uncle hashes

Type Data

Source: in3.d.ts [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L457]

data encoded as Hex (starting with 0x)
a Hexcoded String (starting with 0x)
= string

Type Hash

Source: in3.d.ts [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L449]

a 32 byte Hash encoded as Hex (starting with 0x)
a Hexcoded String (starting with 0x)
= string

Type Log

Source: in3.d.ts [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L620]

	
Address

	
address [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L634]

	
20 Bytes - address from which this log originated.

	
Hash

	
blockHash [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L630]

	
Hash, 32 Bytes - hash of the block where this log was in. null when its pending. null when its pending log.

	
Quantity

	
blockNumber [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L632]

	
the block number where this log was in. null when its pending. null when its pending log.

	
Data

	
data [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L636]

	
contains the non-indexed arguments of the log.

	
Quantity

	
logIndex [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L624]

	
integer of the log index position in the block. null when its pending log.

	
boolean

	
removed [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L622]

	
true when the log was removed, due to a chain reorganization. false if its a valid log.

	
Data []

	
topics [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L638]

	
- Array of 0 to 4 32 Bytes DATA of indexed log arguments. (In solidity: The first topic is the hash of the signature of the event (e.g. Deposit(address,bytes32,uint256)), except you declared the event with the anonymous specifier.)

	
Hash

	
transactionHash [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L628]

	
Hash, 32 Bytes - hash of the transactions this log was created from. null when its pending log.

	
Quantity

	
transactionIndex [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L626]

	
integer of the transactions index position log was created from. null when its pending log.

Type LogFilter

Source: in3.d.ts [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L641]

	
Address

	
address [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L647]

	
(optional) 20 Bytes - Contract address or a list of addresses from which logs should originate.

	
BlockType

	
fromBlock [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L643]

	
Quantity or Tag - (optional) (default: latest) Integer block number, or ‘latest’ for the last mined block or ‘pending’, ‘earliest’ for not yet mined transactions.

	
Quantity

	
limit [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L651]

	
å(optional) The maximum number of entries to retrieve (latest first).

	
BlockType

	
toBlock [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L645]

	
Quantity or Tag - (optional) (default: latest) Integer block number, or ‘latest’ for the last mined block or ‘pending’, ‘earliest’ for not yet mined transactions.

	
string | string [] []

	
topics [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L649]

	
(optional) Array of 32 Bytes Data topics. Topics are order-dependent. It’s possible to pass in null to match any topic, or a subarray of multiple topics of which one should be matching.

Type Signature

Source: in3.d.ts [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L462]

Signature

	
Data

	
message [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L463]

	
the message

	
Hash

	
messageHash [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L464]

	
the messageHash

	
Hash

	
r [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L466]

	
the r

	
Hash

	
s [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L467]

	
the s

	
Data

	
signature [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L468]

	
the signature (optional)

	
Hex

	
v [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L465]

	
the v

Type Transaction

Source: in3.d.ts [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L487]

	
any

	
chainId [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L503]

	
optional chain id (optional)

	
string

	
data [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L499]

	
4 byte hash of the method signature followed by encoded parameters. For details see Ethereum Contract ABI.

	
Address

	
from [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L489]

	
20 Bytes - The address the transaction is send from.

	
Quantity

	
gas [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L493]

	
Integer of the gas provided for the transaction execution. eth_call consumes zero gas, but this parameter may be needed by some executions.

	
Quantity

	
gasPrice [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L495]

	
Integer of the gas price used for each paid gas.

	
Quantity

	
nonce [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L501]

	
nonce

	
Address

	
to [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L491]

	
(optional when creating new contract) 20 Bytes - The address the transaction is directed to.

	
Quantity

	
value [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L497]

	
Integer of the value sent with this transaction.

Type TransactionDetail

Source: in3.d.ts [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L533]

	
Hash

	
blockHash [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L539]

	
32 Bytes - hash of the block where this transaction was in. null when its pending.

	
BlockType

	
blockNumber [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L541]

	
block number where this transaction was in. null when its pending.

	
Quantity

	
chainId [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L567]

	
the chain id of the transaction, if any.

	
any

	
condition [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L571]

	
(optional) conditional submission, Block number in block or timestamp in time or null. (parity-feature)

	
Address

	
creates [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L569]

	
creates contract address

	
Address

	
from [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L545]

	
20 Bytes - address of the sender.

	
Quantity

	
gas [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L553]

	
gas provided by the sender.

	
Quantity

	
gasPrice [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L551]

	
gas price provided by the sender in Wei.

	
Hash

	
hash [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L535]

	
32 Bytes - hash of the transaction.

	
Data

	
input [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L555]

	
the data send along with the transaction.

	
Quantity

	
nonce [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L537]

	
the number of transactions made by the sender prior to this one.

	
any

	
pk [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L573]

	
optional: the private key to use for signing (optional)

	
Hash

	
publicKey [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L565]

	
public key of the signer.

	
Quantity

	
r [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L561]

	
the R field of the signature.

	
Data

	
raw [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L563]

	
raw transaction data

	
Quantity

	
standardV [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L559]

	
the standardised V field of the signature (0 or 1).

	
Address

	
to [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L547]

	
20 Bytes - address of the receiver. null when its a contract creation transaction.

	
Quantity

	
transactionIndex [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L543]

	
integer of the transactions index position in the block. null when its pending.

	
Quantity

	
v [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L557]

	
the standardised V field of the signature.

	
Quantity

	
value [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L549]

	
value transferred in Wei.

Type TransactionReceipt

Source: in3.d.ts [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L505]

	
Hash

	
blockHash [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L507]

	
32 Bytes - hash of the block where this transaction was in.

	
BlockType

	
blockNumber [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L509]

	
block number where this transaction was in.

	
Address

	
contractAddress [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L511]

	
20 Bytes - The contract address created, if the transaction was a contract creation, otherwise null.

	
Quantity

	
cumulativeGasUsed [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L513]

	
The total amount of gas used when this transaction was executed in the block.

	
Address

	
from [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L515]

	
20 Bytes - The address of the sender.

	
Quantity

	
gasUsed [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L519]

	
The amount of gas used by this specific transaction alone.

	
Log []

	
logs [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L521]

	
Array of log objects, which this transaction generated.

	
Data

	
logsBloom [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L523]

	
256 Bytes - A bloom filter of logs/events generated by contracts during transaction execution. Used to efficiently rule out transactions without expected logs.

	
Hash

	
root [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L525]

	
32 Bytes - Merkle root of the state trie after the transaction has been executed (optional after Byzantium hard fork EIP609)

	
Quantity

	
status [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L527]

	
0x0 indicates transaction failure , 0x1 indicates transaction success. Set for blocks mined after Byzantium hard fork EIP609, null before.

	
Address

	
to [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L517]

	
20 Bytes - The address of the receiver. null when it’s a contract creation transaction.

	
Hash

	
transactionHash [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L529]

	
32 Bytes - hash of the transaction.

	
Quantity

	
transactionIndex [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L531]

	
Integer of the transactions index position in the block.

Type TxRequest

Source: in3.d.ts [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L654]

	
any []

	
args [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L680]

	
the argument to pass to the method (optional)

	
number

	
confirmations [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L686]

	
number of block to wait before confirming (optional)

	
Data

	
data [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L662]

	
the data to send (optional)

	
Address

	
from [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L659]

	
address of the account to use (optional)

	
number

	
gas [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L665]

	
the gas needed (optional)

	
number

	
gasPrice [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L668]

	
the gasPrice used (optional)

	
string

	
method [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L677]

	
the ABI of the method to be used (optional)

	
number

	
nonce [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L671]

	
the nonce (optional)

	
Hash

	
pk [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L683]

	
raw private key in order to sign (optional)

	
Address

	
to [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L656]

	
contract (optional)

	
Quantity

	
value [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L674]

	
the value in wei (optional)

Type Hex

Source: in3.d.ts [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L441]

a Hexcoded String (starting with 0x)
= string

Type BlockType

Source: in3.d.ts [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L437]

BlockNumber or predefined Block
= number | 'latest' | 'earliest' | 'pending'

Type Quantity

Source: in3.d.ts [https://github.com/slockit/in3-c/blob/master/src/bindings/wasm/in3.d.ts#L445]

a BigInteger encoded as hex.
= number | Hex

API Reference Java

Installing

The Incubed Java client uses JNI in order to call native functions. But all the native-libraries are bundled inside the jar-file. This jar file ha no dependencies and can even be used standalone:

like

java -cp in3.jar in3.IN3 eth_getBlockByNumber latest false

Examples

Using in3 directly

import in3.IN3;

public class HelloIN3 {
 //
 public static void main(String[] args) {
 String blockNumber = args[0];

 // create incubed
 IN3 in3 = new IN3();

 // configure
 in3.setChainId(0x1); // set it to mainnet (which is also dthe default)

 // execute the request
 String jsonResult = in3.sendRPC("eth_getBlockByNumber",new Object[]{ blockNumber ,true});

 }
}

Using the API

in3 also offers a API for getting Information directly in a structured way.

Reading Blocks

import java.util.*;
import in3.*;
import in3.eth1.*;

public class HelloIN3 {
 //
 public static void main(String[] args) throws Exception {
 // create incubed
 IN3 in3 = new IN3();

 // configure
 in3.setChainId(0x1); // set it to mainnet (which is also dthe default)

 // read the latest Block including all Transactions.
 Block latestBlock = in3.getEth1API().getBlockByNumber(Block.LATEST, true);

 // Use the getters to retrieve all containing data
 System.out.println("current BlockNumber : " + latestBlock.getNumber());
 System.out.println("minded at : " + new Date(latestBlock.getTimeStamp()) + " by " + latestBlock.getAuthor());

 // get all Transaction of the Block
 Transaction[] transactions = latestBlock.getTransactions();

 BigInteger sum = BigInteger.valueOf(0);
 for (int i = 0; i < transactions.length; i++)
 sum = sum.add(transactions[i].getValue());

 System.out.println("total Value transfered in all Transactions : " + sum + " wei");
 }

}

Calling Functions of Contracts

This Example shows how to call functions and use the decoded results. Here we get the struct from the registry.

import in3.*;
import in3.eth1.*;

public class HelloIN3 {
 //
 public static void main(String[] args) {
 // create incubed
 IN3 in3 = new IN3();

 // configure
 in3.setChainId(0x1); // set it to mainnet (which is also dthe default)

 // call a contract, which uses eth_call to get the result.
 Object[] result = (Object[]) in3.getEth1API().call(// call a function of a contract
 "0x2736D225f85740f42D17987100dc8d58e9e16252", // address of the contract
 "servers(uint256):(string,address,uint256,uint256,uint256,address)",// function signature
 1); // first argument, which is the index of the node we are looking for.

 System.out.println("url : " + result[0]);
 System.out.println("owner : " + result[1]);
 System.out.println("deposit : " + result[2]);
 System.out.println("props : " + result[3]);

 }
}

Sending Transactions

In order to send, you need a Signer. The SimpleWallet class is a basic implementation which can be used.

package in3;

import java.io.IOException;
import java.math.BigInteger;
import java.nio.charset.StandardCharsets;
import java.nio.file.Files;
import java.nio.file.Paths;

import in3.*;
import in3.eth1.*;

public class Example {
 //
 public static void main(String[] args) throws IOException{
 // create incubed
 IN3 in3 = new IN3();

 // configure
 in3.setChainId(0x1); // set it to mainnet (which is also dthe default)

 // create a wallet managing the private keys
 SimpleWallet wallet = new SimpleWallet();

 // add accounts by adding the private keys
 String keyFile = "myKey.json";
 String myPassphrase = "<secrect>";

 // read the keyfile and decoded the private key
 String account = wallet.addKeyStore(
 Files.readString(Paths.get(keyFile)),
 myPassphrase);

 // use the wallet as signer
 in3.setSigner(wallet);

 String receipient = "0x1234567890123456789012345678901234567890";
 BigInteger value = BigInteger.valueOf(100000);

 // create a Transaction
 TransactionRequest tx = new TransactionRequest();
 tx.from = account;
 tx.to = "0x1234567890123456789012345678901234567890";
 tx.function = "transfer(address,uint256)";
 tx.params = new Object[] { receipient, value };

 String txHash = in3.getEth1API().sendTransaction(tx);

 System.out.println("Transaction sent with hash = " + txHash);

 }
}

Downloading

The jar file can be downloaded from the latest release. here [https://github.com/slockit/in3-c/releases].

Alternatively, If you wish to download Incubed using the maven package manager, add this to your pom.xml

<dependency>
 <groupId>it.slock</groupId>
 <artifactId>in3</artifactId>
 <version>2.21</version>
</dependency>

After which, install in3 with mvn install.

Building

For building the shared library you need to enable java by using the -DJAVA=true flag:

git clone git@github.com:slockit/in3-c.git
mkdir -p in3-c/build
cd in3-c/build
cmake -DJAVA=true .. && make

You will find the in3.jar in the build/lib - folder.

Android

In order to use Incubed in android simply follow these steps:

Step 1: Create a top-level CMakeLists.txt in android project inside app folder and link this to gradle. Follow the steps using this guide [https://developer.android.com/studio/projects/gradle-external-native-builds] on howto link.

The Content of the CMakeLists.txt should look like this:

cmake_minimum_required(VERSION 3.4.1)

turn off FAST_MATH in the evm.
ADD_DEFINITIONS(-DIN3_MATH_LITE)

loop through the required module and cretae the build-folders
foreach(module
 core
 verifier/eth1/nano
 verifier/eth1/evm
 verifier/eth1/basic
 verifier/eth1/full
 bindings/java
 third-party/crypto
 third-party/tommath
 api/eth1)
 file(MAKE_DIRECTORY in3-c/src/${module}/outputs)
 add_subdirectory(in3-c/src/${module} in3-c/src/${module}/outputs)
endforeach()

Step 2: clone in3-c [https://github.com/slockit/in3-c.git] into the app-folder or use this script to clone and update in3:

#!/usr/bin/env sh

#github-url for in3-c
IN3_SRC=https://github.com/slockit/in3-c.git

cd app

if it exists we only call git pull
if [-d in3-c]; then
 cd in3-c
 git pull
 cd ..
else
if not we clone it
 git clone $IN3_SRC
fi

copy the java-sources to the main java path
cp -r in3-c/src/bindings/java/in3 src/main/java/
but not the native libs, since these will be build
rm -rf src/main/java/in3/native

Step 3: Use methods available in app/src/main/java/in3/IN3.java from android activity to access IN3 functions.

Here is example how to use it:

https://github.com/slockit/in3-example-android

Package in3

class Chain

Constants for Chain-specs.

MULTICHAIN

support for multiple chains, a client can then switch between different chains (but consumes more memory)

Type: static final long

MAINNET

use mainnet

Type: static final long

KOVAN

use kovan testnet

Type: static final long

TOBALABA

use tobalaba testnet

Type: static final long

GOERLI

use goerli testnet

Type: static final long

EVAN

use evan testnet

Type: static final long

IPFS

use ipfs

Type: static final long

VOLTA

use volta test net

Type: static final long

LOCAL

use local client

Type: static final long

class IN3

This is the main class creating the incubed client.

The client can then be configured.

getCacheTimeout

number of seconds requests can be cached.

public native int getCacheTimeout();

setCacheTimeout

sets number of seconds requests can be cached.

public native void setCacheTimeout(int val);

arguments:

	int

	val

setConfig

sets config object in the client

public native void setConfig(String val);

arguments:

	String

	val

getNodeLimit

the limit of nodes to store in the client.

public native int getNodeLimit();

setNodeLimit

sets the limit of nodes to store in the client.

public native void setNodeLimit(int val);

arguments:

	int

	val

getKey

the client key to sign requests

public native byte[] getKey();

setKey

sets the client key to sign requests

public native void setKey(byte[] val);

arguments:

	byte[]

	val

setKey

sets the client key as hexstring to sign requests

public void setKey(String val);

arguments:

	String

	val

getMaxCodeCache

number of max bytes used to cache the code in memory

public native int getMaxCodeCache();

setMaxCodeCache

sets number of max bytes used to cache the code in memory

public native void setMaxCodeCache(int val);

arguments:

	int

	val

getMaxBlockCache

number of blocks cached in memory

public native int getMaxBlockCache();

setMaxBlockCache

sets the number of blocks cached in memory

public native void setMaxBlockCache(int val);

arguments:

	int

	val

getProof

the type of proof used

public Proofnative getProof();

setProof

sets the type of proof used

public native void setProof(Proof val);

arguments:

	Proof

	val

getRequestCount

the number of request send when getting a first answer

public native int getRequestCount();

setRequestCount

sets the number of requests send when getting a first answer

public native void setRequestCount(int val);

arguments:

	int

	val

getSignatureCount

the number of signatures used to proof the blockhash.

public native int getSignatureCount();

setSignatureCount

sets the number of signatures used to proof the blockhash.

public native void setSignatureCount(int val);

arguments:

	int

	val

getMinDeposit

min stake of the server.

Only nodes owning at least this amount will be chosen.

public native long getMinDeposit();

setMinDeposit

sets min stake of the server.

Only nodes owning at least this amount will be chosen.

public native void setMinDeposit(long val);

arguments:

	long

	val

getReplaceLatestBlock

if specified, the blocknumber latest will be replaced by blockNumber- specified value

public native int getReplaceLatestBlock();

setReplaceLatestBlock

replaces the latest with blockNumber- specified value

public native void setReplaceLatestBlock(int val);

arguments:

	int

	val

getFinality

the number of signatures in percent required for the request

public native int getFinality();

setFinality

sets the number of signatures in percent required for the request

public native void setFinality(int val);

arguments:

	int

	val

getMaxAttempts

the max number of attempts before giving up

public native int getMaxAttempts();

setMaxAttempts

sets the max number of attempts before giving up

public native void setMaxAttempts(int val);

arguments:

	int

	val

getSigner

returns the signer or wallet.

public Signer getSigner();

getEth1API

gets the ethereum-api

public in3.eth1.API getEth1API();

setSigner

sets the signer or wallet.

public void setSigner(Signer signer);

arguments:

	Signer

	signer

getTimeout

specifies the number of milliseconds before the request times out.

increasing may be helpful if the device uses a slow connection.

public native int getTimeout();

setTimeout

specifies the number of milliseconds before the request times out.

increasing may be helpful if the device uses a slow connection.

public native void setTimeout(int val);

arguments:

	int

	val

getChainId

servers to filter for the given chain.

The chain-id based on EIP-155.

public native long getChainId();

setChainId

sets the chain to be used.

The chain-id based on EIP-155.

public native void setChainId(long val);

arguments:

	long

	val

isAutoUpdateList

if true the nodelist will be automaticly updated if the lastBlock is newer

public native boolean isAutoUpdateList();

setAutoUpdateList

activates the auto update.if true the nodelist will be automaticly updated if the lastBlock is newer

public native void setAutoUpdateList(boolean val);

arguments:

	boolean

	val

getStorageProvider

provides the ability to cache content

public StorageProvider getStorageProvider();

setStorageProvider

provides the ability to cache content like nodelists, contract codes and validatorlists

public void setStorageProvider(StorageProvider val);

arguments:

	StorageProvider

	val

send

send a request.

The request must a valid json-string with method and params

public native String send(String request);

arguments:

	String

	request

sendobject

send a request but returns a object like array or map with the parsed response.

The request must a valid json-string with method and params

public native Object sendobject(String request);

arguments:

	String

	request

sendRPC

send a RPC request by only passing the method and params.

It will create the raw request from it and return the result.

public String sendRPC(String method, Object[] params);

arguments:

	String

	method

	Object[]

	params

sendRPCasObject

send a RPC request by only passing the method and params.

It will create the raw request from it and return the result.

public Object sendRPCasObject(String method, Object[] params);

arguments:

	String

	method

	Object[]

	params

IN3

public IN3();

setTransport

sets The transport interface.

This allows to fetch the result of the incubed in a different way.

public void setTransport(IN3Transport newTransport);

arguments:

	IN3Transport

	newTransport

getTransport

returns the current transport implementation.

public IN3Transport getTransport();

forChain

create a Incubed client using the chain-config.

if chainId is Chain.MULTICHAIN, the client can later be switched between different chains, for all other chains, it will be initialized only with the chainspec for this one chain (safes memory)

public static IN3 forChain(long chainId);

arguments:

	long

	chainId

main

public static void main(String[] args);

arguments:

	String[]

	args

class IN3DefaultTransport

handle

public byte[][] handle(String[] urls, byte[] payload);

arguments:

	String[]

	urls

	byte[]

	payload

class JSON

internal helper tool to represent a JSON-Object.

Since the internal representation of JSON in incubed uses hashes instead of name, the getter will creates these hashes.

get

gets the property

public Object get(String prop);

arguments:

	String

	prop

	the name of the property.

returns: Object : the raw object.

put

adds values.

This function will be called from the JNI-Iterface.

Internal use only!

public void put(int key, Object val);

arguments:

	int

	key

	the hash of the key

	Object

	val

	the value object

getLong

returns the property as long

public long getLong(String key);

arguments:

	String

	key

	the propertyName

returns: long : the long value

getBigInteger

returns the property as BigInteger

public BigInteger getBigInteger(String key);

arguments:

	String

	key

	the propertyName

returns: BigInteger : the BigInteger value

getStringArray

returns the property as StringArray

public String[] getStringArray(String key);

arguments:

	String

	key

	the propertyName

returns: String[] : the array or null

getString

returns the property as String or in case of a number as hexstring.

public String getString(String key);

arguments:

	String

	key

	the propertyName

returns: String : the hexstring

toString

public String toString();

hashCode

public int hashCode();

equals

public boolean equals(Object obj);

arguments:

	Object

	obj

asStringArray

casts the object to a String[]

public static String[] asStringArray(Object o);

arguments:

	Object

	o

asBigInteger

public static BigInteger asBigInteger(Object o);

arguments:

	Object

	o

asLong

public static long asLong(Object o);

arguments:

	Object

	o

asInt

public static int asInt(Object o);

arguments:

	Object

	o

asString

public static String asString(Object o);

arguments:

	Object

	o

toJson

public static String toJson(Object ob);

arguments:

	Object

	ob

appendKey

public static void appendKey(StringBuilder sb, String key, Object value);

arguments:

	StringBuilder

	sb

	String

	key

	Object

	value

class Loader

loadLibrary

public static void loadLibrary();

class TempStorageProvider

a simple Storage Provider storing the cache in the temp-folder.

getItem

returns a item from cache ()

public byte[] getItem(String key);

arguments:

	String

	key

	the key for the item

returns: byte[] : the bytes or null if not found.

setItem

stores a item in the cache.

public void setItem(String key, byte[] content);

arguments:

	String

	key

	the key for the item

	byte[]

	content

	the value to store

enum Proof

The Proof type indicating how much proof is required.

The enum type contains the following values:

	none

	0

	No Verification.

	standard

	1

	Standard Verification of the important properties.

	full

	2

	Full Verification including even uncles wich leads to higher payload.

interface IN3Transport

handle

public byte[][] handle(String[] urls, byte[] payload);

arguments:

	String[]

	urls

	byte[]

	payload

interface Signer

a Interface responsible for signing data or transactions.

prepareTransaction

optiional method which allows to change the transaction-data before sending it.

This can be used for redirecting it through a multisig.

public TransactionRequest prepareTransaction(IN3 in3, TransactionRequest tx);

arguments:

	IN3

	in3

	TransactionRequest

	tx

hasAccount

returns true if the account is supported (or unlocked)

public boolean hasAccount(String address);

arguments:

	String

	address

sign

signing of the raw data.

public String sign(String data, String address);

arguments:

	String

	data

	String

	address

interface StorageProvider

Provider methods to cache data.

These data could be nodelists, contract codes or validator changes.

getItem

returns a item from cache ()

public byte[] getItem(String key);

arguments:

	String

	key

	the key for the item

returns: byte[] : the bytes or null if not found.

setItem

stores a item in the cache.

public void setItem(String key, byte[] content);

arguments:

	String

	key

	the key for the item

	byte[]

	content

	the value to store

Package in3.eth1

class API

a Wrapper for the incubed client offering Type-safe Access and additional helper functions.

API

creates a API using the given incubed instance.

public API(IN3 in3);

arguments:

	IN3

	in3

getBlockByNumber

finds the Block as specified by the number.

use Block.LATEST for getting the lastest block.

public Block getBlockByNumber(long block, boolean includeTransactions);

arguments:

	long

	block

	

	boolean

	includeTransactions

	< the Blocknumber < if true all Transactions will be includes, if not only the transactionhashes

getBlockByHash

Returns information about a block by hash.

public Block getBlockByHash(String blockHash, boolean includeTransactions);

arguments:

	String

	blockHash

	

	boolean

	includeTransactions

	< the Blocknumber < if true all Transactions will be includes, if not only the transactionhashes

getBlockNumber

the current BlockNumber.

public long getBlockNumber();

getGasPrice

the current Gas Price.

public long getGasPrice();

getChainId

Returns the EIP155 chain ID used for transaction signing at the current best block.

Null is returned if not available.

public String getChainId();

call

calls a function of a smart contract and returns the result.

public Object call(TransactionRequest request, long block);

arguments:

	TransactionRequest

	request

	

	long

	block

	< the transaction to call. < the Block used to for the state.

returns: Object : the decoded result. if only one return value is expected the Object will be returned, if not an array of objects will be the result.

estimateGas

Makes a call or transaction, which won’t be added to the blockchain and returns the used gas, which can be used for estimating the used gas.

public long estimateGas(TransactionRequest request, long block);

arguments:

	TransactionRequest

	request

	

	long

	block

	< the transaction to call. < the Block used to for the state.

returns: long : the gas required to call the function.

getBalance

Returns the balance of the account of given address in wei.

public BigInteger getBalance(String address, long block);

arguments:

	String

	address

	long

	block

getCode

Returns code at a given address.

public String getCode(String address, long block);

arguments:

	String

	address

	long

	block

getStorageAt

Returns the value from a storage position at a given address.

public String getStorageAt(String address, BigInteger position, long block);

arguments:

	String

	address

	BigInteger

	position

	long

	block

getBlockTransactionCountByHash

Returns the number of transactions in a block from a block matching the given block hash.

public long getBlockTransactionCountByHash(String blockHash);

arguments:

	String

	blockHash

getBlockTransactionCountByNumber

Returns the number of transactions in a block from a block matching the given block number.

public long getBlockTransactionCountByNumber(long block);

arguments:

	long

	block

getFilterChangesFromLogs

Polling method for a filter, which returns an array of logs which occurred since last poll.

public Log[] getFilterChangesFromLogs(long id);

arguments:

	long

	id

getFilterChangesFromBlocks

Polling method for a filter, which returns an array of logs which occurred since last poll.

public String[] getFilterChangesFromBlocks(long id);

arguments:

	long

	id

getFilterLogs

Polling method for a filter, which returns an array of logs which occurred since last poll.

public Log[] getFilterLogs(long id);

arguments:

	long

	id

getLogs

Polling method for a filter, which returns an array of logs which occurred since last poll.

public Log[] getLogs(LogFilter filter);

arguments:

	LogFilter

	filter

getTransactionByBlockHashAndIndex

Returns information about a transaction by block hash and transaction index position.

public Transaction getTransactionByBlockHashAndIndex(String blockHash, int index);

arguments:

	String

	blockHash

	int

	index

getTransactionByBlockNumberAndIndex

Returns information about a transaction by block number and transaction index position.

public Transaction getTransactionByBlockNumberAndIndex(long block, int index);

arguments:

	long

	block

	int

	index

getTransactionByHash

Returns the information about a transaction requested by transaction hash.

public Transaction getTransactionByHash(String transactionHash);

arguments:

	String

	transactionHash

getTransactionCount

Returns the number of transactions sent from an address.

public BigInteger getTransactionCount(String address, long block);

arguments:

	String

	address

	long

	block

getTransactionReceipt

Returns the number of transactions sent from an address.

public TransactionReceipt getTransactionReceipt(String transactionHash);

arguments:

	String

	transactionHash

getUncleByBlockNumberAndIndex

Returns information about a uncle of a block number and uncle index position.

Note: An uncle doesn’t contain individual transactions.

public Block getUncleByBlockNumberAndIndex(long block, int pos);

arguments:

	long

	block

	int

	pos

getUncleCountByBlockHash

Returns the number of uncles in a block from a block matching the given block hash.

public long getUncleCountByBlockHash(String block);

arguments:

	String

	block

getUncleCountByBlockNumber

Returns the number of uncles in a block from a block matching the given block hash.

public long getUncleCountByBlockNumber(long block);

arguments:

	long

	block

newBlockFilter

Creates a filter in the node, to notify when a new block arrives.

To check if the state has changed, call eth_getFilterChanges.

public long newBlockFilter();

newLogFilter

Creates a filter object, based on filter options, to notify when the state changes (logs).

To check if the state has changed, call eth_getFilterChanges.

A note on specifying topic filters: Topics are order-dependent. A transaction with a log with topics [A, B] will be matched by the following topic filters:

[] “anything” [A] “A in first position (and anything after)” [null, B] “anything in first position AND B in second position (and anything after)” [A, B] “A in first position AND B in second position (and anything after)” [[A, B], [A, B]] “(A OR B) in first position AND (A OR B) in second position
(and anything after)”

public long newLogFilter(LogFilter filter);

arguments:

	LogFilter

	filter

uninstallFilter

uninstall filter.

public boolean uninstallFilter(long filter);

arguments:

	long

	filter

sendRawTransaction

Creates new message call transaction or a contract creation for signed transactions.

public String sendRawTransaction(String data);

arguments:

	String

	data

returns: String : transactionHash

sendTransaction

sends a Transaction as desribed by the TransactionRequest.

This will require a signer to be set in order to sign the transaction.

public String sendTransaction(TransactionRequest tx);

arguments:

	TransactionRequest

	tx

call

the current Gas Price.

public Object call(String to, String function, Object... params);

arguments:

	String

	to

	String

	function

	Object...

	params

returns: Object : the decoded result. if only one return value is expected the Object will be returned, if not an array of objects will be the result.

class Block

represents a Block in ethereum.

LATEST

The latest Block Number.

Type: static long

EARLIEST

The Genesis Block.

Type: static long

getTotalDifficulty

returns the total Difficulty as a sum of all difficulties starting from genesis.

public BigInteger getTotalDifficulty();

getGasLimit

the gas limit of the block.

public BigInteger getGasLimit();

getExtraData

the extra data of the block.

public String getExtraData();

getDifficulty

the difficulty of the block.

public BigInteger getDifficulty();

getAuthor

the author or miner of the block.

public String getAuthor();

getTransactionsRoot

the roothash of the merkletree containing all transaction of the block.

public String getTransactionsRoot();

getTransactionReceiptsRoot

the roothash of the merkletree containing all transaction receipts of the block.

public String getTransactionReceiptsRoot();

getStateRoot

the roothash of the merkletree containing the complete state.

public String getStateRoot();

getTransactionHashes

the transaction hashes of the transactions in the block.

public String[] getTransactionHashes();

getTransactions

the transactions of the block.

public Transaction[] getTransactions();

getTimeStamp

the unix timestamp in seconds since 1970.

public long getTimeStamp();

getSha3Uncles

the roothash of the merkletree containing all uncles of the block.

public String getSha3Uncles();

getSize

the size of the block.

public long getSize();

getSealFields

the seal fields used for proof of authority.

public String[] getSealFields();

getHash

the block hash of the of the header.

public String getHash();

getLogsBloom

the bloom filter of the block.

public String getLogsBloom();

getMixHash

the mix hash of the block.

(only valid of proof of work)

public String getMixHash();

getNonce

the mix hash of the block.

(only valid of proof of work)

public String getNonce();

getNumber

the block number

public long getNumber();

getParentHash

the hash of the parent-block.

public String getParentHash();

getUncles

returns the blockhashes of all uncles-blocks.

public String[] getUncles();

hashCode

public int hashCode();

equals

public boolean equals(Object obj);

arguments:

	Object

	obj

class Log

a log entry of a transaction receipt.

isRemoved

true when the log was removed, due to a chain reorganization.

false if its a valid log.

public boolean isRemoved();

getLogIndex

integer of the log index position in the block.

null when its pending log.

public int getLogIndex();

gettTansactionIndex

integer of the transactions index position log was created from.

null when its pending log.

public int gettTansactionIndex();

getTransactionHash

Hash, 32 Bytes - hash of the transactions this log was created from.

null when its pending log.

public String getTransactionHash();

getBlockHash

Hash, 32 Bytes - hash of the block where this log was in.

null when its pending. null when its pending log.

public String getBlockHash();

getBlockNumber

the block number where this log was in.

null when its pending. null when its pending log.

public long getBlockNumber();

getAddress

20 Bytes - address from which this log originated.

public String getAddress();

getTopics

Array of 0 to 4 32 Bytes DATA of indexed log arguments.

(In solidity: The first topic is the hash of the signature of the event (e.g. Deposit(address,bytes32,uint256)), except you declared the event with the anonymous specifier.)

public String[] getTopics();

class LogFilter

Log configuration for search logs.

getFromBlock

public long getFromBlock();

setFromBlock

public void setFromBlock(long fromBlock);

arguments:

	long

	fromBlock

getToBlock

public long getToBlock();

setToBlock

public void setToBlock(long toBlock);

arguments:

	long

	toBlock

getAddress

public String getAddress();

setAddress

public void setAddress(String address);

arguments:

	String

	address

getTopics

public Object[] getTopics();

setTopics

public void setTopics(Object[] topics);

arguments:

	Object[]

	topics

getLimit

public int getLimit();

setLimit

public void setLimit(int limit);

arguments:

	int

	limit

toString

creates a JSON-String.

public String toString();

class SimpleWallet

a simple Implementation for holding private keys to sing data or transactions.

addRawKey

adds a key to the wallet and returns its public address.

public String addRawKey(String data);

arguments:

	String

	data

addKeyStore

adds a key to the wallet and returns its public address.

public String addKeyStore(String jsonData, String passphrase);

arguments:

	String

	jsonData

	String

	passphrase

prepareTransaction

optiional method which allows to change the transaction-data before sending it.

This can be used for redirecting it through a multisig.

public TransactionRequest prepareTransaction(IN3 in3, TransactionRequest tx);

arguments:

	IN3

	in3

	TransactionRequest

	tx

hasAccount

returns true if the account is supported (or unlocked)

public boolean hasAccount(String address);

arguments:

	String

	address

sign

signing of the raw data.

public String sign(String data, String address);

arguments:

	String

	data

	String

	address

class Transaction

represents a Transaction in ethereum.

getBlockHash

the blockhash of the block containing this transaction.

public String getBlockHash();

getBlockNumber

the block number of the block containing this transaction.

public long getBlockNumber();

getChainId

the chainId of this transaction.

public String getChainId();

getCreatedContractAddress

the address of the deployed contract (if successfull)

public String getCreatedContractAddress();

getFrom

the address of the sender.

public String getFrom();

getHash

the Transaction hash.

public String getHash();

getData

the Transaction data or input data.

public String getData();

getNonce

the nonce used in the transaction.

public long getNonce();

getPublicKey

the public key of the sender.

public String getPublicKey();

getValue

the value send in wei.

public BigInteger getValue();

getRaw

the raw transaction as rlp encoded data.

public String getRaw();

getTo

the address of the receipient or contract.

public String getTo();

getSignature

the signature of the sender - a array of the [r, s, v]

public String[] getSignature();

getGasPrice

the gas price provided by the sender.

public long getGasPrice();

getGas

the gas provided by the sender.

public long getGas();

class TransactionReceipt

represents a Transaction receipt in ethereum.

getBlockHash

the blockhash of the block containing this transaction.

public String getBlockHash();

getBlockNumber

the block number of the block containing this transaction.

public long getBlockNumber();

getCreatedContractAddress

the address of the deployed contract (if successfull)

public String getCreatedContractAddress();

getFrom

the address of the sender.

public String getFrom();

getTransactionHash

the Transaction hash.

public String getTransactionHash();

getTransactionIndex

the Transaction index.

public int getTransactionIndex();

getTo

20 Bytes - The address of the receiver.

null when it’s a contract creation transaction.

public String getTo();

getGasUsed

The amount of gas used by this specific transaction alone.

public long getGasUsed();

getLogs

Array of log objects, which this transaction generated.

public Log[] getLogs();

getLogsBloom

256 Bytes - A bloom filter of logs/events generated by contracts during transaction execution.

Used to efficiently rule out transactions without expected logs

public String getLogsBloom();

getRoot

32 Bytes - Merkle root of the state trie after the transaction has been executed (optional after Byzantium hard fork EIP609).

public String getRoot();

getStatus

success of a Transaction.

true indicates transaction failure , false indicates transaction success. Set for blocks mined after Byzantium hard fork EIP609, null before.

public boolean getStatus();

class TransactionRequest

represents a Transaction Request which should be send or called.

getFrom

public String getFrom();

setFrom

public void setFrom(String from);

arguments:

	String

	from

getTo

public String getTo();

setTo

public void setTo(String to);

arguments:

	String

	to

getValue

public BigInteger getValue();

setValue

public void setValue(BigInteger value);

arguments:

	BigInteger

	value

getNonce

public long getNonce();

setNonce

public void setNonce(long nonce);

arguments:

	long

	nonce

getGas

public long getGas();

setGas

public void setGas(long gas);

arguments:

	long

	gas

getGasPrice

public long getGasPrice();

setGasPrice

public void setGasPrice(long gasPrice);

arguments:

	long

	gasPrice

getFunction

public String getFunction();

setFunction

public void setFunction(String function);

arguments:

	String

	function

getParams

public Object[] getParams();

setParams

public void setParams(Object[] params);

arguments:

	Object[]

	params

setData

public void setData(String data);

arguments:

	String

	data

getData

creates the data based on the function/params values.

public String getData();

getTransactionJson

public String getTransactionJson();

getResult

public Object getResult(String data);

arguments:

	String

	data

API Reference CMD

Incubed can be used as a command-line utility or as a tool in Bash scripts. This tool will execute a JSON-RPC request and write the result to standard output.

Usage

in3 [options] method [arguments]

	-c, -chain

	The chain to use currently:

	mainnet

	Mainnet

	kovan

	Kovan testnet

	tobalaba

	EWF testchain

	goerli

	Goerli testchain using Clique

	btc

	Bitcoin (still experimental)

	local

	Use the local client on http://localhost:8545

	RPCURL

	If any other RPC-URL is passed as chain name, this is used but without verification

	-p, -proof

	Specifies the verification level:

	none

	No proof

	standard

	Standard verification (default)

	full

	Full verification

	-np

	Short for -p none.

	-s, -signs

	Number of signatures to use when verifying.

	-b, -block

	The block number to use when making calls. Could be either latest (default), earliest, or a hex number.

	-l, -latest

	replaces latest with latest BlockNumber - the number of blocks given.

	-pk

	The path to the private key as keystore file.

	-pwd

	Password to unlock the key. (Warning: since the passphrase must be kept private, make sure that this key may not appear in the bash_history)

	-to

	The target address of the call.

	-st, -sigtype

	the type of the signature data : eth_sign (use the prefix and hash it), raw (hash the raw data), hash (use the already hashed data). Default: raw

	-port

	specifies the port to run incubed as a server. Opening port 8545 may replace a local parity or geth client.

	-d, -data

	The data for a transaction.

This can be a file path, a 0x-hexvalue, or - to read it from standard input. If a method signature is given with the data, they will be combined and used as constructor arguments when deploying.

	-gas

	The gas limit to use when sending transactions (default: 100000).

	-value

	The value to send when conducting a transaction. Can be a hex value or a float/integer with the suffix eth or wei like 1.8eth (default: 0).

	-w, -wait

	If given, eth_sendTransaction or eth_sendRawTransaction will not only return the transaction hash after sending but also wait until the transaction is mined and returned to the transaction receipt.

	-json

	If given, the result will be returned as JSON, which is especially important for eth_call, which results in complex structres.

	-hex

	If given, the result will be returned as hex.

	-debug

	If given, Incubed will output debug information when executing.

	-q

	quiet. no warnings or log to stderr.

	-ri

	Reads the response from standard input instead of sending the request, allowing for offline use cases.

	-ro

	Writes the raw response from the node to standard output.

Install

From Binaries

You can download the from the latest release-page:

https://github.com/slockit/in3-c/releases

These release files contain the sources, precompiled libraries and executables, headerfiles and documentation.

From Package Managers

We currently support

Ubuntu Launchpad (Linux)

Installs libs and binaries on IoT devices or Linux-Systems

Add the slock.it ppa to your system
sudo add-apt-repository ppa:devops-slock-it/in3

install the commandline tool in3
apt-get install in3

install shared and static libs and header files
apt-get install in3-dev

Brew (MacOS)

This is the easiest way to install it on your mac using brew

Add a brew tap
brew tap slockit/in3

install all binaries and libraries
brew install in3

From Sources

Before building, make sure you have these components installed:

	CMake (should be installed as part of the build-essential: apt-get install build-essential)

	libcurl (for Ubuntu, use either sudo apt-get install libcurl4-gnutls-dev or apt-get install libcurl4-openssl-dev)

	If libcurl cannot be found, Conan is used to fetch and build curl

clone the sources
git clone https://github.com/slockit/in3-c.git

create build-folder
cd in3-c
mkdir build && cd build

configure and build
cmake -DCMAKE_BUILD_TYPE=Release .. && make in3

install
sudo make install

When building from source, CMake accepts the flags which help to optimize.
For more details just look at the CMake-Options .

From Docker

Incubed can be run as docker container. For this pull the container:

run a simple statement
docker run slockit/in3:latest eth_blockNumber

to start it as a server
docker run -p 8545:8545 slockit/in3:latest -port 8545

mount the cache in order to cache nodelists, validatorlists and contract code.
docker run -v $(pwd)/cache:/root/.in3 -p 8545:8545 slockit/in3:latest -port 8545

Environment Variables

The following environment variables may be used to define defaults:

	IN3_PK

	The raw private key used for signing. This should be used with caution, since all subprocesses have access to it!

	IN3_CHAIN

	The chain to use (default: mainnet) (same as -c). If a URL is passed, this server will be used instead.

Methods

As methods, the following can be used:

	<JSON-RPC>-method

	All officially supported JSON-RPC methods [https://github.com/ethereum/wiki/wiki/JSON-RPC#json-rpc-methods] may be used.

	send <signature> …args

	Based on the -to, -value, and -pk, a transaction is built, signed, and sent.
If there is another argument after send, this would be taken as a function signature of the smart contract followed by optional arguments of the function.

Send some ETH (requires setting the IN3_PK-variable before).
in3 send -to 0x1234556 -value 0.5eth
Send a text to a function.
in3 -to 0x5a0b54d5dc17e0aadc383d2db43b0a0d3e029c4c -gas 1000000 send "registerServer(string,uint256)" "https://in3.slock.it/kovan1" 0xFF

	sign <data>

	signs the data and returns the signature (65byte as hex). Use the -sigtype to specify the creation of the hash.

	call <signature> …args

	eth_call to call a function. After the call argument, the function signature and its arguments must follow.

	in3_nodeList

	Returns the NodeList of the Incubed NodeRegistry as JSON.

	in3_sign <blocknumber>

	Requests a node to sign. To specify the signer, you need to pass the URL like this:

Send a text to a function.
in3 in3_sign -c https://in3.slock.it/mainnet/nd-1 6000000

	in3_stats

	Returns the stats of a node. Unless you specify the node with -c <rpcurl>, it will pick a random node.

	abi_encode <signature> …args

	Encodes the arguments as described in the method signature using ABI encoding.

	abi_decode <signature> data

	Decodes the data based on the signature.

	pk2address <privatekey>

	Extracts the public address from a private key.

	pk2public <privatekey>

	Extracts the public key from a private key.

	ecrecover <msg> <signature>

	Extracts the address and public key from a signature.

	createkey

	Generates a random raw private key.

	key <keyfile>

	Reads the private key from JSON keystore file from the first argument and returns the private key. This may ask the user to enter the passphrase (unless provided with -pwd).
To unlock the key to reuse it within the shell, you can set the environment variable like this:

export IN3_PK=`in3 keystore mykeyfile.json`

if no method is passed, this tool will read json-rpc-requests from stdin and response on stdout until stdin is closed.

echo '{"method":"eth_blockNumber","params":[]}' | in3 -q -c goerli

This can also be used process to communicate with by startiing a in3-process and send rpc-comands through stdin and read the responses from stout.
if multiple requests are passed in the input stream, they will executed in the same order. The result will be terminated by a newline-character.

Running as Server

While you can use in3 to execute a request, return a result and quit, you can also start it as a server using the specified port (-port 8545) to serve RPC-requests.
Thiss way you can replace your local parity or geth with a incubed client. All Dapps can then connect to http://localhost:8545.

starts a server at the standard port for kovan.
in3 -c kovan -port 8545

Cache

Even though Incubed does not need a configuration or setup and runs completely statelessly, caching already verified data can boost the performance. That’s why in3 uses a cache to store.

	NodeLists

	List of all nodes as verified from the registry.

	Reputations

	Holding the score for each node to improve weights for honest nodes.

	Code

	For eth_call, Incubed needs the code of the contract, but this can be taken from a cache if possible.

	Validators

	For PoA changes, the validators and their changes over time will be stored.

By default, Incubed will use ~/.in3 as a folder to cache data.

If you run the docker container, you need to mount /root/.in3 in to persist the cache.

Signing

While Incubed itself uses an abstract definition for signing, at the moment, the command-line utility only supports raw private keys.
There are two ways you can specify the private keys that Incubed should use to sign transactions:

	Use the environment variable IN3_PK.
This makes it easier to run multiple transaction.

Warning

Since the key is stored in an envirmoent variable all subpoccess have access to this. That’s why this method is potentially unsafe.

#!/bin/sh

reads the key from the keyfile and asks the user for the passphrase.
IN3_PK = `in3 key my_keyfile.json`

you can can now use this private keys since it is stored in a enviroment-variable
in3 -to 0x27a37a1210df14f7e058393d026e2fb53b7cf8c1 -value 3.5eth -wait send
in3 -to 0x5a0b54d5dc17e0aadc383d2db43b0a0d3e029c4c -gas 1000000 send "registerServer(string,uint256)" "https://in3.slock.it/kovan1" 0xFF

	Use the -pk option

This option takes the path to the keystore-file and will ask the user to unlock as needed. It will not store the unlocked key anywhere.

in3 -pk my_keyfile.json -to 0x27a37a1210df14f7e058393d026e2fb53b7cf8c1 -value 200eth -wait send

Autocompletion

If you want autocompletion, simply add these lines to your .bashrc or .bash_profile:

_IN3_WORDS=`in3 autocompletelist`
complete -W "$_IN3_WORDS" in3

Function Signatures

When using send or call, the next optional parameter is the function signature. This signature describes not only the name of the function to call but also the types of arguments and return values.

In general, the signature is built by simply removing all names and only holding onto the types:

<FUNCTION_NAME>(<ARGUMENT_TYPES>):(<RETURN_TYPES>)

It is important to mention that the type names must always be the full Solidity names. Most Solidity functions use aliases. They would need to be replaced with the full type name.

e.g., uint -> uint256

Examples

Getting the Current Block

On a command line:
in3 eth_blockNumber
> 8035324

For a different chain:
in3 -c kovan eth_blockNumber
> 11834906

Getting it as hex:
in3 -c kovan -hex eth_blockNumber
> 0xb49625

As part of shell script:
BLOCK_NUMBER=`in3 eth_blockNumber`

Using jq to Filter JSON

Get the timestamp of the latest block:
in3 eth_getBlockByNumber latest false | jq -r .timestamp
> 0x5d162a47

Get the first transaction of the last block:
in3 eth_getBlockByNumber latest true | jq '.transactions[0]'
> {
 "blockHash": "0xe4edd75bf43cd8e334ca756c4df1605d8056974e2575f5ea835038c6d724ab14",
 "blockNumber": "0x7ac96d",
 "chainId": "0x1",
 "condition": null,
 "creates": null,
 "from": "0x91fdebe2e1b68da999cb7d634fe693359659d967",
 "gas": "0x5208",
 "gasPrice": "0xba43b7400",
 "hash": "0x4b0fe62b30780d089a3318f0e5e71f2b905d62111a4effe48992fcfda36b197f",
 "input": "0x",
 "nonce": "0x8b7",
 "publicKey": "0x17f6413717c12dab2f0d4f4a033b77b4252204bfe4ae229a608ed724292d7172a19758e84110a2a926842457c351f8035ce7f6ac1c22ba1b6689fdd7c8eb2a5d",
 "r": "0x1d04ee9e31727824a19a4fcd0c29c0ba5dd74a2f25c701bd5fdabbf5542c014c",
 "raw": "0xf86e8208b7850ba43b7400825208947fb38d6a092bbdd476e80f00800b03c3f1b2d332883aefa89df48ed4008026a01d04ee9e31727824a19a4fcd0c29c0ba5dd74a2f25c701bd5fdabbf5542c014ca043f8df6c171e51bf05036c8fe8d978e182316785d0aace8ecc56d2add157a635",
 "s": "0x43f8df6c171e51bf05036c8fe8d978e182316785d0aace8ecc56d2add157a635",
 "standardV": "0x1",
 "to": "0x7fb38d6a092bbdd476e80f00800b03c3f1b2d332",
 "transactionIndex": "0x0",
 "v": "0x26",
 "value": "0x3aefa89df48ed400"
 }

Calling a Function of a Smart Contract

 # Without arguments:
 in3 -to 0x2736D225f85740f42D17987100dc8d58e9e16252 call "totalServers():uint256"
 > 5

 # With arguments returning an array of values:
 in3 -to 0x2736D225f85740f42D17987100dc8d58e9e16252 call "servers(uint256):(string,address,uint256,uint256,uint256,address)" 1
 > https://in3.slock.it/mainnet/nd-1
 > 0x784bfa9eb182c3a02dbeb5285e3dba92d717e07a
 > 65535
 > 65535
 > 0
 > 0x00

With arguments returning an array of values as JSON:
 in3 -to 0x2736D225f85740f42D17987100dc8d58e9e16252 -json call "servers(uint256):(string,address,uint256,uint256,uint256,address)" 1
 > ["https://in3.slock.it/mainnet/nd-4","0xbc0ea09c1651a3d5d40bacb4356fb59159a99564","0xffff","0xffff","0x00","0x00"]

Sending a Transaction

Sends a transaction to a register server function and signs it with the private key given :
in3 -pk mykeyfile.json -to 0x27a37a1210df14f7e058393d026e2fb53b7cf8c1 -gas 1000000 send "registerServer(string,uint256)" "https://in3.slock.it/kovan1" 0xFF

Deploying a Contract

Compiling the Solidity code, filtering the binary, and sending it as a transaction returning the txhash:
solc --bin ServerRegistry.sol | in3 -gas 5000000 -pk my_private_key.json -d - send

If you want the address, you would need to wait until the text is mined before obtaining the receipt:
solc --bin ServerRegistry.sol | in3 -gas 5000000 -pk my_private_key.json -d - -wait send | jq -r .contractAddress

API Reference Node/Server

The term in3-server and in3-node are used interchangeably.

Nodes are the backend of Incubed. Each node serves RPC requests to Incubed clients. The node itself runs like a proxy for an Ethereum client (Geth, Parity, etc.), but instead of simply passing the raw response, it will add the required proof needed by the client to verify the response.

To run such a node, you need to have an Ethereum client running where you want to forward the request to. At the moment, the minimum requirement is that this client needs to support eth_getProof (see http://eips.ethereum.org/EIPS/eip-1186).

You can create your own docker compose file/docker command using our command line descriptions below. But you can also use our tool in3-server-setup to help you through the process.

Command-line Arguments

	--autoRegistry-capabilities-multiChain

	If true, this node is able to deliver multiple chains.

	--autoRegistry-capabilities-proof

	If true, this node is able to deliver proofs.

	--autoRegistry-capacity

	Max number of parallel requests.

	--autoRegistry-deposit

	The deposit you want to store.

	--autoRegistry-depositUnit

	Unit of the deposit value.

	--autoRegistry-url

	The public URL to reach this node.

	--cache

	Cache Merkle tries.

	--chain

	ChainId.

	--clientKeys

	A comma-separated list of client keys to use for simulating clients for the watchdog.

	--db-database

	Name of the database.

	--db-host

	Db-host (default: local host).

	--db-password

	Password for db-access.

	--db-user

	Username for the db.

	--defaultChain

	The default chainId in case the request does not contain one.

	--freeScore

	The score for requests without a valid signature.

	--handler

	The implementation used to handle the calls.

	--help

	Output usage information.

	--id

	An identifier used in log files for reading the configuration from the database.

	--ipfsUrl

	The URL of the IPFS client.

	--logging-colors

	If true, colors will be used.

	--logging-file

	The path to the log file.

	--logging-host

	The host for custom logging.

	--logging-level

	Log level.

	--logging-name

	The name of the provider.

	--logging-type

	The module of the provider.

	--maxThreads

	The maximal number of threads running parallel to the processes.

	--maxPointsPerMinute

	The Score for one client able to use within one minute, which is used as DOS-Protection.

	--maxBlocksSigned

	The max number of blocks signed per in3_sign-request

	--maxSignatures

	The max number of signatures to sign per request

	--minBlockHeight

	The minimal block height needed to sign.

	--persistentFile

	The file name of the file keeping track of the last handled blockNumber.

	--privateKey

	The path to the keystore-file for the signer key used to sign blockhashes.

	--privateKeyPassphrase

	The password used to decrypt the private key.

	--profile-comment

	Comments for the node.

	--profile-icon

	URL to an icon or logo of a company offering this node.

	--profile-name

	Name of the node or company.

	--profile-noStats

	If active, the stats will not be shown (default: false).

	--profile-url

	URL of the website of the company.

	--profile-prometheus

	URL of the prometheus gateway to report stats

	--registry

	The address of the server registry used to update the NodeList.

	--registryRPC

	The URL of the client in case the registry is not on the same chain.

	--rpcUrl

	The URL of the client.

	--startBlock

	BlockNumber to start watching the registry.

	--timeout

	Number of milliseconds needed to wait before a request times out.

	--version

	Output of the version number.

	--watchInterval

	The number of seconds before a new event.

	--watchdogInterval

	Average time between sending requests to the same node. 0 turns it off (default).

in3-server-setup tool

The in3-server-setup tool can be found both [online](https://in3-setup.slock.it) and on [DockerHub](https://hub.docker.com/r/slockit/in3-server-setup).
The DockerHub version can be used to avoid relying on our online service, a full source will be released soon.

The tool can be used to generate the private key as well as the docker-compose file for use on the server.

Note: The below guide is a basic example of how to setup and in3 node, no assurances are made as to the security of the setup. Please take measures to protect your private key and server.

	Setting up a server on AWS:

	
	Create an account on AWS and create a new EC2 instance

	Save the key and SSH into the machine with `ssh -i "SSH_KEY.pem" user@IP`

	Install docker and docker-compose on the EC2 instance `apt-get install docker docker-compose`

	Use scp to transfer the docker-compose file and private key, `scp -i "SSH_KEY" FILE user@IP:.`

	Run the Ethereum client, for example parity and allow it to sync

	Once the client is synced, run the docker-compose file with `docker-compose up`

	
	Test the in3 node by making a request to the address

	curl -X POST -H 'Content-Type:application/json' \
--data '{"id":1,"jsonrpc":"2.0","method":"in3_nodeList", \
"params":[],"in3":{"version": "0x2","chainId":"0x1","verification":"proof"}}' \
 <MY_NODE_URL>

	Consider using tools such as AWS Shield to protect your server from DOS attacks

Registering Your Own Incubed Node

If you want to participate in this network and register a node, you need to send a transaction to the registry contract, calling registerServer(string _url, uint _props).

To run an Incubed node, you simply use docker-compose:

	First run partiy, and allow the client to sync:

	version: '2'
services:
incubed-parity:
 image: parity:latest # Parity image with the proof function implemented.
 command:
 - --auto-update=none # Do not automatically update the client.
 - --pruning=archive
 - --pruning-memory=30000 # Limit storage.
 - --jsonrpc-experimental # Currently still needed until EIP 1186 is finalized.

	Then run in3 with the below docker-compose file:

	version: '2'
 services:
 incubed-server:
 image: slockit/in3-server:latest
 volumes:
 - $PWD/keys:/secure # Directory where the private key is stored.
 ports:
 - 8500:8500/tcp # Open the port 8500 to be accessed by the public.
 command:
 - --privateKey=/secure/myKey.json # Internal path to the key.
 - --privateKeyPassphrase=dummy # Passphrase to unlock the key.
 - --chain=0x1 # Chain (Kovan).
 - --rpcUrl=http://incubed-parity:8545 # URL of the Kovan client.
 - --registry=0xFdb0eA8AB08212A1fFfDB35aFacf37C3857083ca # URL of the Incubed registry.
 - --autoRegistry-url=http://in3.server:8500 # Check or register this node for this URL.
 - --autoRegistry-deposit=2 # Deposit to use when registering.

API Reference Solidity

This page contains a list of function for the registry contracts.

NodeRegistryData functions

adminRemoveNodeFromRegistry

Removes an in3-node from the nodeList

Development notice:

	only callable by the NodeRegistryLogic-contract

Parameters:

	_signer address: the signer

adminSetLogic

Sets the new Logic-contract as owner of the contract.

Development notice:

	only callable by the current Logic-contract / owner

	the 0x00-address as owner is not supported

Return Parameters:

	true when successful

adminSetNodeDeposit

Sets the deposit of an existing in3-node

Development notice:

	only callable by the NodeRegistryLogic-contract

	used to remove the deposit of a node after he had been convicted

Parameters:

	_signer address: the signer of the in3-node

	_newDeposit uint: the new deposit

Return Parameters:

	true when successful

adminSetStage

Sets the stage of a signer

Development notice:

	only callable by the current Logic-contract / owner

Parameters:

	_signer address: the signer of the in3-node

	stage uint: the new stage

Return Parameters:

	true when successful

adminSetSupportedToken

Sets a new erc20-token as supported token for the in3-nodes.

Development notice:

	only callable by the NodeRegistryLogic-contract

Parameters:

	_newToken address: the address of the new supported token

Return Parameters:

	true when successful

adminSetTimeout

Sets the new timeout until the deposit of a node can be accessed after he was unregistered.

Development notice:

	only callable by the NodeRegistryLogic-contract

Parameters:

	_newTimeout uint: the new timeout

Return Parameters:

	true when successful

adminTransferDeposit

Transfers a certain amount of ERC20-tokens to the provided address

Development notice:

	only callable by the NodeRegistryLogic-contract

	reverts when the transfer failed

Parameters:

	_to address: the address to receive the tokens

	_amount: uint: the amount of tokens to be transferred

Return Parameters:

	true when successful

setConvict

Writes a value to te convictMapping to be used later for revealConvict in the logic contract.

Development notice:

	only callable by the NodeRegistryLogic-contract

Parameters:

	_hash bytes32: the data to be written

	_caller address: the address for that called convict in the logic-contract

Development notice:

	only callable by the NodeRegistryLogic-contract

registerNodeFor

Registers a new node in the nodeList

Development notice:

	only callable by the NodeRegistryLogic-contract

Parameters:

	_url string: the url of the in3-node

	_props uint192: the properties of the in3-node

	_signer address: the signer address

	_weight uit64: the weight

	_owner address: the address of the owner

	_deposit uint: the deposit in erc20 tokens

	_stage uint: the stage the in3-node should have

Return Parameters:

	true when successful

transferOwnership

Transfers the ownership of an active in3-node

Development notice:

	only callable by the NodeRegistryLogic-contract

Parameters:

	_signer address: the signer of the in3-node

	_newOwner address: the address of the new owner

Return Parameters:

	true when successful

unregisteringNode

Removes a node from the nodeList

Development notice:

	only callable by the NodeRegistryLogic-contract

	calls _unregisterNodeInternal()

Parameters:

	_signer address: the signer of the in3-node

Return Parameters:

	true when successful

updateNode

Updates an existing in3-node

Development notice:

	only callable by the NodeRegistryLogic-contract

	reverts when the an updated url already exists

Parameters:

	_signer address: the signer of the in3-node

	_url string: the new url

	_props uint192 the new properties

	_weight uint64 the new weight

	_deposit uint the new deposit

Return Parameters:

	true when successful

getIn3NodeInformation

Returns the In3Node-struct of a certain index

Parameters:

	index uint: the index-position in the nodes-array

Return Parameters:

	the In3Node-struct

getSignerInformation

Returns the SignerInformation of a signer

Parameters:

	_signer address: the signer

Return Parameters:
the SignerInformation of a signer

totalNodes

Returns the length of the nodeList

Return Parameters:
The length of the nodeList

adminSetSignerInfo

Sets the SignerInformation-struct for a signer

Development notice:

	only callable by the NodeRegistryLogic-contract

	gets used for updating the information after returning the deposit

Parameters:

	_signer address: the signer

	_si: SignerInformation the struct to be set

Return Parameters:

	true when successful

NodeRegistryLogic functions

activateNewLogic

Applies a new update to the logic-contract by setting the pending NodeRegistryLogic-contract as owner to the NodeRegistryData-conract

Development notice:

	Only callable after 47 days have passed since the latest update has been proposed

adminRemoveNodeFromRegistry

Removes an malicious in3-node from the nodeList

Development notice:

	only callable by the admin of the smart contract

	only callable in the 1st year after deployment

	ony usable on registered in3-nodes

Parameters:

	_signer address: the malicious signer

adminUpdateLogic

Proposes an update to the logic contract which can only be applied after 47 days.
This will allow all nodes that don’t approve the update to unregister from the registry

Development notice:

	only callable by the admin of the smart contract

	does not allow for the 0x0-address to be set as new logic

Parameters:

	_newLogic address: the malicious signer

convict

Must be called before revealConvict and commits a blocknumber and a hash.

Development notice:

	The v,r,s parameters are from the signature of the wrong blockhash that the node provided

Parameters:

	_hash bytes32: keccak256(wrong blockhash, msg.sender, v, r, s); used to prevent frontrunning.

registerNode

Registers a new node with the sender as owner

Development notice:

	will call the registerNodeInteral function

	the amount of _deposit token have be approved by the signer in order for them to be transferred by the logic contract

Parameters:

	_url string: the url of the node, has to be unique

	_props uint64: properties of the node

	_weight uint64: how many requests per second the node is able to handle

	_deposit uint: amount of supported ERC20 tokens as deposit

registerNodeFor

Registers a new node as a owner using a different signer address*

Development notice:

	will revert when a wrong signature has been provided which is calculated by the hash of the url, properties, weight and the owner in order to prove that the owner has control over the signer-address he has to sign a message

	will call the registerNodeInteral function

	the amount of _deposit token have be approved by the in3-node-owner in order for them to be transferred by the logic contract

Parameters:

	_url string: the url of the node, has to be unique

	_props uint64: properties of the node

	_signer address: the signer of the in3-node

	_weight uint64: how many requests per second the node is able to handle

	_depositAmount uint: the amount of supported ERC20 tokens as deposit

	_v uint8: v of the signed message

	_r bytes32: r of the signed message

	_s bytes32: s of the signed message

returnDeposit

Returns the deposit after a node has been removed and it’s timeout is over.

Development notice:

	reverts if the deposit is still locked

	reverts when there is nothing to transfer

	reverts when not the owner of the former in3-node

Parameters:

	_signer address: the signer-address of a former in3-node

revealConvict

Reveals the wrongly provided blockhash, so that the node-owner will lose its deposit while the sender will get half of the deposit

Development notice:

	reverts when the wrong convict hash (see convict-function) is used

	reverts when the _signer did not sign the block

	reverts when trying to reveal immediately after calling convict

	reverts when trying to convict someone with a correct blockhash

	reverts if a block with that number cannot be found in either the latest 256 blocks or the blockhash registry

Parameters:

	_signer address: the address that signed the wrong blockhash

	_blockhash bytes32: the wrongly provided blockhash

	_blockNumber uint: number of the wrongly provided blockhash

	_v uint8: v of the signature

	_r bytes32: r of the signature

	_s bytes32: s of the signature

transferOwnership

Changes the ownership of an in3-node.

Development notice:

	reverts when the sender is not the current owner

	reverts when trying to pass ownership to 0x0

	reverts when trying to change ownership of an inactive node

Parameters:

	_signer address: the signer-address of the in3-node, used as an identifier

	_newOwner address: the new owner

unregisteringNode

A node owner can unregister a node, removing it from the nodeList. Doing so will also lock his deposit for the timeout of the node.

Development notice:

	reverts when not called by the owner of the node

	reverts when the provided address is not an in3-signer

	reverts when node is not active

Parameters:

	_signer address: the signer of the in3-node

updateNode

Updates a node by changing its props

Development notice:

	if there is an additional deposit the owner has to approve the tokenTransfer before

	reverts when trying to change the url to an already existing one

	reverts when the signer does not own a node

	reverts when the sender is not the owner of the node

Parameters:

	_signer address: the signer-address of the in3-node, used as an identifier

	_url string: the url, will be changed if different from the current one

	_props uint64: the new properties, will be changed if different from the current one

	_weight uint64: the amount of requests per second the node is able to handle

	_additionalDeposit uint: additional deposit in supported erc20 tokens

maxDepositFirstYear

Returns the current maximum amount of deposit allowed for registering or updating a node

Return Parameters:

	uint the maximum amount of tokens

minDeposit

Returns the current minimal amount of deposit required for registering a new node

Return Parameters:

	uint the minimal amount of tokens needed for registering a new node

supportedToken

Returns the current supported ERC20 token-address

Return Parameters:

	address the address of the currently supported erc20 token

BlockHashRegistry functions

searchForAvailableBlock

Searches for an already existing snapshot

Parameters:

	_startNumber uint: the blocknumber to start searching

	_numBlocks uint: the number of blocks to search for

Return Parameters:

	uint returns a blocknumber when a snapshot had been found. It will return 0 if no blocknumber was found.

recreateBlockheaders

Starts with a given blocknumber and its header and tries to recreate a (reverse) chain of blocks. If this has been successful the last blockhash of the header will be added to the smart. contract. It will be checked whether the provided chain is correct by using the reCalculateBlockheaders function.

Development notice:

	only usable when the given blocknumber is already in the smart contract

	function is public due to the usage of a dynamic bytes array (not yet supported for external functions)

	reverts when the chain of headers is incorrect

	reverts when there is not parent block already stored in the contract

Parameters:

	_blockNumber uint: the block number to start recreation from

	_blockheaders bytes[]: array with serialized blockheaders in reverse order (youngest -> oldest) => (e.g. 100, 99, 98)

saveBlockNumber

Stores a certain blockhash to the state

Development notice:

	reverts if the block can’t be found inside the evm

Parameters:

	_blockNumber uint: the blocknumber to be stored

snapshot

Stores the currentBlock-1 in the smart contract

getRlpUint

Returns the value from the rlp encoded data

Development notice:
*This function is limited to only value up to 32 bytes length!

Parameters:

	_data bytes: the rlp encoded data

	_offset uint: the offset

Return Parameters:

	value uint the value

getParentAndBlockhash

Returns the blockhash and the parent blockhash from the provided blockheader

Parameters:

	_blockheader bytes: a serialized (rlp-encoded) blockheader

Return Parameters:

	parentHash bytes32

	bhash bytes32

reCalculateBlockheaders

Starts with a given blockhash and its header and tries to recreate a (reverse) chain of blocks. The array of the blockheaders have to be in reverse order (e.g. [100,99,98,97]).

Parameters:

	_blockheaders bytes[]: array with serialized blockheaders in reverse order, i.e. from youngest to oldest

	_bHash bytes32: blockhash of the 1st element of the _blockheaders-array

1. Concept

To enable smart devices of the internet of things to be connected to the Ethereum blockchain, an Ethereum client needs to run on this hardware.
The same applies to other blockchains, whether based on Ethereum or not.
While current notebooks or desktop computers with a broadband Internet connection are able to run a full node without any problems, smaller devices such as
tablets and smartphones with less powerful hardware or more restricted Internet connection are capable of running a light node. However, many IoT
devices are severely limited in terms of computing capacity, connectivity and often also power supply. Connecting an IoT device to a remote node
enables even low-performance devices to be connected to blockchain. By using distinct remote nodes, the advantages of a decentralized network are undermined without being
forced to trust single players or there is a risk of malfunction or attack because there is a single point of failure.

With the presented Trustless Incentivized Remote Node Network, in short INCUBED, it will be possible to establish a decentralized and secure network of remote nodes, which enables trustworthy and fast access to blockchain for a large number of low-performance IoT devices.

1.1. Situation

The number of IoT devices is increasing rapidly. This opens up many new possibilities for equipping these devices with payment or sharing functionality.
While desktop computers can run an Ethereum full client without any problems,
small devices are limited in terms of computing power, available memory,
Internet connectivity and bandwidth.
The development of Ethereum light clients has significantly contributed
to the connection of smaller devices with the blockchain.
Devices like smartphones or computers like Raspberry PI or Samsung Artik
5/7/10 are able to run light clients.
However, the requirements regarding the mentioned resources and the available
power supply are not met by a large number of IoT devices.

One option is to run the client on an external server, which is then used by the device as a remote client. However, central advantages of the blockchain technology - decentralization rather than having to trust individual players - are lost this way. There is also a risk that the service will fail due to the failure of individual nodes.

A possible solution for this may be a decentralized network of remote-nodes (netservice nodes) combined with a protocol to secure access.

1.2. Low-Performance Hardware

There are several classes of IoT devices, for which running a full or light client is somehow problematic and a INNN can be a real benefit or even a job enabler:

	Devices with insufficient calculation power or memory space

Today, the majority of IoT devices do not have processors capable of running a full client or a light client. To run such a client, the computer needs to be able to synchronize the blockchain and calculate the state (or at least the needed part thereof).

	Devices with insufficient power supply

If devices are mobile (for instance a bike lock or an environment sensor) and rely on a battery for power supply, running a full or a light light, which needs to be constantly synchronized, is not possible.

	Devices which are not permanently connected to the Internet

Devices which are not permantently connected to the Internet, also have trouble running a full or a light client as these clients need to be in sync before they can be used.

1.3. Scalability

One of the most important topics discussed regarding blockchain technology is scalability. Of course, a working INCUBED does not solve the scaling problems that more transactions can be executed per second. However, it does contribute to providing access to the Ethereum network for devices that could not be integrated into existing clients (full client, light client) due to their lack of performance or availability of a continuous Internet connection with sufficient bandwidth.

1.4. Use Cases

With the following use cases, some realistic scenarios should be designed in which the use of INCUBED will be at least useful. These use cases are intended as real-life relevant examples only to envision the potential of this technology but are by no means a somehow complete list of possible applications.

1.4.1. Publicly Accessible Environment Sensor

1.4.1.1. Description

An environment sensor, which measures some air quality characteristics, is installed in the city of Stuttgart. All measuring data is stored locally and can be accessed via the Internet by paying a small fee. Also a hash of the current data set is published to the public Ethereum blockchain to validate the integrity of the data.

The computational power of the control unit is restricted to collecting the measuring data from the sensors and storing these data to the local storage. It is able to encrypt or cryptographically sign messages. As this sensor is one of thousands throughout Europe, the energy consumption must be as low as possible. A special low-performance hardware is installed. An Internet connection is provided, but the available bandwidth is not sufficient to synchrone a blockchain client.

1.4.1.2. Blockchain Integration

The connection to the blockchain is only needed if someone requests the data and sends the validation hash code to the smart contract.

The installed hardware (available computational power) and the requirement to minimize energy consumption disable the installation and operation of a light client without installing addition hardware (like a Samsung Artik 7) as PBCD (Physical Blockchain Connection Device/Ethereum computer). Also, the available Internet bandwidth would need to be enhanced to be able to synchronize properly with the blockchain.

Using a netservice-client connected to the INCUBED can be realized using the existing hardware and Internet connection. No additional hardware or Internet bandwidth is needed. The netservice-client connects to the INCUBED only to send signed messages, to trigger transactions or to request information from the blockchain.

1.4.2. Smart Bike Lock

1.4.2.1. Description

A smart bike lock which enables sharing is installed on an e-bike. It is able to connect to the Internet to check if renting is allowed and the current user is authorized to open the lock.

The computational power of the control unit is restricted to the control of the lock. Because the energy is provided by the e-bike’s battery, the controller runs only when needed in order to save energy. For this reason, it is also not possible to maintain a permanent Internet connection.

1.4.2.2. Blockchain Integration

Running a light-client on such a platform would consume far too much energy, but even synchronizing the client only when needed would take too much time and require an Internet connection with the corresponding bandwidth, which is not always the case. With a netservice-client running on the lock, a secure connection to the blockchain can be established at the required times, even if the Internet connection only allows limited bandwidth. In times when there is no rental process in action, neither computing power is needed nor data is transferred.

1.4.3. Smart Home - Smart Thermostat

1.4.3.1. Description

With smart home devices it is possible to realize new business models, e. g. for the energy supply. With smart thermostats it is possible to bill heating energy pay-per-use. During operation, the thermostat must only be connected to the blockchain if there is a heating requirement and a demand exists. Then the thermostat must check whether the user is authorized and then also perform the transactions for payment.

1.4.3.2. Blockchain Integration

Similar to the cycle lock application, a thermostat does not need to be permanently connected to the blockchain to keep a client in sync. Furthermore, its hardware is not able to run a full or light client. Here, too, it makes sense to use a netservice-client. Such a client can be developed especially for this hardware.

1.4.4. Smartphone App

1.4.4.1. Description

The range of smartphone apps that can or should be connected to the blockchain is widely diversified. These can be any apps with payment functions, apps that use blockchain as a notary service, apps that control or lend IoT devices, apps that visualize data from the blockchain, and much more.

Often these apps only need sporadic access to the blockchain. Due to the limited battery power and limited data volume, neither a full client nor a light client is really suitable for such applications, as these clients require a permanent connection to keep the blockchain up-to-date.

1.4.4.2. Blockchain Integration

In order to minimize energy consumption and the amount of data to be transferred, it makes sense to implement smartphone applications that do not necessarily require a permanent connection to the Internet and thus also to the blockchain with a netservice-client. This makes it possible to dispense with a centralized remote server solution, but only have access to the blockchain when it is needed without having to wait long before the client is synchronized.

1.4.5. Advantages

As has already been pointed out in the use cases, there are various advantages that speak in favor of using INCUBED:

	Devices with low computing power can communicate with the blockchain.

	Devices with a poor Internet connection or limited bandwidth can communicate with the blockchain.

	Devices with a limited power supply can be integrated.

	It is a decentralized solution that does not require a central service provider for remote nodes.

	A remote node does not need to be trusted, as there is a verification facility.

	Existing centralized remote services can be easily integrated.

	Net service clients for special and proprietary hardware can be implemented independently of current Ethereum developments.

1.4.6. Challenges

Of course, there are several challenges that need to be solved in order to implement a working INCUBED.

1.4.6.1. Security

The biggest challenge for a decentralized and trust-free system is to ensure that one can make sure that the information supplied is actually correct. If a full client runs on a device and is synchronized with the network, it can check the correctness itself. A light client can also check if the block headers match, but does not have the transactions available and requires a connection to a full client for this information. A remote client that communicates with a full client via the REST API has no direct way to verify that the answer is correct. In a decentralized network of netservice-nodes whose trustworthiness is not known, a way to be certain with a high probability that the answer is correct is required. The INCUBED system provides the nodes that supply the information with additional nodes that serve as validators.

1.4.6.2. Business models

In order to provide an incentive to provide nodes for a decentralized solution, any transaction or query that passes through such a node would have to be remunerated with an additional fee for the operator of the node. However, this would further increase the transaction costs, which are already a real problem for micro-payments. However, there are also numerous non-monetary incentives that encourage participation in this infrastructure.

1.5. Architecture

1.5.1. Overview

An INCUBED network consists of several components:

	The INCUBED registry (later called registry). This is a Smart Contract deployed on the Ethereum Main-Net where all nodes that want to participate in the network must register and, if desired, store a security deposit.

	The INCUBED or Netservice node (later called node), which are also full nodes for the blockchain. The nodes act as information providers and validators.

	The INCUBED or Netservice clients (later called client), which are installed e.g. in the IoT devices.

	Watchdogs who as autonomous authorities (bots) ensure that misbehavior of nodes is uncovered and punished.

1.5.1.1. Initialization of a Client

Each client gets an initial list of boot nodes by default. Before its first “real” communication with the network, the current list of nodes must be queried as they are registered in the registry (see section [subsec:IN3-Registry-Smart-Contract]). Initially, this can only be done using an invalidated query (see figure [fig:unvalidated request]). In order to have the maximum possible security, this query can and should be made to several or even all boot nodes in order to obtain a valid list with great certainty.

This list must be updated at regular intervals to ensure that the current network is always available.

1.5.1.2. Unvalidated Requests / Transactions

Unvalidated queries and transactions are performed by the client by selecting one or more nodes from the registry and sending them the request (see figure [fig:unvalidated request]). Although the responses cannot be verified directly, the option to send the request to multiple nodes in parallel remains. The returned results can then be checked for consistency by the client. Assuming that the majority will deliver the correct result (or execute the transaction correctly), this will at least increase the likelihood of receiving the correct response (Proof of Majority).

There are other requests too that can only be returned as an unverified response. This could be the case, for example:

	Current block number (the node may not have synchronized the latest block yet or may be in a micro fork,…)

	Information from a block that has not yet been finalized

	Gas price

The multiple parallel query of several nodes and the verification of the results according to the majority principle is a standard functionality of the client. With the number of nodes requested in parallel, a suitable compromise must be made between increased data traffic, effort for processing the data (comparison) and higher security.

The selection of the nodes to be queried must be made at random. In particular, successive queries should always be sent to different nodes. This way it is not possible, or at least only very difficult, for a possibly misbehaving node to send specific incorrect answers to a certain client, since it cannot be foreseen at any time that the same client will also send a follow-up query to the same node, for example, and thus the danger is high that the misbehavior will be uncovered.

In the case of a misbehavior, the client can blacklist this node or at least reduce the internal rating of this node. However, inconsistent responses can also be provided unintentionally by a node, i.e. without the intention of spreading false information. This can happen, for example, if the node has not yet synchronized the current block or is running on a micro fork. These possibilities must therefore always be taken into consideration when the client “reacts” to such a response.

An unvalidated answer will be returned unsigned. Thus, it is not possible to punish the sender in case of an incorrect response, except that the client can blacklist or downgrade the sender in the above-mentioned form.

1.5.1.2.1. Validated Requests

The second form of queries are validated requests. The nodes must be able to provide various verification options and proofs in addition to the result of the request. With validated requests, it is possible to achieve a similar level of security with an INCUBED client as with a light or even full client, without having to blindly trust a centralized middleman (as is the case with a remote client). Depending on the security requirements and the available resources (e.g. computing power), different validations and proofs are possible.

[image: _images/incubed_principle2.png]

As with an invalidated query, the node to be queried should be selected randomly. However, there are various criteria, such as the deposited security deposit, reliability and performance from previous requests, etc., which can or must also be included in the selection.

Call Parameter

A validated request consists of the parts:

	Actual request

	List of validators

	Proof request

	List of already known validations and proofs (optional).

Return values

The return depends on the request:

	The requested information (signed by the node)

	The signed answers of the validators (block hash) - 1 or more

	The Merkle Proof

	Request for a payment.

Validation

Validation refers to the checking of a block hash by one or more additional nodes. A client cannot perform this check on its own. To check the credibility of a node (information provider), the block hash it returns is checked by one or more independent nodes (validators). If a validator node can detect the malfunction of the originally requested node (delivery of an incorrect block), it can receive its security deposit and the compromised node is removed from the registry. The same applies to a validator node.

Since the network connection and bandwidth of a node is often better than that of a client, and the number of client requests should be as small as possible, the validation requests are sent from the requested node (information provider) to the validators. These return the signed answer, so that there is no possibility for the information provider to manipulate the answer. Since the selection of nodes to act as validators is made only by the client, a potentially malfunctioning node cannot influence it or select a validator to participate in a conspiracy with it.

If the selected validator is not available or does not respond, the client can specify several validators in the request, which are then contacted instead of the failed node. For example, if multiple nodes are involved in a conspiracy, the requested misbehaving node could only send the validation requests to the nodes that support the wrong response.

Proof

The validators only confirm that the block hash of the block from which the requested information originates is correct. The consistency of the returned response cannot be checked in this way.

Optionally, this information can be checked directly by the client. However, this is obligatory, but considerably increases safety. On the other hand, more information has to be transferred and a computationally complex check has to be performed by the client.

When a proof is requested, the node provides the Merkle Tree of the response so that the client can calculate and check the Merkle Root for the result itself.

Payment and Incentives

As an incentive system for the return of verified responses, the node can request a payment. For this, however, the node must guarantee with its security deposit that the answer is correct.

There are two strong incentives for the node to provide the correct response with high performance since it loses its deposit when a validator (wrong block hash) detects misbehavior and is eliminated from the registry, and receives a reward for this if it provides a correct response.

If a client refuses payment after receiving the correctly validated information which it requested, it can be blacklisted or downgraded by the node so that it will no longer receive responses to its requests.

If a node refuses to provide the information for no reason, it is blacklisted by the client in return or is at least downgraded in rating, which means that it may no longer receive any requests and therefore no remuneration in the future.

If the client detects that the Merkle Proof is not correct (although the validated block hash is correct), it cannot attack the node’s deposit but has the option to blacklist or downgrade the node to no longer ask it. A node caught this way of misbehavior does not receive any more requests and therefore cannot make any profits.

The security deposit of the node has a decisive influence on how much trust is placed in it. When selecting the node, a client chooses those nodes that have a corresponding deposit (stake), depending on the security requirements (e.g. high value of a transaction). Conversely, nodes with a high deposit will also charge higher fees, so that a market with supply and demand for different security requirements will develop.

[image: _images/incubed_principle1.png]

1.5.2. IN3-Registry Smart Contract

Each client is able to fetch the complete list including the deposit and other information from the contract, which is required in order to operate. The client must update the list of nodes logged into the registry during initialization and regularly during operation to notice changes (e.g. if a node is removed from the registry intentionally or due to misbehavior detected).

In order to maintain a list of network nodes offering INCUBED-services a smart contract IN3Registry in the Ethereum Main-Net is deployed. This contract is used to manage ownership and deposit for each node.

contract ServerRegistry {

 /// server has been registered or updated its registry props or deposit
 event LogServerRegistered(string url, uint props, address owner, uint deposit);

 /// a caller requested to unregister a server.
 event LogServerUnregisterRequested(string url, address owner, address caller);

 /// the owner canceled the unregister-proccess
 event LogServerUnregisterCanceled(string url, address owner);

 /// a Server was convicted
 event LogServerConvicted(string url, address owner);

 /// a Server is removed
 event LogServerRemoved(string url, address owner);

 struct In3Server {
 string url; // the url of the server
 address owner; // the owner, which is also the key to sign blockhashes
 uint deposit; // stored deposit
 uint props; // a list of properties-flags representing the capabilities of the server

 // unregister state
 uint128 unregisterTime; // earliest timestamp in to to call unregister
 uint128 unregisterDeposit; // Deposit for unregistering
 address unregisterCaller; // address of the caller requesting the unregister
 }

 /// server list of incubed nodes
 In3Server[] public servers;

 /// length of the serverlist
 function totalServers() public view returns (uint) ;

 /// register a new Server with the sender as owner
 function registerServer(string _url, uint _props) public payable;

 /// updates a Server by adding the msg.value to the deposit and setting the props
 function updateServer(uint _serverIndex, uint _props) public payable;

 /// this should be called before unregistering a server.
 /// there are 2 use cases:
 /// a) the owner wants to stop offering the service and remove the server.
 /// in this case he has to wait for one hour before actually removing the server.
 /// This is needed in order to give others a chance to convict it in case this server signs wrong hashes
 /// b) anybody can request to remove a server because it has been inactive.
 /// in this case he needs to pay a small deposit, which he will lose
 // if the owner become active again
 // or the caller will receive 20% of the deposit in case the owner does not react.
 function requestUnregisteringServer(uint _serverIndex) payable public;

 /// this function must be called by the caller of the requestUnregisteringServer-function after 28 days
 /// if the owner did not cancel, the caller will receive 20% of the server deposit + his own deposit.
 /// the owner will receive 80% of the server deposit before the server will be removed.
 function confirmUnregisteringServer(uint _serverIndex) public ;

 /// this function must be called by the owner to cancel the unregister-process.
 /// if the caller is not the owner, then he will also get the deposit paid by the caller.
 function cancelUnregisteringServer(uint _serverIndex) public;

 /// convicts a server that signed a wrong blockhash
 function convict(uint _serverIndex, bytes32 _blockhash, uint _blocknumber, uint8 _v, bytes32 _r, bytes32 _s) public ;

}

To register, the owner of the node needs to provide the following data:

	props : a bitmask holding properties like.

	url : the public url of the server.

	msg.value : the value sent during this transaction is stored as deposit in the contract.

	msg.sender : the sender of the transaction is set as owner of the node and therefore able to manage it at any given time.

1.5.2.1. Deposit

The deposit is an important incentive for the secure operation of the INCUBED network. The risk of losing the deposit if misconduct is detected motivates the nodes to provide correct and verifiable answers.

The amount of the deposit can be part of the decision criterion for the clients when selecting the node for a request. The “value” of the request can therefore influence the selection of the node (as information provider). For example, a request that is associated with a high value may not be sent to a node that has a very low deposit. On the other hand, for a request for a dashboard, which only provides an overview of some information, the size of the deposit may play a subordinate role.

1.5.3. Netservice-Node

The net service node (short: node) is the communication interface for the client to the blockchain client. It can be implemented as a separate application or as an integrated module of a blockchain client (such as Geth or Parity).

Nodes must provide two different services:

	Information Provider

	Validator.

1.5.3.1. Information Provider

A client directly addresses a node (information provider) to retrieve the desired information. Similar to a remote client, the node interacts with the blockchain via its blockchain client and returns the information to the requesting client. Furthermore, the node (information provider) provides the information the client needs to verify the result of the query (validation and proof). For the service, it can request payment when it returns a validated response.

[image: _images/incubed_principle.png]

If an information provider is found to return incorrect information as a validated response, it loses its deposit and is removed from the registry. It can be transferred by a validator or watchdog.

1.5.3.2. Validator

The second service that a node has to provide is validation. When a client submits a validated request to the information provider, it also specifies the node(s) that are designated as validators. Each node that is logged on to the registry must also accept the task as validator.

If a validator is found to return false information as validation, it loses its deposit and is removed from the registry. It can be transferred by another validator or a watchdog.

1.5.3.3. Watchdog

Watchdogs are independent bots whose random validators logged in to the registry are checked by specific queries to detect misbehavior. In order to provide an incentive for validator activity, watchdogs can also deliberately pretend misbehavior and thus give the validator the opportunity to claim the security deposit.

1.5.4. Netservice-Client

The netservice client (short client) is the instance running on the device that needs the connection to the blockchain. It communicates with the nodes of the INCUBED network via a REST API.

The client can decide autonomously whether it wants to request an unvalidated or a validated answer (see section…). In addition to communicating with the nodes, the client has the ability to verify the responses by evaluating the majority (unvalidated request) or validations and proofs (validated requests).

The client receives the list of available nodes of the INCUBED network from the registry and ensures that this list is always kept up-to-date. Based on the list, the client also manages a local reputation system of nodes to take into account performance, reliability, trustworthiness and security when selecting a node.

A client can communicate with different blockchains at the same time. In the registry, nodes of different blockchains (identified by their ID) are registered so that the client can and must filter the list to identify the nodes that can process (and validate, if necessary) its request.

1.5.4.1. Local Reputation System

The local reputations system aims to support the selection of a node.

The reputation system is also the only way for a client to blacklist nodes that are unreliable or classified as fraudulent. This can happen, for example, in the case of an unvalidated query if the results of a node do not match those of the majority, or in the case of validated queries, if the validation is correct but the proof is incorrect.

1.5.4.2. Performance-Weighting

In order to balance the network, each client may weight each node by:

\(weight=\frac{\max(\lg(deposit),1)}{\max(avgResponseTime,100)} \)

Based on the weight of each node a random node is chosen for each request. While the deposit is read by the contract, the avgResponseTime is managed by the client himself. The does so by measuring the time between request and response and calculate the average (in ms) within the last 24 hours. This way the load is balanced and faster servers will get more traffic.

1.5.5. Payment / Incentives

To build an incentive-based network, it is necessary to have appropriate technologies to process payments. The payments to be made in INCUBED (e.g. as a fee for a validated answer) are, without exception micro payments (other than the deposit of the deposit, which is part of the registration of a node and which is not mentioned here, however). When designing a suitable payment solution, it must therefore be ensured that a reasonable balance is always found between the actual fee, transaction costs and transaction times.

1.5.5.1. Direct Transaction Payment

Direct payment by transaction is of course possible, but this is not possible due to the high transaction costs. Exceptions to this could be transactions with a high value, so that corresponding transaction costs would be acceptable.

However, such payments are not practical for general use.

1.5.5.2. State Channels

State channels are well-suited for the processing of micropayments. A decisive point of the protocol is that the node must always be selected randomly (albeit weighted according to further criteria). However, it is not practical for a client to open a separate state channel (including deposit) with each potential node that it wants to use for a request. To establish a suitable micropayment system based on state channels, a state channel network such as Raiden is required. If enough partners are interconnected in such a network and a path can be found between two partners, payments can also be exchanged between these participants.

1.5.5.3. Probabilistic Payment

Another way of making small payments is probabilistic micropayments. The idea is based on issuing probabilistic lottery tickets instead of very small direct payments, which, with a certain probability, promise to pay out a higher amount. The probability distribution is adjusted so that the expected value corresponds to the payment to be made.

For a probabilistic payment, an amount corresponding to the value of the lottery ticket is deposited. Instead of direct payment, tickets are now issued that have a high likelihood of winning. If a ticket is not a winning ticket, it expires and does not entitle the recipient to receive a payment. Winning tickets, on the other hand, entitle the recipient to receive the full value of the ticket.

Since this value is so high that a transaction is worthwhile, the ticket can be redeemed in exchange for a payment.

Probabilistic payments are particularly suitable for combining a continuous, preferably evenly distributed flow of small payments into individual larger payments (e.g. for streaming data).

Similar to state channels, a type of payment channel is created between two partners (with an appropriate deposit).

For the application in the INCUBED protocol, it is not practical to establish individual probabilistic payment channels between each client and requested node, since on the one hand the prerequisite of a continuous and evenly distributed payment stream is not given and, on the other hand, payments may be very irregularly required (e.g. if a client only rarely sends queries).

The analog to a state channel network is pooled probabilistic payments. Payers can be pooled and recipients can also be connected in a pool, or both.

1.6. Scaling

The interface between client and node is independent of the blockchain with which the node communicates. This allows a client to communicate with multiple blockchains / networks simultaneously as long as suitable nodes are registered in the registry.

For example, a payment transaction can take place on the Ethereum Mainnet and access authorization can be triggered in a special application chain.

1.6.1. Multi Chain Support

Each node may support one or more network or chains. The supported list can be read by filtering the list of all servers in the contract.

The ChainId refers to a list based on EIP-155. The ChainIds defined there will be extended by enabling even custom chains to register a new chainId.

1.6.2. Conclusion

INCUBED establishes a decentralized network of validatable remote nodes, which enables IoT devices in particular to gain secure and reliable access to the blockchain. The demands on the client’s computing and storage capacity can be reduced to a minimum, as can the requirements on connectivity and network traffic.

INCUBED also provides a platform for scaling by allowing multiple blockchains to be accessed in parallel from the same client. Although INCUBED is designed in the first instance for the Ethereum network (and other chains using the Ethereum protocol), in principle other networks and blockchains can also be integrated, as long as it is possible to realize a node that can work as information provider (incl. proof) and validator.

2. Blockheader Verification

2.1. Ethereum

Since all proofs always include the blockheader, it is crucial to verify the correctness of these data as well. But verification depends on the consensus of the underlying blockchain. (For details, see Ethereum Verification and MerkleProof.)

[image: digraph minimal_nonplanar_graphs { node [style=filled fontname="Helvetica"] fontname="Helvetica" edge[fontname="Helvetica"] subgraph cluster_pow { label="Proof or Work" color=lightblue style=filled node [color=white] c[label="Client"] A[label="Node A"] B[label="Node B"] C[label="Node C"] c -> B[label=""] B -> c[label=" response\n + proof \n + signed\n header"] B -> A[label=" sign"] B -> C } subgraph cluster_poa { label="Proof of Authority" color=lightblue style=filled node [color=white] _c[label="Client"] _B[label="Node"] _c -> _B[label=""] _B -> _c[label=" response\n + proof \n + header"] } subgraph cluster_pos { label="Proof of Stake" color=lightblue style=filled node [color=white] rank=same x N V x[label="Client"] N[label="Node"] V[label="Node (Validator)"] x -> N[label=""] N -> x[label=" response\n + proof \n + header"] x -> V[label=" header"] } }]

2.1.1. Proof of Work

Currently, the public chain uses proof of work. This makes it very hard to verify the header since anybody can produce such a header. So the only way to verify that the block in question is an accepted block is to let registered nodes sign the blockhash. If they are wrong, they lose their previously stored deposit. For the client, this means that the required security depends on the deposit stored by the nodes.

This is why a client may be configured to require multiple signatures and even a minimal deposit:

client.sendRPC('eth_getBalance', [account, 'latest'], chain, {
 minDeposit: web3.utils.toWei(10,'ether'),
 signatureCount: 3
})

The minDeposit lets the client preselect only nodes with at least that much deposit.
The signatureCount asks for multiple signatures and so increases the security.

Since most clients are small devices with limited bandwith, the client is not asking for the signatures directly from the nodes but, rather, chooses one node and lets this node run a subrequest to get the signatures. This means not only fewer requests for the clients but also that at least one node checks the signatures and “convicts” another if it lied.

2.1.2. Proof of Authority

The good thing about proof of authority is that there is already a signature included in the blockheader. So if we know who is allowed to sign a block, we do not need an additional blockhash signed. The only critical information we rely on is the list of validators.

Currently, there are two consensus algorithms:

2.1.2.1. Aura

Aura is only used by Parity, and there are two ways to configure it:

	static list of nodes (like the Kovan network): in this case, the validatorlist is included in the chain-spec and cannot change, which makes it very easy for a client to verify blockheaders.

	validator contract: a contract that offers the function getValidators(). Depending on the chain, this contract may contain rules that define how validators may change. But this flexibility comes with a price. It makes it harder for a client to find a secure way to detect validator changes. This is why the proof for such a contract depends on the rules laid out in the contract and is chain-specific.

2.1.2.2. Clique

Clique is a protocol developed by the Geth team and is now also supported by Parity (see Görli testnet).

Instead of relying on a contract, Clique defines a protocol of how validator nodes may change. All votes are done directly in the blockheader. This makes it easier to prove since it does not rely on any contract.

The Incubed nodes will check all the blocks for votes and create a validatorlist that defines the validatorset for any given blockNumber. This also includes the proof in form of all blockheaders that either voted the new node in or out. This way, the client can ask for the list and automatically update the internal list after it has verified each blockheader and vote. Even though malicious nodes cannot forge the signatures of a validator, they may skip votes in the validatorlist. This is why a validatorlist update should always be done by running multiple requests and merging them together.

2.2. Bitcoin

Bitcoin may be a complete different chain, but there are ways to verify a Bitcoin Blockheader within a Ethereum Smart Contract. This requires a little bit more effort but you can use all the features of Incubed.

2.2.1. Block Proof

The data we want to verify are mainly Blocks and Transactions. Usually, if we want to get the BlockHeader or the complete block we already know the blockhash. And if we know that this hash is correct, verifying the rest of the block is easy.

	We take the first 80 Bytes of the Blockdata, which is the blockHeader and hash it twice with sha256. Since Bitcoin stores the hashes in little endian, we then have to reverse the byteorder.

// btc hash = sha256(sha256(data))
const hash(data: Buffer) => crypto.createHash('sha256').update(crypto.createHash('sha256').update(data).digest()).digest()

const blockData:Buffer =
// take the first 80 bytes, hash them and reverse the order
const blockHash = hash(blockData.slice(0,80)).reverse()

	In order to check the Proof of work in the BlockHeader, we compare the target with the hash:

const target = Buffer.alloc(32)
// we take the first 3 bytes from the bits-field and use the 4th byte as exponent:
blockData.copy(target, blockData[75]-3,72,75);
// the hash must be lower than the target
if (target.reverse().compare(blockHash)<0)
 throw new Error('blockHash must be smaller than the target')

Note : In order to verify that the target is correct, we can :

	take the target from a different blockheader in the same 2016 blocks epoch

	if we don’t have one, we should ask for multiple nodes to make sure we have a correct target.

	If we want to know if this is final, the Node needs to provide us with additional BlockHeaders on top of the current Block (FinalityHeaders).

These header need to be verified the same way. But additionaly we need to check the parentHash:

if (!parentHash.reverse().equals(blockData.slice(4,36)))
 throw new Error('wrong parentHash!')

	In order to verify the Transactions (only if we have the complete Block, not only the BlockHeader), we need to read them, hash each one and put them in a merkle tree. If the root of the tree matches the merkleRoot, the transactions are correct.

// we take each Transactiondata, hash them and put the transactionhashes into a merkle tree
const merkleRoot = createMerkleRoot (readTransactions(blockData).map(_=>hash(_).reverse()))

// compare the root with merkleRoot of the header starting at offset 36
if (!merkleRoot.equals(blockData.slice(36,68).reverse()))
 throw new Error('Invalid MerkleRoot!')

2.2.2. Transaction Proof

In order to Verify a Transaction, we need a Merkle Proof. So the Incubed Server will have create a complete MerkleTree and then pass the other part of the pair as Proof.

Verifying means we start by hashing the transaction and then keep on hashing this result with the next hash from the proof. The last hash must match the merkleRoot.

2.2.3. Convicting For wrong Blockhashes in the NodeRegistry

Just as the Incubed Client can ask for signed blockhashes in Ethereum, he can do this in Bitcoin as well. The signed payload from the node will have to contain these data:

bytes32 blockhash;
uint256 timestamp;
bytes32 registryId;

Client requires a Signed Blockhash

and the Data Provider Node will ask the chosen node to sign.

The Data Provider Node (or Watchdog) will then check the signature

If the signed blockhash is wrong it will start the conviting process:

Convict with BlockHeaders

In order to convict, the Node needs to provide proof, which is the correct blockheader.

But since the BlockHeader does not contain the BlockNumber, we have to use the timestamp. So the correct block as proof must have either the same timestamp or a the last block before the timestamp. Additionally the Node may provide FinalityBlockHeaders. As many as possible, but at least one in order to prove, that the timestamp of the correct block is the closest one.

The Registry Contract will then verify

	the Signature of the convited Node.

	the BlockHeaders gives as Proof

The Verification of the BlockHeader can be done directly in Solitidy, because the EVM offers a precompiled Contract at address 0x2 : sha256, which is needed to calculate the Blockhash. With this in mind we can follow the steps 1-3 as described in Block Proof implemented in Solidity.

While doing so we need to add the difficulties of each block and store the last blockHash and the totalDifficulty for later.

Challenge the longest chain

Now the convited Server has the chance to also deliver blockheaders to proof that he has signed the correct one.

The simple rule is:

If the other node (convited or convitor) is not able to add enough verified BlockHeaders with a higher totalDifficulty within 1 hour, the other party can get the deposit and kick the malicious node out.

Even though this game could go for a while, if the convicted Node signed a hash, which is not part of the longest chain, it will not be possible to create enough mining power to continue mining enough blocks to keep up with the longest chain in the mainnet. Therefore he will most likely give up right after the first transaction.

3. Technical Background

3.1. Ethereum Verification

The Incubed is also often called Minimal Verifying Client because it may not sync, but still is able to verify all incoming data. This is possible since ethereum is based on a technology allowing to verify almost any value.

Our goal was to verify at least all standard eth_... rpc methods as described in the Specification [https://github.com/ethereum/wiki/wiki/JSON-RPC].

In order to prove something, you always need a starting value. In our case this is the BlockHash. Why do we use the BlockHash? If you know the BlockHash of a block, you can easily verify the full BlockHeader. And since the BlockHeader contains the stateRoot, transationRoot and receiptRoot, these can be verified as well. And the rest will simply depend on them.

There is also another reason why the BlockHash is so important. This is the only value you are able to access from within a SmartContract, because the evm supports a OpCode (BLOCKHASH), which allows you to read the last 256 Blockhashes, which gives us the chance to even verify the blockhash onchain.

Depending on the method, different proofs are needed, which are described in this document.

	Block Proof - verifies the content of the BlockHeader

	Transaction Proof - verifies the input data of a transaction

	Receipt Proof - verifies the outcome of a transaction

	Log Proof - verifies the response of eth_getPastLogs

	Account Proof - verifies the state of an account

	Call Proof - verifies the result of a eth_call - response

3.1.1. BlockProof

BlockProofs are used whenever you want to read data of a Block and verify them. This would be:

	eth_getBlockTransactionCountByHash
 [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getblocktransactioncountbyhash]

	eth_getBlockTransactionCountByNumber
 [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getblocktransactioncountbynumber]

	eth_getBlockByHash
 [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getblockbyhash]

	eth_getBlockByNumber
 [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getblockbynumber]

The eth_getBlockBy... methods return the Block-Data. In this case all we need is somebody verifying the blockhash, which is don by requiring somebody who stored a deposit and would lose it, to sign this blockhash.

The Verification is then simply by creating the blockhash and comparing this to the signed one.

The Blockhash is calculated by serializing the blockdata [https://github.com/slockit/in3/blob/master/src/util/serialize.ts#L120] with rlp [https://github.com/ethereum/wiki/wiki/RLP] and hashing it:

blockHeader = rlp.encode([
 bytes32(parentHash),
 bytes32(sha3Uncles),
 address(miner || coinbase),
 bytes32(stateRoot),
 bytes32(transactionsRoot),
 bytes32(receiptsRoot || receiptRoot),
 bytes256(logsBloom),
 uint(difficulty),
 uint(number),
 uint(gasLimit),
 uint(gasUsed),
 uint(timestamp),
 bytes(extraData),

 ... sealFields
 ? sealFields.map(rlp.decode)
 : [
 bytes32(b.mixHash),
 bytes8(b.nonce)
]
])

For POA-Chains the blockheader will use the sealFields (instead of mixHash and nonce) which are already rlp-encoded and should be added as raw data when using rlp.encode.

if (keccak256(blockHeader) !== singedBlockHash)
 throw new Error('Invalid Block')

In case of the eth_getBlockTransactionCountBy... the proof contains the full blockHeader already serilalized + all transactionHashes. This is needed in order to verify them in a merkleTree and compare them with the transactionRoot

3.1.2. Transaction Proof

TransactionProofs are used for the following transaction-methods:

	eth_getTransactionByHash
 [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_gettransactionbyhash]

	eth_getTransactionByBlockHashAndIndex
 [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_gettransactionbyblockhashandindex]

	eth_getTransactionByBlockNumberAndIndex [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_gettransactionbyblocknumberandindex]

In order to verify we need :

	serialize the blockheader and compare the blockhash with the signed hash as well as with the blockHash and number of the transaction. (See BlockProof)

	serialize the transaction-data

transaction = rlp.encode([
 uint(tx.nonce),
 uint(tx.gasPrice),
 uint(tx.gas || tx.gasLimit),
 address(tx.to),
 uint(tx.value),
 bytes(tx.input || tx.data),
 uint(tx.v),
 uint(tx.r),
 uint(tx.s)
])

	verify the merkleProof of the transaction with

verifyMerkleProof(
 blockHeader.transactionRoot, /* root */,
 keccak256(proof.txIndex), /* key or path */
 proof.merkleProof, /* serialized nodes starting with the root-node */
 transaction /* expected value */
)

The Proof-Data will look like these:

{
 "jsonrpc": "2.0",
 "id": 6,
 "result": {
 "blockHash": "0xf1a2fd6a36f27950c78ce559b1dc4e991d46590683cb8cb84804fa672bca395b",
 "blockNumber": "0xca",
 "from": "0x7e5f4552091a69125d5dfcb7b8c2659029395bdf",
 "gas": "0x55f0",
 "gasPrice": "0x0",
 "hash": "0xe9c15c3b26342e3287bb069e433de48ac3fa4ddd32a31b48e426d19d761d7e9b",
 "input": "0x00",
 "value": "0x3e8"
 ...
 },
 "in3": {
 "proof": {
 "type": "transactionProof",
 "block": "0xf901e6a040997a53895b48...", // serialized blockheader
 "merkleProof": [/* serialized nodes starting with the root-node */
 "f868822080b863f86136808255f0942b5ad5c4795c026514f8317c7a215e218dccd6cf8203e8001ca0dc967310342af5042bb64c34d3b92799345401b26713b43faf253bd4bf972cbba0464bade028ba54e0f78482757feeda354f3abedac35955ec07f822aad8d020c4"
],
 "txIndex": 0,
 "signatures": [...]
 }
 }
}

3.1.3. Receipt Proof

Proofs for the transactionReceipt are used for the following transaction-method:

	eth_getTransactionReceipt
 [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_gettransactionreceipt]

In order to verify we need :

	serialize the blockheader and compare the blockhash with the signed hash as well as with the blockHash and number of the transaction. (See BlockProof)

	serialize the transaction receipt

transactionReceipt = rlp.encode([
 uint(r.status || r.root),
 uint(r.cumulativeGasUsed),
 bytes256(r.logsBloom),
 r.logs.map(l => [
 address(l.address),
 l.topics.map(bytes32),
 bytes(l.data)
])
].slice(r.status === null && r.root === null ? 1 : 0))

	verify the merkleProof of the transaction receipt with

verifyMerkleProof(
 blockHeader.transactionReceiptRoot, /* root */,
 keccak256(proof.txIndex), /* key or path */
 proof.merkleProof, /* serialized nodes starting with the root-node */
 transactionReceipt /* expected value */
)

	Since the merkle-Proof is only proving the value for the given transactionIndex, we also need to prove that the transactionIndex matches the transactionHash requested. This is done by adding another MerkleProof for the Transaction itself as described in the Transaction Proof

3.1.4. Log Proof

Proofs for logs are only for the one rpc-method:

	eth_getLogs
 [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getlogs]

Since logs or events are based on the TransactionReceipts, the only way to prove them is by proving the TransactionReceipt each event belongs to.

That’s why this proof needs to provide

	all blockheaders where these events occured

	all TransactionReceipts + their MerkleProof of the logs

	all MerkleProofs for the transactions in order to prove the transactionIndex

The Proof data structure will look like this:

 Proof {
 type: 'logProof',
 logProof: {
 [blockNr: string]: { // the blockNumber in hex as key
 block : string // serialized blockheader
 receipts: {
 [txHash: string]: { // the transactionHash as key
 txIndex: number // transactionIndex within the block
 txProof: string[] // the merkle Proof-Array for the transaction
 proof: string[] // the merkle Proof-Array for the receipts
 }
 }
 }
 }
 }

In order to verify we need :

	deserialize each blockheader and compare the blockhash with the signed hashes. (See BlockProof)

	for each blockheader we verify all receipts by using

verifyMerkleProof(
 blockHeader.transactionReceiptRoot, /* root */,
 keccak256(proof.txIndex), /* key or path */
 proof.merkleProof, /* serialized nodes starting with the root-node */
 transactionReceipt /* expected value */
)

	The resulting values are the receipts. For each log-entry, we are comparing the verified values of the receipt with the returned logs to ensure that they are correct.

3.1.5. Account Proof

Prooving an account-value applies to these functions:

	eth_getBalance [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getbalance]

	eth_getCode [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getcode]

	eth_getTransactionCount [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_gettransactioncount]

	eth_getStorageAt [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getstorageat]

3.1.5.1. eth_getProof

For the Transaction or Block Proofs all needed data can be found in the block itself and retrieved through standard rpc calls, but if we want to approve the values of an account, we need the MerkleTree of the state, which is not accessable through the standard rpc. That’s why we have created a EIP [https://github.com/ethereum/EIPs/issues/1186] to add this function and also implemented this in geth and parity:

	parity [https://github.com/paritytech/parity/pull/9001] (Status: pending pull request) - Docker [https://hub.docker.com/r/slockit/parity-in3/tags/]

	geth [https://github.com/ethereum/go-ethereum/pull/17737] (Status: pending pull request) - Docker [https://hub.docker.com/r/slockit/geth-in3/tags/]

This function accepts 3 parameter :

	account - the address of the account to proof

	storage - a array of storage-keys to include in the proof.

	block - integer block number, or the string “latest”, “earliest” or “pending”

{
 "jsonrpc": "2.0",
 "id": 1,
 "method": "eth_getProof",
 "params": [
 "0x7F0d15C7FAae65896648C8273B6d7E43f58Fa842",
 ["0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421"],
 "latest"
]
}

The result will look like this:

{
 "jsonrpc": "2.0",
 "result": {
 "accountProof": [
 "0xf90211a...0701bc80",
 "0xf90211a...0d832380",
 "0xf90211a...5fb20c80",
 "0xf90211a...0675b80",
 "0xf90151a0...ca08080"
],
 "address": "0x7f0d15c7faae65896648c8273b6d7e43f58fa842",
 "balance": "0x0",
 "codeHash": "0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470",
 "nonce": "0x0",
 "storageHash": "0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421",
 "storageProof": [
 {
 "key": "0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421",
 "proof": [
 "0xf90211a...0701bc80",
 "0xf90211a...0d832380"
],
 "value": "0x1"
 }
]
 },
 "id": 1
}

In order to run the verification the blockheader is needed as well.

The Verification of such a proof is done in the following steps:

	serialize the blockheader and compare the blockhash with the signed hash as well as with the blockHash and number of the transaction. (See BlockProof)

	Serialize the account, which holds the 4 values:

account = rlp.encode([
 uint(nonce),
 uint(balance),
 bytes32(storageHash || ethUtil.KECCAK256_RLP),
 bytes32(codeHash || ethUtil.KECCAK256_NULL)
])

	verify the merkle Proof for the account using the stateRoot of the blockHeader:

verifyMerkleProof(
 block.stateRoot, // expected merkle root
 util.keccak(accountProof.address), // path, which is the hashed address
 accountProof.accountProof.map(bytes), // array of Buffer with the merkle-proof-data
 isNotExistend(accountProof) ? null : serializeAccount(accountProof), // the expected serialized account
)

In case the account does exist yet, (which is the case if none == startNonce and codeHash == '0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470'), the proof may end with one of these nodes:

	the last node is a branch, where the child of the next step does not exist.

	the last node is a leaf with different relative key

Both would prove, that this key does not exist.

	Verify each merkle Proof for the storage using the storageHash of the account:

verifyMerkleProof(
 bytes32(accountProof.storageHash), // the storageRoot of the account
 util.keccak(bytes32(s.key)), // the path, which is the hash of the key
 s.proof.map(bytes), // array of Buffer with the merkle-proof-data
 s.value === '0x0' ? null : util.rlp.encode(s.value) // the expected value or none to proof non-existence
))

3.1.6. Call Proof

Call Proofs are used whenever you are calling a read-only function of smart contract:

	eth_call [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_call]

Verifying the result of a eth_call is a little bit more complex. Because the response is a result of executing opcodes in the vm. The only way to do so, is to reproduce it and execute the same code. That’s why a Call Proof needs to provide all data used within the call. This means :

	all referred accounts including the code (if it is a contract), storageHash, nonce and balance.

	all storage keys, which are used (This can be found by tracing the transaction and collecting data based on th SLOAD-opcode)

	all blockdata, which are referred at (besides the current one, also the BLOCKHASH-opcodes are referring to former blocks)

For Verifying you need to follow these steps:

	serialize all used blockheaders and compare the blockhash with the signed hashes. (See BlockProof)

	Verify all used accounts and their storage as showed in Account Proof

	create a new VM [https://github.com/ethereumjs/ethereumjs-vm] with a MerkleTree as state and fill in all used value in the state:

 // create new state for a vm
 const state = new Trie()
 const vm = new VM({ state })

 // fill in values
 for (const adr of Object.keys(accounts)) {
 const ac = accounts[adr]

 // create an account-object
 const account = new Account([ac.nonce, ac.balance, ac.stateRoot, ac.codeHash])

 // if we have a code, we will set the code
 if (ac.code) account.setCode(state, bytes(ac.code))

 // set all storage-values
 for (const s of ac.storageProof)
 account.setStorage(state, bytes32(s.key), rlp.encode(bytes32(s.value)))

 // set the account data
 state.put(address(adr), account.serialize())
 }

 // add listener on each step to make sure it uses only values found in the proof
 vm.on('step', ev => {
 if (ev.opcode.name === 'SLOAD') {
 const contract = toHex(ev.address) // address of the current code
 const storageKey = bytes32(ev.stack[ev.stack.length - 1]) // last element on the stack is the key
 if (!getStorageValue(contract, storageKey))
 throw new Error(`incomplete data: missing key ${storageKey}`)
 }
 /// ... check other opcodes as well
 })

 // create a transaction
 const tx = new Transaction(txData)

 // run it
 const result = await vm.runTx({ tx, block: new Block([block, [], []]) })

 // use the return value
 return result.vm.return

In the future we will be using the same approach to verify calls with ewasm.

4. Incentivization

Important: This concept is still in development and discussion and is not yet fully implemented.

The original idea of blockchain is a permissionless peer-to-peer network in which anybody can participate if they run a node and sync with other peers. Since this is still true, we know that such a node won’t run on a small IoT-device.

4.1. Decentralizing Access

This is why a lot of users try remote-nodes to serve their devices. However, this introduces a new single point of failure and the risk of man-in-the-middle attacks.

So the first step is to decentralize remote nodes by sharing rpc-nodes with other apps.

[image: graph minimal_nonplanar_graphs { node [style=filled fontname="Helvetica"] fontname="Helvetica" subgraph cluster_infura { label="centralized" color=lightblue style=filled node [color=white] i[label="infura"] __a[label="a"] __b[label="b"] __c[label="c"] i -- __a i -- __b i -- __c } subgraph cluster_1 { label="centralized per Dapp" color=lightblue style=filled node [color=white] _C[label="C"] _B[label="B"] _A[label="A"] _c[label="c"] _b[label="b"] _a[label="a"] _C -- _c _A -- _a _B -- _b } subgraph cluster_0 { label="Incubed" color=lightblue style=filled node [color=white] {A B C} -- {a b c} } }]

4.2. Incentivization for Nodes

In order to incentivize a node to serve requests to clients, there must be something to gain (payment) or to lose (access to other nodes for its clients).

4.3. Connecting Clients and Server

As a simple rule, we can define this as:

The Incubed network will serve your client requests if you also run an honest node.

This requires a user to connect a client key (used to sign their requests) with a registered server.
Clients are able to share keys as long as the owner of the node is able to ensure their security. This makes it possible to use one key for the same mobile app or device.
The owner may also register as many keys as they want for their server or even change them from time to time (as long as only one client key points to one server).
The key is registered in a client-contract, holding a mapping of the key to the server address.

[image: digraph minimal_nonplanar_graphs { graph [rankdir = "LR"] fontname="Helvetica" subgraph all { label="Registry" subgraph cluster_cloud { label="cloud" color=lightblue style=filled node [fontsize = "12", color=white style=filled fontname="Helvetica"] A[label="Server A"] B[label="Server B"] C[label="Server C"] } subgraph cluster_registry { label="ServerRegistry" color=lightblue style=filled node [fontsize = "12", shape = "record", color=black style="" fontname="Helvetica"] sa[label="<f0>Server A|cap:10|<f2>http://rpc.s1.."] sb[label="<f0>Server B|cap:100|<f2>http://rpc.s2.."] sc[label="<f0>Server C|cap:20|<f2>http://rpc.s3.."] sa:f2 -> A sb:f2 -> B sc:f2 -> C } subgraph cluster_client_registry { label="ClientRegistry" color=lightblue style=filled node [fontsize = "12", style="", color=black fontname="Helvetica"] ca[label="a"] cb[label="b"] cc[label="c"] cd[label="d"] ce[label="e"] ca:f0 -> sa:f0 cb:f0 -> sb:f0 cd:f0 -> sc:f0 cc:f0 -> sc:f0 ce:f0 -> sc:f0 } } }]

4.4. Ensuring Client Access

Connecting a client key to a server does not mean the key relies on that server. Instead, the requests are simply served in the same quality as the connected node serves other clients.
This creates a very strong incentive to deliver to all clients, because if a server node were offline or refused to deliver, eventually other nodes would deliver less or even stop responding to requests coming from the connected clients.

To actually find out which node delivers to clients, each server node uses one of the client keys to send test requests and measure the availability based on verified responses.

[image: digraph minimal_nonplanar_graphs { node [style=filled fontname="Helvetica"] fontname="Helvetica" ratio=0.8; subgraph cluster_1 { label="Verifying Nodes" color=lightblue style=filled node [color=white] ranksep=900000; // rank=same A -> {B C D E } B -> {A C D E } C -> {A B D E } D -> {A B C E } E -> {A B C D } } }]
The servers measure the \(A_{availability}\) by checking periodically (about every hour in order to make sure a malicious server is not only responding to test requests). These requests may be sent through an anonymous network like tor.

Based on the long-term (>1 day) and short-term (<1 day) availibility, the score is calculated as:

\[A = \frac{ R_{received} }{ R_{sent} }\]

In order to balance long-term and short-term availability, each node measures both and calculates a factor for the score. This factor should ensure that short-term avilability will not drop the score immediately, but keep it up for a while before dropping. Long-term availibility will be rewarded by dropping the score slowly.

\[A = 1 - (1 - \frac{A_{long} + 5 \cdot A_{short}}6)^{10} \]

	\(A_{long}\) - The ratio between valid requests received and sent within the last month.

	\(A_{short}\) - The ratio between valid requests received and sent within the last 24 hours.

[image: _images/graphAvailable.png]

Depending on the long-term availibility the disconnected node will lose its score over time.

The final score is then calulated:

\[score = \frac{ A \cdot D_{weight} \cdot C_{max}}{weight}\]

	\(A\) - The availibility of the node.

	\(weight\) - The weight of the incoming request from that server’s clients (see LoadBalancing).

	\(C_{max}\) - The maximal number of open or parallel requests the server can handle (will be taken from the registry).

	\(D_{weight}\) - The weight of the deposit of the node.

This score is then used as the priority for incoming requests. This is done by keeping track of the number of currently open or serving requests. Whenever a new request comes in, the node does the following:

	Checks the signature.

	Calculates the score based on the score of the node it is connected to.

	Accepts or rejects the request.

if (score < openRequests) reject()

This way, nodes reject requests with a lower score when the load increases. For a client, this means if you have a low score and the load in the network is high, your clients may get rejected often and will have to wait longer for responses. If the node has a score of 0, they are blacklisted.

4.5. Deposit

Storing a high deposit brings more security to the network. This is important for proof-of-work chains.
In order to reflect the benefit in the score, the client multiplies it with the \(D_{weight}\) (the deposit weight).

\[D_{weight} = \frac1{1 + e^{1-\frac{3 D}{D_{avg}}}}\]

	\(D\) - The stored deposit of the node.

	\(D_{avg}\) - The average deposit of all nodes.

A node without any deposit will only receive 26.8% of the max cap, while any node with an average deposit gets 88% and above and quickly reaches 99%.

[image: _images/depositWeight.png]

4.6. LoadBalancing

In an optimal network, each server would handle an equal amount and all clients would have an equal share. In order to prevent situations where 80% of the requests come from clients belonging to the same node, we need to decrease the score for clients sending more requests than their shares.
Thus, for each node the weight can be calculated by:

\[weight_n = \frac{{\displaystyle\sum_{i=0}^n} C_i \cdot R_n } { {\displaystyle\sum_{i=0}^n} R_i \cdot C_n } \]

	\(R_n\) - The number of requests served to one of the clients connected to the node.

	\({\displaystyle\sum_{i=0}^n} R_i\) - The total number of requests served.

	\({\displaystyle\sum_{i=0}^n} C_i\) - The total number of capacities of the registered servers.

	\(C_n\) - The capacity of the registered node.

Each node will update the \(score\) and the \(weight\) for the other nodes after each check in order to prioritize incoming requests.

The capacity of a node is the maximal number of parallel requests it can handle and is stored in the ServerRegistry. This way, all clients know the cap and will weigh the nodes accordingly, which leads to stronger servers. A node declaring a high capacity will gain a higher score, and its clients will receive more reliable responses. On the other hand, if a node cannot deliver the load, it may lose its availability as well as its score.

4.7. Free Access

Each node may allow free access for clients without any signature. A special option --freeScore=2 is used when starting the server. For any client requests without a signature, this \(score\) is used. Setting this value to 0 would not allow any free clients.

 if (!signature) score = conf.freeScore

A low value for freeScore would serve requests only if the current load or the open requests are less than this number, which would mean that getting a response from the network without signing may take longer as the client would have to send a lot of requests until they are lucky enough to get a response if the load is high. Chances are higher if the load is very low.

4.8. Convict

Even though servers are allowed to register without a deposit, convicting is still a hard punishment. In this case, the server is not part of the registry anymore and all its connected clients are treated as not having a signature. The device or app will likely stop working or be extremely slow (depending on the freeScore configured in all the nodes).

4.9. Handling conflicts

In case of a conflict, each client now has at least one server it knows it can trust since it is run by the same owner. This makes it impossible for attackers to use blacklist-attacks or other threats which can be solved by requiring a response from the “home”-node.

4.10. Payment

Each registered node creates its own ecosystem with its own score. All the clients belonging to this ecosystem will be served only as well as the score of the ecosystem allows. However, a good score can not only be achieved with a good performance, but also by paying for it.

For all the payments, a special contract is created. Here, anybody can create their own ecosystem even without running a node. Instead, they can pay for it.
The payment will work as follows:

The user will choose a price and time range (these values can always be increased later). Depending on the price, they also achieve voting power, thus creating a reputation for the registered nodes.

Each node is entitled to its portion of the balance in the payment contract, and can, at any given time, send a transaction to extract its share.
The share depends on the current reputation of the node.

\[payment_n = \frac{weight_n \cdot reputation_n \cdot balance_{total}} { weight_{total} } \]

Why should a node treat a paying client better than others?

Because the higher the price a user paid, the higher the voting power, which they may use to upgrade or downgrade the reputation of the node. This reputation will directly influence the payment to the node.

That’s why, for a node, the score of a client depends on what follows:

\[score_c = \frac{ paid_c \cdot requests_{total}} { requests_c \cdot paid_{total} + 1} \]

The score would be 1 if the payment a node receives has the same percentage of requests from an ecosystem as the payment of the ecosystem represented relative to the total payment per month. So, paying a higher price would increase its score.

4.11. Client Identification

As a requirement for identification, each client needs to generate a unique private key, which must never leave the device.

In order to securely identify a client as belonging to an ecosystem, each request needs two signatures:

	The Ecosystem-ProofThis proof consists of the following information:

proof = rlp.encode(
 bytes32(registry_id), // The unique ID of the registry.
 address(client_address), // The public address of a client.
 uint(ttl), // Unix timestamp when this proof expires.
 bytes(signature) // The signature with the signer-key of the ecosystem. The message hash is created by rlp.encode, the client_address, and the ttl.
)

For the client, this means they should always store such a proof on the device. If the ttl expires, they need to renew it.
If the ecosystem is a server, it may send a request to the server. If the ecosystem is a payer, this needs to happen in a custom way.

	The Client-ProofThis must be created for each request. Here the client will create a hash of the request (simply by adding the method, params and a timestamp-field) and sign this with its private key.

message_hash = keccack(
 request.method
 + JSON.stringify(request.params)
 + request.timestamp
)

With each request, the client needs to send both proofs.

The server may cache the ecosystem-proof, but it needs to verify the client signature with each request, thus ensuring the identity of the sending client.

5. Decentralizing Central Services

Important: This concept is still in early development, meaning it has not been implemented yet.

Many dApps still require some off-chain services, such as search services running on a server, which, of course, can be seen as a single point of failure. To decentralize these dApp-specific services, they must fulfill the following criteria:

	Stateless: Since requests may be sent to different servers, they cannot hold a user’s state, which would only be available on one node.

	Deterministic: All servers need to produce the exact same result.

If these requirements are met, the service can be registered, defining the server behavior in a docker image.

[image: digraph minimal_nonplanar_graphs { graph [rankdir = "LR"] fontname="Helvetica" subgraph all { label="Registry" subgraph cluster_client_registry { label="ServiceRegistry" color=lightblue style=filled node [fontsize = "12", style="", shape = "record" color=black fontname="Helvetica"] M[label="<f0>Matrix|matrix/matrix:latest|wasm"] S[label="<f0>Search|slockit/search:latest|wasm"] W[label="<f0>Whisper|whisper:latest|wasm"] } subgraph cluster_registry { label="ServerRegistry" color=lightblue style=filled node [fontsize = "12", shape = "record", color=black style="" fontname="Helvetica"] sa[label="<f0>Server A|<offer>offer|<rewards>rewards|<f2>http://rpc.s1.."] sb[label="<f0>Server B|<offer>offer|<rewards>rewards|<f2>http://rpc.s2.."] sc[label="<f0>Server C|<offer>offer|<rewards>rewards|<f2>http://rpc.s3.."] sa:offer -> M:f0 [color=darkgreen] sa:offer -> S:f0 [color=darkgreen] sb:offer -> W:f0 [color=darkgreen] sc:offer -> W:f0 [color=darkgreen] M:f0 -> sa:rewards [color=orange] M:f0 -> sb:rewards [color=orange] W:f0 -> sc:rewards [color=orange] } subgraph cluster_cloud { label="cloud" color=lightblue style=filled node [fontsize = "12", color=white style=filled fontname="Helvetica"] A[label="Server A"] A -> { AM[label="Matrix", shape=record] AS[label="Search", shape=record] } B[label="Server B"] {B C} -> { BW[label="Whisper", shape=record] } C[label="Server C"] } }}]

5.1. Incentivization

Each server can define (1) a list of services to offer or (2) a list of services to reward.

The main idea is simply the following:

If you run my service, I will run yours.

Each server can specifiy which services we would like to see used. If another server offers them, we will also run at least as many rewarded services as the other node.

5.2. Verification

Each service specifies a verifier, which is a Wasm module (specified through an IPFS hash). This Wasm offers two functions:

function minRequests():number

function verify(request:RPCRequest[], responses:RPCResponse[])

A minimal version could simply ensure that two requests were running and then compare them. If different, the Wasm could check with the home server and “convict” the nodes.

5.2.1. Convicting

Convicting on chain cannot be done, but each server is able to verify the result and, if false, downgrade the score.

6. Threat Model for Incubed

6.1. Registry Issues

6.1.1. Long Time Attack

Status: open

A client is offline for a long time and does not update the NodeList. During this time, a server is convicted and/or removed from the list. The client may now send a request to this server, which means it cannot be convicted anymore and the client has no way to know that.

Solutions:

CHR: I think that the fallback is often “out of service.” What will happen is that those random nodes (A, C) will not respond.
We (slock.it) could help them update the list in a centralized way.

But I think the best way is the following:
Allow nodes to commit to stay in the registry for a fixed amount of time. In that time, they cannot withdraw their funds.
The client will most likely look for those first, especially those who only occasionally need data from the chain.

SIM: Yes, this could help, but it only protects from regular unregistering. If you convict a server, then this timeout does not help.

To remove this issue completely, you would need a trusted authority where you could update the NodeList first.
But for the 100% decentralized way, you can only reduce it by asking multiple servers. Since they will also pass the latest block number when the NodeList changes, the client will find out that it needs to update the NodeList, and by having multiple requests in parallel, it reduces the risk of relying on a manipulated NodeList. The malicious server may return a correct NodeList for an older block when this server was still valid and even receive signatures for this, but the server cannot do so for a newer block number, which can only be found out by asking as many servers as needed.

Another point is that as long as the signature does not come from the same server, the DataProvider will always check, so even if you request a signature from a server that is not part of the list anymore, the DataProvider will reject this. To use this attack, both the DataProvider and the BlockHashSigner must work together to provide a proof that matches the wrong blockhash.

CHR: Correct. I think the strategy for clients who have been offline for a while is to first get multiple signed blockhashes from different sources (ideally from bootstrap nodes similar to light clients and then ask for the current list). Actually, we could define the same bootstrap nodes as those currently hard-coded in Parity and Geth.

6.1.2. Inactive Server Spam Attack

Status: partially solved

Everyone can register a lot of servers that don’t even exist or aren’t running. Somebody may even put in a decent deposit. Of course, the client would try to find out whether these nodes were inactive. If an attacker were able to onboard enough inactive servers, the chances for an Incubed client to find a working server would decrease.

Solutions:

	Static Min Deposit

There is a min deposit required to register a new node. Even though this may not entirely stop any attacker, but it makes it expensive to register a high number of nodes.

Desicion :

Will be implemented in the first release, since it does not create new Riscs.

	Unregister Key

At least in the beginning we may give us (for example for the first year) the right to remove inactive nodes. While this goes against the principle of a fully decentralized system, it will help us to learn. If this key has a timeout coded into the smart contract all users can rely on the fact that we will not be able to do this after one year.

Desicion :

Will be implemented in the first release, at least as a workaround limited to one year.

	Dynamic Min Deposit

To register a server, the owner has to pay a deposit calculated by the formula:

\[deposit_{min} = \frac{ 86400 \cdot deposit_{average} }{ (t_{now} - t_{lastRegistered}) }\]

To avoid some exploitation of the formula, the deposit_average gets capped at 50 Ether. This means that the maximum deposit_min calculated by this formula is about 4.3 million Ether when trying to register two servers within one block. In the first year, there will also be an enforced deposit limit of 50 Ether, so it will be impossible to rapidly register new servers, giving us more time to react to possible spam attacks (e.g., through voting).

Desicion :

This dynamic deposit creates new Threads, because an attacker can stop other nodes from registering honest nodes by adding a lot of nodes and so increasing the min deposit. That’s why this will not be implemented right now.

	Voting

In addition, the smart contract provides a voting function for removing inactive servers: To vote, a server has to sign a message with a current block and the owner of the server they want to get voted out. Only the latest 256 blockhashes are allowed, so every signature will effectively expire after roughly 1 hour. The power of each vote will be calculated by the amount of time when the server was registered. To make sure that the oldest servers won’t get too powerful, the voting power gets capped at one year and won’t increase further. The server being voted out will also get an oppositional voting power that is capped at two years.

For the server to be voted out, the combined voting power of all the servers has to be greater than the oppositional voting power. Also, the accumulated voting power has to be greater than at least 50% of all the chosen voters.

As with a high amount of registered in3-servers, the handling of all votes would become impossible. We cap the maximum amount of signatures at 24. This means to vote out a server that has been active for more then two years, 24 in3-servers with a lifetime of one month are required to vote. This number decreases when more older servers are voting. This mechanism will prevent the rapid onboarding of many malicious in3-servers that would vote out all regular servers and take control of the in3-nodelist.

Additionally, we do not allow all servers to vote. Instead, we choose up to 24 servers randomly with the blockhash as a seed. For the vote to succeed, they have to sign on the same blockhash and have enough voting power.

To “punish” a server owner for having an inactive server, after a successful vote, that individual will lose 1% of their deposit while the rest is locked until their deposit timeout expires, ensuring possible liabilities. Part of this 1% deposit will be used to reimburse the transaction costs; the rest will be burned. To make sure that the transaction will always be paid, a minimum deposit of 10 finney (equal to 0.01 Ether) will be enforced.

Desicion:

Voting will also create the risc of also Voting against honest nodes. Any node can act honest for a long time and then become a malicious node using their voting power to vote against the remaining honest nodes and so end up kicking all other nodes out. That’s why voting will be removed for the first release.

6.1.3. DDOS Attack to uncontrolled urls

Status: not implemented yet

As a owner I can register any url even a server which I don’t own. By doing this I can also add a high weight, which increases the chances to get request. This way I can get potentially a lot of clients to send many requests to a node, which is not expecting it. Even though clients may blacklist this node, it would be to easy to create a DDOS-Atack.

Solution:

Whenever there is a new node the client has never communicated to, we should should check using a DNS-Entry if this node is controlled by the owner. The Entry may look like this:

in3-signer: 0x21341242135346534634634,0xabf21341242135346534634634,0xdef21341242135346534634634

Only if this DNS record contains the signer-address, the client should communicate with this node.

6.1.4. Self-Convict Attack

Status: solved

A user may register a mailcious server and even store a deposit, but as soon as they sign a wrong blockhash, they use a second account to convict themself to get the deposit before somebody else can.

Solution:

SIM: We burn 50% of the depoist. In this case, the attacker would lose 50% of the deposit. But this also means the attacker would get the other half, so the price they would have to pay for lying is up to 50% of their deposit. This should be considered by clients when picking nodes for signatures.

Desicion: Accepted and implemented

6.1.5. Convict Frontrunner Attack

Status: solved

Servers act as watchdogs and automatically call convict if they receive a wrong blockhash. This will cost them some gas to send the transaction. If the block is older than 256 blocks, this may even cost a lot of gas since the server needs to put blockhashes into the BlockhashRegistry first. But they are incentivized to do so, because after successfully convicting, they receive a reward of 50% of the deposit.

A miner or other attacker could now wait for a pending transaction for convict and simply use the data and send the same transaction with a high gas price, which means the transaction would eventually be mined first and the server, after putting so much work into preparing the convict, would get nothing.

Solution:

Convicting a server requires two steps: The first is calling the convict function with the block number of the wrongly signed block keccak256(_blockhash, sender, v, r, s). Both the real blockhash and the provided hash will be stored in the smart contract. In the second step, the function revealConvict has to be called. The missing information is revealed there, but only the previous sender is able to reproduce the provided hash of the first transaction, thus being able to convict a server.

Desicion: Accepted and implemented

6.2. Network Attacks

6.2.1. Blacklist Attack

Status: partially solved

If the client has no direct internet connection and must rely on a proxy or a phone to make requests, this would give the intermediary the chance to set up a malicious server.

This is done by simply forwarding the request to its own server instead of the requested one. Of course, they may prepare a wrong answer, but they cannot fake the signatures of the blockhash. Instead of sending back any signed hashes, they may return no signatures, which indicates to the client that the chosen nodes were not willing to sign them. The client will then blacklist them and request the signature from other nodes. The proxy or relay could return no signature and repeat that until all are blacklisted and the client finally asks for the signature from a malicious node, which would then give the signature and the response. Since both come from a bad-acting server, they will not convict themself and will thus prepare a proof for a wrong response.

Solutions:

	Signing Responses

SIM: First, we may consider signing the response of the DataProvider node, even if this signature cannot be used to convict. However, the client then knows that this response came from the client they requested and was also checked by them. This would reduce the chances of this attack since this would mean that the client picked two random servers that were acting malicious together.

Decision:

Not implemented yet. Maybe later.

	Reject responses when 50% are blacklisted

If the client blacklisted more than 50% of the nodes, we should stop. The only issue here is that the client does not know whether this is an ‘Inactive Server Spam Attack’ or not. In case of an ‘Inactive Server Spam Attack,’ it would actually be good to blacklist 90% of the servers and still be able to work with the remaining 10%, but if the proxy is the problem, then the client needs to stop blacklisting.

CHR: I think the client needs a list of nodes (bootstrape nodes) that should be signed in case the response is no signature at all. No signature at all should default to an untrusted relayer. In this case, it needs to go to trusted relayers. Or ask the untrusted relayer to get a signature from one of the trusted relayers. If they forward the signed reponse, they should become trusted again.

SIM: We will allow the client to configure optional trusted nodes, which will always be part of the nodelist and used in case of a blacklist attack. This means in case more than 50% are blacklisted the client may only ask trusted nodes and if they don’t respond, instead of blacklisting it will reject the request. While this may work in case of such a attack, it becomes an issue if more than 50% of the registered nodes are inactive and blacklisted.

Decision:

The option of allowing trusted nodes is implemented.

6.2.2. DDoS Attacks

Status: solved (as much as possible)

Since the URLs of the network are known, they may be targets for DDoS attacks.

Solution:

SIM: Each node is reponsible for protecting itself with services like Cloudflare. Also, the nodes should have an upper limit of concurrent requests they can handle. The response with status 500 should indicate reaching this limit. This will still lead to blacklisting, but this protects the node by not sending more requests.

CHR: The same is true for bootstrapping nodes of the foundation.

6.2.3. None Verifying DataProvider

Status: solved (more signatures = more security)

A DataProvider should always check the signatures of the blockhash they received from the signers. Of course, the DataProvider is incentivized to do so because then they can get 50% of their deposit, but after getting the deposit, they are not incentivized to report this to the client. There are two scenarios:

	The DataProvider receives the signature but does not check it.

In this case, at least the verification inside the client will fail since the provided blockheader does not match.

	The DataProvider works together with the signer.

In this case, the DataProvider would prepare a wrong blockheader that fits the wrong blockhash and would pass the verification inside the client.

Solution:

SIM: In this case, only a higher number of signatures could increase security.

6.3. Privacy

6.3.1. Private Keys as API Keys

Status: solved

For the scoring model, we are using private keys. The perfect security model would register each client, which is almost impossible on mainnet, especially if you have a lot of devices. Using shared keys will very likely happen, but this a nightmare for security experts.

Solution:

	Limit the power of such a key so that the worst thing that can happen is a leaked key that can be used by another client, which would then be able to use the score of the server the key is assigned to.

	Keep the private key secret and manage the connection to the server only off chain.

	Instead of using a private key as API-Key, we keep the private key private and only get a signature from the node of the ecosystem confirming this relationship. This may happen completly offchain and scales much better.

Desicion: clients will not share private keys, but work with a signed approval from the node.

6.3.2. Filtering of Nodes

Status: partially solved

All nodes are known with their URLs in the NodeRegistry-contract. For countries trying to filter blockchain requests, this makes it easy to add these URLs to blacklists of firewalls, which would stop the Incubed network.

Solution:

Support Onion-URLs, dynamic IPs, LORA, BLE, and other protocols. The registry may even use the props to indicate the capabilities, so the client can choose which protocol to he is capable to use.

Decision: Accepted and prepared, but not fully implemented yet.

6.3.3. Inspecting Data in Relays or Proxies

For a device like a BLE, a relay (for example, a phone) is used to connect to the internet. Since a relay is able to read the content, it is possible to read the data or even pretend the server is not responding. (See Blacklist Attack above.)

Solution:

Encrypt the data by using the public key of the server. This can only be decrypted by the target server with the private key.

6.4. Risk Calculation

Just like the light client there is not 100% protection from malicious servers. The only way to reach this would be to trust special authority nodes to sign the blockhash. For all other nodes, we must always assume they are trying to find ways to cheat.

The risk of losing the deposit is significantly lower if the DataProvider node and the signing nodes are run by the same attacker. In this case, they will not only skip over checks, but also prepare the data, the proof, and a blockhash that matches the blockheader. If this were the only request and the client had no other anchor, they would accept a malicious response.

Depending on how many malicious nodes have registered themselves and are working together, the risk can be calculated. If 10% of all registered nodes would be run by an attacker (with the same deposit as the rest), the risk of getting a malicious response would be 1% with only one signature. The risk would go down to 0.006% with three signatures:

[image: _images/image1.png]50% bad

In case of an attacker controlling 50% of all nodes, it looks a bit different. Here, one signature would give you a risk of 25% to get a bad response, and it would take more than four signatures to reduce this to under 1%.

[image: _images/image2.png]10% bad

Solution:

The risk can be reduced by sending two requests in parallel. This way the attacker cannot be sure that their attack would be successful because chances are higher to detect this. If both requests lead to a different result, this conflict can be forwarded to as many servers as possible, where these servers can then check the blockhash and possibly convict the malicious server.

Index

 Symbols
 | A
 | C
 | E
 | I
 | K
 | N
 | P
 | R
 | S
 | V

Symbols

 	
 	<JSON-RPC>-method

A

 	
 	abi_decode <signature> data

 	
 	abi_encode <signature> ...args

C

 	
 	call <signature> ...args

 	
 	Code

 	createkey

E

 	
 	ecrecover <msg> <signature>

I

 	
 	IN3_CHAIN

 	in3_nodeList

 	
 	IN3_PK

 	in3_sign <blocknumber>

 	in3_stats

K

 	
 	key <keyfile>

N

 	
 	NodeLists

P

 	
 	pk2address <privatekey>

 	
 	pk2public <privatekey>

R

 	
 	Reputations

S

 	
 	send <signature> ...args

 	
 	sign <data>

V

 	
 	Validators

API Reference Docker

To start the Incubed client as a standalone client (allowing other applications to connect to it), you must start the container as:

docker run -d -p 8545:8545 slockit/in3:latest --chainId=mainnet

The application will then accept the following arguments:

	--nodeLimit

	The limit of nodes to store in the client.

	--keepIn3

	If true, the IN3-section of the response will be kept. Otherwise, it will be removed
after validating the data. This is useful for debugging or if the proof will be
used afterward.

	--format

	The format for sending the data to the client. Default is JSON, but using CBOR means
using only 30-40% of the payload since it is using binary encoding.

	--autoConfig

	If true, the configuration will be adjusted depending on the request.

	--retryWithoutProof

	If true, the request may be handled without proof in case of an error. (Use with care!)

	--includeCode

	If true, the request should include the codes of all accounts. Otherwise, only the codeHash is returned. In this case, the client may ask by calling eth_getCode() afterward.

	--maxCodeCache

	Max number of bytes used to cache the code in memory.

	--maxBlockCache

	Number of blocks cached in memory.

	--proof

	‘None’ for no verification, ‘standard’ for verifying all important fields, and ‘full’ for verifying all fields even if this means a high payload.

	--signatureCount

	Number of signatures requested.

	--finality

	Percentage of validator-signed blockheaders; this is used for PoA (Aura).

	--minDeposit

	Minimum stake of the server. Only nodes owning at least this amount will be chosen.

	--replaceLatestBlock

	If specified, the block number latest will be replaced by blockNumber-(specific value).

	--requestCount

	The number of requests sent when receiving a first answer.

	--timeout

	Specifies the number of milliseconds before the request times out. Increasing may be helpful if the device uses a slow connection.

	--chainId

	Servers to filter for the given chain. The chain ID is based on EIP 155.

	--chainRegistry

	Mainchain registry contract.

	--mainChain

	Mainchain ID where the chain registry is running.

	--autoUpdateList

	If true, the NodeList will be automatically updated if the last block is newer.

	--loggerUrl

	A URL the RES-endpoint client will log all errors to. The client will post to this endpoint JSON-like (ID?, level, message, meta?).

Examples

This is a collection of use cases and examples helping devlopers to copy and paste code to get started.

TS

using Web3

Since incubed works with on a JSON-RPC-Level it can easily be used as Provider for Web3:

// import in3-Module
import In3Client from 'in3'
import * as Web3 from 'web3'

// use the In3Client as Http-Provider
const web3 = new Web3(new In3Client({
 proof : 'standard',
 signatureCount: 1,
 requestCount : 2,
 chainId : 'mainnet'
}).createWeb3Provider())

// use the web3
const block = await web3.eth.getBlockByNumber('latest')
...

using Incubed API

Incubed includes a light API, allowinng not only to use all RPC-Methods in a typesafe way, but also to sign transactions and call funnctions of a contract without the web3-library.

For more details see the API-Doc

// import in3-Module
import In3Client from 'in3'

// use the In3Client
const in3 = new In3Client({
 proof : 'standard',
 signatureCount: 1,
 requestCount : 2,
 chainId : 'mainnet'
})

// use the api to call a funnction..
const myBalance = await in3.eth.callFn(myTokenContract, 'balanceOf(address):uint', myAccount)

// ot to send a transaction..
const receipt = await in3.eth.sendTransaction({
 to : myTokenContract,
 method : 'transfer(address,uint256)',
 args : [target,amount],
 confirmations: 2,
 pk : myKey
})

...

Reading event with incubed

// import in3-Module
import In3Client from 'in3'

// use the In3Client
const in3 = new In3Client({
 proof : 'standard',
 signatureCount: 1,
 requestCount : 2,
 chainId : 'mainnet'
})

// use the ABI-String of the smart contract
abi = [{"anonymous":false,"inputs":[{"indexed":false,"name":"name","type":"string"},{"indexed":true,"name":"label","type":"bytes32"},{"indexed":true,"name":"owner","type":"address"},{"indexed":false,"name":"cost","type":"uint256"},{"indexed":false,"name":"expires","type":"uint256"}],"name":"NameRegistered","type":"event"}]

// create a contract-object for a given address
const contract = in3.eth.contractAt(abi, '0xF0AD5cAd05e10572EfcEB849f6Ff0c68f9700455') // ENS contract.

// read all events starting from a specified block until the latest
const logs = await c.events.NameRegistered.getLogs({fromBlock:8022948}))

// print out the properties of the event.
for (const ev of logs)
 console.log(`${ev.owner} registered ${ev.name} for ${ev.cost} wei until ${new Date(ev.expires.toNumber()*1000).toString()}`)

...

C

creating a incubed instance

creating always follow these steps:

#include <client/client.h> // the core client
#include <eth_full.h> // the full ethereum verifier containing the EVM
#include <in3_curl.h> // transport implementation

// register verifiers, in this case a full verifier allowing eth_call
in3_register_eth_full();

// create new client
in3_t* client = in3_new();

// configure storage by using storage-functions from in3_curl, which store the cache in /home/<USER>/.in3
in3_storage_handler_t storage_handler;
storage_handler.get_item = storage_get_item;
storage_handler.set_item = storage_set_item;

client->cacheStorage = &storage_handler;

// configure transport by using curl
client->transport = send_curl;

// init cache by reading the nodelist from the cache >(if exists)
in3_cache_init(client);

// ready to use ...

calling a function

 // define a address (20byte)
 address_t contract;

 // copy the hexcoded string into this address
 hex2byte_arr("0x845E484b505443814B992Bf0319A5e8F5e407879", -1, contract, 20);

 // ask for the number of servers registered
 json_ctx_t* response = eth_call_fn(client, contract, "totalServers():uint256");

 // handle response
 if (!response) {
 printf("Could not get the response: %s", eth_last_error());
 return;
 }

 // convert the result to a integer
 int number_of_servers = d_int(response->result);

 // don't forget the free the response!
 free_json(response);

 // out put result
 printf("Found %i servers registered : \n", number_of_servers);

 // now we call a function with a complex result...
 for (int i = 0; i < number_of_servers; i++) {

 // get all the details for one server.
 response = eth_call_fn(c, contract, "servers(uint256):(string,address,uint,uint,uint,address)", to_uint256(i));

 // handle error
 if (!response) {
 printf("Could not get the response: %s", eth_last_error());
 return;
 }

 // decode data
 char* url = d_get_string_at(response->result, 0); // get the first item of the result (the url)
 bytes_t* owner = d_get_bytes_at(response->result, 1); // get the second item of the result (the owner)
 uint64_t deposit = d_get_long_at(response->result, 2); // get the third item of the result (the deposit)

 // print values
 printf("Server %i : %s owner = ", i, url);
 ba_print(owner->data, owner->len);
 printf(", deposit = %" PRIu64 "\n", deposit);

 // clean up
 free_json(response);
 }

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Incubed’s documentation!

 		
 Getting Started

 		
 TypeScript/JavaScript

 		
 As Provider in Web3

 		
 Direct API

 		
 As Docker Container

 		
 C Implementation

 		
 Java

 		
 Command-line Tool

 		
 Supported Chains

 		
 Mainnet

 		
 Kovan

 		
 Evan

 		
 Görli

 		
 IPFS

 		
 Registering an Incubed Node

 		
 Downloading in3

 		
 in3-node

 		
 Docker Hub

 		
 in3-client (ts)

 		
 npm

 		
 in3-client(C)

 		
 Ubuntu Launchpad

 		
 Docker Hub

 		
 Release page

 		
 Brew

 		
 Running an in3 node on a VPS

 		
 Side notes/ chat summary

 		
 Recommendations

 		
 IN3-Protocol

 		
 Incubed Requests

 		
 Incubed Responses

 		
 ChainId

 		
 Registry

 		
 Register and Unregister of nodes

 		
 Convicting a node

 		
 Updating the NodeRegistry

 		
 Node structure

 		
 Binary Format

 		
 Communication

 		
 RPC Specification

 		
 Incubed

 		
 Ethereum 1.x

 		
 Roadmap

 		
 V2.0 Stable: Q3 2019

 		
 V2.1 Incentivization: Q4 2019

 		
 V2.2 Bitcoin: Q1 2020

 		
 V2.3 WASM: Q3 2020

 		
 V2.4 Substrate: Q1 2021

 		
 V2.5 Services: Q3 2021

 		
 Benchmarks

 		
 Setup and Tools

 		
 Considerations

 		
 Results/Baseline

 		
 Embedded Devices

 		
 Hardware Requirements

 		
 Memory

 		
 Networking

 		
 Incubed with ESP-IDF

 		
 Use case example: Airbnb Property access

 		
 Incubed with Zephyr

 		
 API Reference C

 		
 Overview

 		
 Why C?

 		
 Modules

 		
 Building

 		
 requirements

 		
 CMake options

 		
 Examples

 		
 call_a_function

 		
 get_balance

 		
 get_block

 		
 get_logs

 		
 get_transaction

 		
 get_transaction_receipt

 		
 send_transaction

 		
 usn_device

 		
 usn_rent

 		
 Building

 		
 RPC

 		
 in3_config

 		
 in3_abiEncode

 		
 in3_abiDecode

 		
 in3_checksumAddress

 		
 in3_ens

 		
 Module api/eth1

 		
 eth_api.h

 		
 Module api/usn

 		
 usn_api.h

 		
 Module core

 		
 client.h

 		
 context.h

 		
 verifier.h

 		
 bytes.h

 		
 data.h

 		
 debug.h

 		
 error.h

 		
 scache.h

 		
 stringbuilder.h

 		
 utils.h

 		
 Module transport/curl

 		
 in3_curl.h

 		
 Module transport/http

 		
 in3_http.h

 		
 Module verifier/eth1/basic

 		
 eth_basic.h

 		
 signer.h

 		
 trie.h

 		
 Module verifier/eth1/evm

 		
 big.h

 		
 code.h

 		
 evm.h

 		
 gas.h

 		
 Module verifier/eth1/full

 		
 eth_full.h

 		
 Module verifier/eth1/nano

 		
 chainspec.h

 		
 eth_nano.h

 		
 merkle.h

 		
 rlp.h

 		
 serialize.h

 		
 API Reference TS

 		
 Examples

 		
 using Web3

 		
 using Incubed API

 		
 Reading event with incubed

 		
 Main Module

 		
 Package client

 		
 Type Client

 		
 Type ChainContext

 		
 Type Module

 		
 Package index.ts

 		
 Type AccountProof

 		
 Type AuraValidatoryProof

 		
 Type ChainSpec

 		
 Type IN3Client

 		
 Type IN3Config

 		
 Type IN3NodeConfig

 		
 Type IN3NodeWeight

 		
 Type IN3RPCConfig

 		
 Type IN3RPCHandlerConfig

 		
 Type IN3RPCRequestConfig

 		
 Type IN3ResponseConfig

 		
 Type LogProof

 		
 Type Proof

 		
 Type RPCRequest

 		
 Type RPCResponse

 		
 Type ServerList

 		
 Type Signature

 		
 Type Transport

 		
 Package modules/eth

 		
 Type EthAPI

 		
 Type chainData

 		
 Type header

 		
 Type Signer

 		
 Type Transaction

 		
 Type BlockType

 		
 Type Address

 		
 Type ABI

 		
 Type Log

 		
 Type Block

 		
 Type Hash

 		
 Type Quantity

 		
 Type LogFilter

 		
 Type TransactionDetail

 		
 Type TransactionReceipt

 		
 Type Data

 		
 Type TxRequest

 		
 Type AuthSpec

 		
 Type HistoryEntry

 		
 Type ABIField

 		
 Type Hex

 		
 Package modules/ipfs

 		
 Type IpfsAPI

 		
 Package util

 		
 Type DeltaHistory

 		
 Type Delta

 		
 Common Module

 		
 Package index.ts

 		
 Type BlockData

 		
 Type LogData

 		
 Type ReceiptData

 		
 Type TransactionData

 		
 Type Transport

 		
 Package modules/eth

 		
 Type Block

 		
 Type Transaction

 		
 Type Receipt

 		
 Type Account

 		
 Type serialize

 		
 Type storage

 		
 Type AccountData

 		
 Type BlockHeader

 		
 Package types

 		
 Type RPCRequest

 		
 Type RPCResponse

 		
 Type IN3RPCRequestConfig

 		
 Type IN3ResponseConfig

 		
 Type IN3NodeConfig

 		
 Type Proof

 		
 Type LogProof

 		
 Type Signature

 		
 Package util

 		
 Type AxiosTransport

 		
 Type cbor

 		
 Type transport

 		
 Type util

 		
 Type validate

 		
 API Reference WASM

 		
 Main Module

 		
 Package in3.d.ts

 		
 Type IN3

 		
 Type SimpleSigner

 		
 Type EthAPI

 		
 Type IN3Config

 		
 Type IN3NodeConfig

 		
 Type IN3NodeWeight

 		
 Type RPCRequest

 		
 Type RPCResponse

 		
 Type Signer

 		
 Type Utils

 		
 Type ABI

 		
 Type ABIField

 		
 Type Address

 		
 Type Block

 		
 Type Data

 		
 Type Hash

 		
 Type Log

 		
 Type LogFilter

 		
 Type Signature

 		
 Type Transaction

 		
 Type TransactionDetail

 		
 Type TransactionReceipt

 		
 Type TxRequest

 		
 Type Hex

 		
 Type BlockType

 		
 Type Quantity

 		
 API Reference Java

 		
 Installing

 		
 Examples

 		
 Using in3 directly

 		
 Using the API

 		
 Downloading

 		
 Building

 		
 Android

 		
 Package in3

 		
 class Chain

 		
 class IN3

 		
 class IN3DefaultTransport

 		
 class JSON

 		
 class Loader

 		
 class TempStorageProvider

 		
 enum Proof

 		
 interface IN3Transport

 		
 interface Signer

 		
 interface StorageProvider

 		
 Package in3.eth1

 		
 class API

 		
 class Block

 		
 class Log

 		
 class LogFilter

 		
 class SimpleWallet

 		
 class Transaction

 		
 class TransactionReceipt

 		
 class TransactionRequest

 		
 API Reference CMD

 		
 Usage

 		
 Install

 		
 From Binaries

 		
 From Package Managers

 		
 From Sources

 		
 From Docker

 		
 Environment Variables

 		
 Methods

 		
 Running as Server

 		
 Cache

 		
 Signing

 		
 Autocompletion

 		
 Function Signatures

 		
 Examples

 		
 Getting the Current Block

 		
 Using jq to Filter JSON

 		
 Calling a Function of a Smart Contract

 		
 Sending a Transaction

 		
 Deploying a Contract

 		
 API Reference Node/Server

 		
 Command-line Arguments

 		
 in3-server-setup tool

 		
 Registering Your Own Incubed Node

 		
 API Reference Solidity

 		
 NodeRegistryData functions

 		
 adminRemoveNodeFromRegistry

 		
 adminSetLogic

 		
 adminSetNodeDeposit

 		
 adminSetStage

 		
 adminSetSupportedToken

 		
 adminSetTimeout

 		
 adminTransferDeposit

 		
 setConvict

 		
 registerNodeFor

 		
 transferOwnership

 		
 unregisteringNode

 		
 updateNode

 		
 getIn3NodeInformation

 		
 getSignerInformation

 		
 totalNodes

 		
 adminSetSignerInfo

 		
 NodeRegistryLogic functions

 		
 activateNewLogic

 		
 adminRemoveNodeFromRegistry

 		
 adminUpdateLogic

 		
 convict

 		
 registerNode

 		
 registerNodeFor

 		
 returnDeposit

 		
 revealConvict

 		
 transferOwnership

 		
 unregisteringNode

 		
 updateNode

 		
 maxDepositFirstYear

 		
 minDeposit

 		
 supportedToken

 		
 BlockHashRegistry functions

 		
 searchForAvailableBlock

 		
 recreateBlockheaders

 		
 saveBlockNumber

 		
 snapshot

 		
 getRlpUint

 		
 getParentAndBlockhash

 		
 reCalculateBlockheaders

 		
 Concept

 		
 Situation

 		
 Low-Performance Hardware

 		
 Scalability

 		
 Use Cases

 		
 Publicly Accessible Environment Sensor

 		
 Smart Bike Lock

 		
 Smart Home - Smart Thermostat

 		
 Smartphone App

 		
 Advantages

 		
 Challenges

 		
 Architecture

 		
 Overview

 		
 IN3-Registry Smart Contract

 		
 Netservice-Node

 		
 Netservice-Client

 		
 Payment / Incentives

 		
 Scaling

 		
 Multi Chain Support

 		
 Conclusion

 		
 Blockheader Verification

 		
 Ethereum

 		
 Proof of Work

 		
 Proof of Authority

 		
 Bitcoin

 		
 Block Proof

 		
 Transaction Proof

 		
 Convicting For wrong Blockhashes in the NodeRegistry

 		
 Technical Background

 		
 Ethereum Verification

 		
 BlockProof

 		
 Transaction Proof

 		
 Receipt Proof

 		
 Log Proof

 		
 Account Proof

 		
 Call Proof

 		
 Incentivization

 		
 Decentralizing Access

 		
 Incentivization for Nodes

 		
 Connecting Clients and Server

 		
 Ensuring Client Access

 		
 Deposit

 		
 LoadBalancing

 		
 Free Access

 		
 Convict

 		
 Handling conflicts

 		
 Payment

 		
 Client Identification

 		
 Decentralizing Central Services

 		
 Incentivization

 		
 Verification

 		
 Convicting

 		
 Threat Model for Incubed

 		
 Registry Issues

 		
 Long Time Attack

 		
 Inactive Server Spam Attack

 		
 DDOS Attack to uncontrolled urls

 		
 Self-Convict Attack

 		
 Convict Frontrunner Attack

 		
 Network Attacks

 		
 Blacklist Attack

 		
 DDoS Attacks

 		
 None Verifying DataProvider

 		
 Privacy

 		
 Private Keys as API Keys

 		
 Filtering of Nodes

 		
 Inspecting Data in Relays or Proxies

 		
 Risk Calculation

_static/up-pressed.png

_static/up.png

_images/44b07fa217cc1384f773b13a9b318cc322cfc3b10d1064943738836d22b7c8f0.png
NodeB

Client NodeA
| Request '
e

<

<
| e

q
e

1'(verify and update nodeList and lastNodeList

check if lastNodeList increased

uest in3_nodeList

Client

NodeA

NodeB

_images/embedded_diagram.png
/api/access

eth_call hasAccess:uint8

vm exec

[verify

/api/retrieve

_images/embedded_esp.png
make / Eclipse

ESP-IDF

Toolchain

Application

Ut

_images/cap-america-meme.jpg

_images/depositWeight.png
£0O)=1/ (146 (1-3x))

1,25

0.75

/ s

—-8.25

_images/graphAvailable.png

_images/graphviz-10bef45b3e2e67778b1fac7bfa5a706d9e4efbba.png
storage value

!

Storage Trie

0x123456

0x98765

Oxfcab34

\

‘ 0x123456

State Trie

storageHash

codeHash

!

0x123456

0x98765

Oxfcab34

~—,

—

0x123456

_images/graphviz-124bee03462ad52f77d71023ea1f0a97d30f2c79.png
Proof or Work

Client

response

+ proof

+ signed
header

Node B

sign

Node A Node C

Proof of Authority

Client

response
+ proof
+ header

Node

Proof of Stake

Client

response
+ proof
+ header

header

Node Node (Validator)

_images/graphviz-72c80f0c109ae6554403abfe65fab6ba5e8a4903.png
transaction receipt

!

Receipt Trie

0x123456

Oxabcedef

0x98765

Oxfcab34

I oizsase IIIII

parentHash

transactionRoot

receiptRoot

stateRoot

_images/graphviz-7dc8c45c07f4dfe2a541a8a0e35d7861465103a6.png
Transports

transport_http

_images/graphviz-3a4c35916a3e5aa22964edec351f46f90e5828da.png
Transaction Trie

transaction data

!

0x123456

Oxabcedef

0x98765 Oxfcab34

I oizsase IIIII

parentHash

transactionRoot

receiptRoot | stateRoot

_images/graphviz-71ded4e43306def595b406128fc142f469c8b365.png
centralized

infura

centralized per Dapp

_images/graphviz-c75c22109b3010eb22a66912d996532f9917540e.png
Verifying Nodes

_images/graphviz-f2afe1e57e6c4c8b613230a7cb604fea6cd89222.png
key type
L — . _ — lenext —» data
16 bit type (3bit) len (5bit)

_images/graphviz-b130093bd99e3a92df948e665d708e14c5355d05.png
cloud

ServerA ——— Search

T~

ServerB Matrix

T~

ServerC —————#= Whisper

ServerRegistry
SR ServiceRegistry
offer Search
rewards slockit/search:latest
http//rpe.s1 wasm
ServerB Matrix
offer matrix/matrix:latest
rewards wasm
hitp/rpc.s2.
Whisper
Server C whisperiatest
offer wasm
rewards
hitp//rpc.s3,

_images/graphviz-b218b5eb2f91c95b0e1d52c026bd031694bac92e.png
BlockHashRegistry

_images/image1.png
0%

2%

20%

15%

10%

%

o%

Risc if 50% are bad

0,35%

_images/image2.png
1.2000%
1,0000%
08000%
0000%
04000%
02000%

0,0000%

Risc if 10% are bad

1,0000%

[0,0830%

0,0060% 0,0003% 0,0000% 0,0000%

_images/graphviz-f63befc5219ba2d91f7963f853b75c7c5baa8b6d.png
ClientRegistry ServerRegistry

capi10

htpipest. —_

cloud

Server A

ServerB

° cap:100
httpi/fpe.s2.. |—m ServerB

Server C

ap20 Server C

http/rpe.s3. L

_images/incubed_principle2.png
CLIENT

I

REQUEST | TRANSACTION

UNSIGNED ANSWER

REQUEST | TRANSACTION

UNSIGNED ANSWER

)

8

8

NODE

NODE

_images/portainer-docker-containers-screenshot.jpg
¥ LOCAL

Dashboard
App Templates
Stacks
Containers
Images
Networks
Volumes
Events

Host

Extensions
Users
Endpoints
Registries

Settings

@ N

&

C' NI 0000/#/containers

Container list £

Containers

= Containers

Q Search...
State |2 Quick
Name N
O Filter ¥ actions
(O in3-parity_incubed-server m B O « >_
O in3_incubed-parity_1 healthy J-: JTGb
(O naughty_lamarr m B O a >

<

Stack

in3

in3

Image

slockit/in3-node:latest
parity/parity:stable

portainer/portainer

pstart BStop @FKill £ Restart 0l Pause P Resume [Remove 4+ Add container

Created

2020-01-17 10:33:46

2020-01-17 09:33:37

2020-01-17 09:23:36

IP
Address

172.15.0.2

172.15.0.3

172.17.0.2

o % M & © 0

@ Portainer support @ dev

/. my account @ logout

M Columns & Settings

Published Ports

[£ 8500:8500
[£ 8545:8545 [4 30303:30303 [30303:30303 [8546:8546

[£ 8000:8000 [£'9000:9000

Items per page 10 v

_images/incubed_principle.png
SMART CONTRACT
IncubedRegistry

"'@lﬂ:jﬁ'

iN)

g1

NETSERVICE-NODE

=¥
=z

s

/ §
yd Request Merkle-Tree N
4 X G
7 Transaction Hash &

Payment Result @

probabilistic pooled payment

iN)

NETSERVICE-CLIENT C——2

_images/incubed_principle1.png
CLIENT

REQUEST + VALIDATORREQUEST + PROOFREQUEST + KNOWN PROOFS

v—

SIGNED ANSWER, PAYMENT DEMAND, (PROOF), (VALIDATION)

[e 3

SEND PROOF AND BLOCK
VALIDATION REQUEST

iN)

‘I@S

0o

NODE

NODE

_images/plantweb/44b07fa217cc1384f773b13a9b318cc322cfc3b10d1064943738836d22b7c8f0.png
NodeB

Client NodeA
| Request '
e

<

<
| e

q
e

1'(verify and update nodeList and lastNodeList

check if lastNodeList increased

uest in3_nodeList

Client

NodeA

NodeB

_static/ajax-loader.gif

